

REPORT MCCARTHY QUARRY 2020 Environmental Compliance Approval Annual Report

Submitted to:

Cindy Hood

Ministry of the Environment, Conservation and Parks Barrie District Office 1203-54 Cedar Pointe Drive Barrie, Ontario, L4N 5R7

Submitted by:

Golder Associates Ltd.

121 Commerce Park Drive, Unit L, Barrie, Ontario, L4N 8X1, Canada

+1 705 722 4492

1407634

March 2021

Distribution List

1 Copy - Ministry of the Environment, Conservation and Parks

- E Copy Coco Aggregates Inc.
- E Copy Golder Associates Ltd.

Table of Contents

1.0	INTRODUCTION	1
2.0	BACKGROUND	1
3.0	QUARRY DISCHARGE MONITORING	1
	3.1 Quarry discharge Monitoring Requirements	1
4.0	QUARRY DISCHARGE MONITORING RESULTS	2
5.0	MEASURED DISCHARGE FROM QUARRY SUMP	3
6.0	OPERATIONAL PROBLEMS AND CORRECTIVE ACTIONS TAKEN	3
7.0	MAINTENANCE OF SEWAGE WORKS	3
8.0	QUARRY DISCHARGE QUALITY ASSURANCE OR CONTROL MEASURES	3
9.0	SUMMARY	3

FIGURES

Figure 1 – Location Map

TABLES

- Table 1 Condition 6(2) McCarthy Pond Weekly Water Quality Results
- Table 2 Condition 6(2) McCarthy Pond Monthly Water Quality Results
- Table 3 Condition 6(2) McCarthy Pond Water Quality Results
- Table 4 Condition 6(2) SW1 Water Quality Results
- Table 5 Condition 6(2) SW2 Water Quality Results
- Table 6 Measured Water Volume and Rate of Discharge from Quarry Sump

APPENDICES

APPENDIX A ECA No. 7737-BH6QEA

APPENDIX B Permit To Take Water No. 1603-BKTPQH

APPENDIX C Water Quality Results

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) was retained by QBJR/Coco Aggregates Inc. (Coco) to prepare the annual compliance report for the McCarthy Quarry located in the Township of Ramara, County of Simcoe (Figure 1), as a requirement of Environmental Compliance Approval (ECA) No. 7737-BH6QEA issued on October 22, 2019. A copy of the ECA No. 7737-BH6QEA is provided in Appendix A.

The following report includes a summary of the requirements listed in Section 8(5) of the ECA for the period from January 1, 2020 to December 31, 2020. Included herein are a summary of:

- Interpretation of all monitoring data and a comparison to the effluent limits outlined in the ECA;
- Any operational problems encountered;
- Maintenance work completed on any part of the sewage works; and,
- Effluent discharge quality assurance or control measures undertaken.

2.0 BACKGROUND

The McCarthy Quarry dewatering system consists of the collection of groundwater and surface water at the base of the quarry floor to a settling pond to the south of the active quarry area (Figure 1). Groundwater and precipitation entering the quarry is collected in a sump in the quarry floor. The sump is equipped with a 4-inch Grindex pump with a maximum discharge rate of 35 L/sec which is attached to a 4-inch (101 mm) diameter discharge line. The water is pumped from the quarry floor up the quarry face via the discharge line to a 4-inch (101 mm) diameter pipeline that directs the water to a ditch that runs southward through the McCarthy property to the 14,000 m³ settling pond. The water in the settling pond discharges via a Hickenbottom control structure to the roadside ditches along Concession Road 1. The water in the roadside ditch travels eastward along the north side of Concession Road 1 to a municipal drain and eventually discharges to the Talbot River, which in turn discharges to Lake Simcoe.

The dewatering activities from the McCarthy Quarry are currently carried out under the existing Permit to Take Water (PTTW) No. 1603-BKTPQH (Appendix B). The Permit is in place from January 31, 2020 to January 31, 2025. Under the current PTTW Coco is permitted to pump water from the quarry sump at a rate of 4,545 L/min.

3.0 QUARRY DISCHARGE MONITORING

3.1 Quarry discharge Monitoring Requirements

Quarry discharge monitoring is required by the ECA at three locations, as shown on Figure 1:

- McCarthy Pond: the outfall of the settling pond;
- SW1: the culvert along Concession Road 1 at the McCarthy property downstream of the McCarthy Pond discharge location; and
- SW2: 260 m north of the intersection of Concession Road 1 and Mara Eldon Boundary Road, representing upstream conditions.

Condition 6(2) Table 2

Weekly quarry discharge monitoring is required at the McCarthy Pond for Total Suspended Solids (TSS), Oil and Grease and Phenols (4AAP). These results are summarized in Table 1 and the monthly averages are summarized in Table 2. No sample was collected for the weeks when quarry staff reported there was no discharge at the time of sampling.

The weekly quarry discharge samples (Section 6(2)) were collected by staff at the McCarthy Quarry. The weekly quality samples were sent to Bureau Veritas Laboratories of Mississauga, Ontario for analysis. Laboratory analysis results are included in Appendix C.

Condition 6(2) Table 3

Additional water quality sampling is required under Section 6(2) Table 3 at a semi-annual frequency at all three locations. The parameters required for semi-annual water quality monitoring at all three locations are listed in Table 3 of the ECA.

The semi-annual water quality samples (Section 6(2)) were collected by Golder. The semi-annual water quality samples were sent to Bureau Veritas Laboratories of Mississauga, Ontario for analysis. The laboratory analysis results are included in Appendix C.

Condition 6(4)

Section 6(4) requires measurement, recording and calculation of the discharge rate and volume from the works during the discharge period. The flow rates are recorded and provided to Golder by staff at the McCarthy Quarry. These results are summarized in Table 6.

4.0 QUARRY DISCHARGE MONITORING RESULTS

Condition 6(2) Table 2

The TSS, pH, Oil and Grease and Phenols (4AAP) concentrations were all below the daily concentration limits of the ECA (Table 1), with the exception of the TSS concentration from sample collected on April 30, 2020. The concentration of TSS (37 mg/L) exceeded the 30 mg/L limit. The result from the first two samples collected subsequently in May 2020 reported TSS concentrations below the ECA guideline. As a result the sample collected on April 30 is considered a short-term anomaly, rather than being indicative of a chronic issue with the discharge treatment system.

The calculated monthly average of the TSS, Oil and Grease and Phenols (4AAP) concentrations were all below the monthly concentration limits stipulated in the ECA (Table 2), with the exception of the average TSS in April (16 mg/L) and August (17 mg/L), which marginally exceeded the 15 mg/L limit. The April exceedance was due to the TSS concentration reported for April 30 sample (see above). Only a single sample was collected in August 2020 with during very low flow conditions, which contributed to the elevated TSS concentration. TSS concentrations decreased to an average of 11.3 mg/L in September 2020 and 4.3 mg/L in October 2020.

Condition 6(2) Table 3

All of the parameters tested for samples collected at the McCarthy Pond location were reported at concentrations below the Provincial Water Quality Objectives (PWQO); results are provided in Table 3.

All of the parameters tested for samples collected at both the SW1 and SW2 locations were reported at concentrations below the PWQO; results are provided in Tables 4 and 5, respectively.

5.0 MEASURED DISCHARGE FROM QUARRY SUMP

A continuous record of flow rates and discharge volumes has been maintained throughout this monitoring period. The pump records are provided by McCarthy Quarry staff. The pump records for January 1, 2020 to December 31, 2020 are found in Table 6. The discharge rates were below the permitted rate of 4,545 L/min (6,544,800 L/day) throughout the monitoring period. There has been no indication of erosion and/or flooding of the downstream ditches.

6.0 OPERATIONAL PROBLEMS AND CORRECTIVE ACTIONS TAKEN

Coco has indicated that no other operational problems were encountered with the dewatering system during the monitoring period of January to December 2020. Coco also indicted that no spills occurred during the January to December 2020 monitoring period.

7.0 MAINTENANCE OF SEWAGE WORKS

Coco indicated that no upgrades or maintenance works were carried out on any part of the sewage works during the January to December 2020 monitoring period.

8.0 QUARRY DISCHARGE QUALITY ASSURANCE OR CONTROL MEASURES

Coco indicated that no major quarry discharge quality assurance or control measures were put in place during this monitoring period.

9.0 SUMMARY

- ECA Condition 6(2) Table 2:
 - All of the weekly quarry discharge monitoring samples from the McCarthy Pond were below the permitted daily concentration limits, with the exception of the TSS concentration from sample collected on April 30, 2020; and
 - All of the monthly quarry discharge concentrations for the McCarthy Pond were below the permitted monthly concentration limits, with the exception of the average TSS in April (16 mg/L) and August (17 mg/L), which marginally exceeded the 15 mg/L limit.
- Condition 6(2) Table 3:
 - At the McCarthy Pond, all parameters were below the PWQO;
 - At SW1, all parameters were below the PWQO; and,
 - At SW2 all parameters were below the PWQO.
- Condition 6(4):
 - A continuous record of flow rates has been maintained throughout the monitoring period and all water takings were below the permitted rate of 4,545 L/min (6,544,800 L/day).

Signature Page

Golder Associates Ltd.

J

Jamie Bonany, M.A.Sc. *Project Scientist*

JEB/SM/cdr

A_ hull

Sean McFarland, Ph.D., P.Geo. *Principal, Senior Hydrogeologist*

Golder and the G logo are trademarks of Golder Associates Corporation

\lgolder.gds\gal\barrie\active\2014\140-7634 rep 2021'03'23 - 2020 eca annual report.docx

Figure

TABLES

Table 1: Condition 6(2) McCarthy Pond Weekly Water Quality Results

	Unit	RDL	PWQO ¹	Daily Limit ²		McCarthy Quarry											
Sample ID											Pond						
Date					09-Jan-20	05-Mar-20	16-Apr-20	23-Apr-20	30-Apr-20	07-May-20	14-May-20	28-May-20	04-Jun-20	11-Jun-20	18-Jun-20	25-Jun-20	31-Aug-20
pН	pН	n/a		6.0-9.5	7.53	7.54	7.86	8.11	7.88	8.00	8.13	7.90	8.08	7.62	8.19	8.10	7.86
Total Suspended																	
Solids	mg/L	1		30	2	3	3	8	37	19	2	2	2	5	8	5	17
Total Oil and Grease	mg/L	0.5	Note 3	30	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.7	<0.5	<0.5	<0.5	<0.5	2.2
Phenols (4AAP)	mg/L	<0.0010		0.04	<0.001	0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001

Notes:

1. Provincial Water Quality Objectives (PWQO); shaded cells denote PWQO exceedance; some PWQOs are dependent on other water quality parameters hence the range in guideline values, refer to PWQO notes.

2. Daily Concentration Limit; bolded values denote exceedances in the Environmental Compliance Approval daily concentration limits.

3. The PWQO for Oil and Grease indicates that oil or petrochemicals should not be present in concentrations that: can be detected as a visible film, sheen or discolouration on the surface, can be detected by odour, can cause tainting of edible organisms, can form detectable deposits on shorelines and bottom sediments.

4. Results that are preceeded by "<" denote concentrations that are below the laboratory Reportable Detection Limit (RDL).

Table 1: Condition 6(2) McCarthy Pond Weekly Water Quality Results

	Unit	RDL	PWQO ¹	Daily Limit ²		McCarthy Quarry									
Sample ID										Pond					
Date					08-Sep-20	14-Sep-20	21-Sep-20	28-Sep-20	08-Oct-20	13-Oct-20	19-Oct-20	26-Oct-20	05-Nov-20	12-Nov-20	15-Dec-20
pН	pН	n/a		6.0-9.5	7.76	7.97	8.00	8.05	7.84	7.98	7.91	7.92	8.05	8.06	7.77
Total Suspended Solids	mg/L	1		30	8	12	9	16	3	5	7	2	13	2	5
Total Oil and Grease	mg/L	0.5	Note 3	30	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.9
Phenols (4AAP)	mg/L	<0.0010		0.04	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

Notes:

1. Provincial Water Quality Objectives (PWQO); shaded cells denote PWQO exceedance; some PWQOs are dependent on other water quality parameters hence the range in guideline values, refer to PWQO notes.

2. Daily Concentration Limit; bolded values denote exceedances in the Environmental Compliannce Approval concentration limits.

3. The PWQO for Oil and Grease indicates that oil or petrochemicals should not be present in concentrations that: can be detected as a visible film, sheen or discolouration on the surface, can be detected by odour, can cause tainting of edible organisms, can form detectable deposits on shorelines and bottom sediments.

4. Results that are preceeded by "<" denote concentrations that are below the laboratory Reportable Detection Limit (RDL).

Table 2: Condition 6(2) McCarthy Pond Monthly Water Quality Results

Unit	RDL	PWQO ¹	Monthly Concentration Limit ²												
				January	February	March	April	May	June	July	August	September	October	November	December
				2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
mg/L	1		15	2.0	-	3.0	16.0	7.7	5.0	-	17.0	11.3	4.3	7.5	5.0
mg/L	0.5	Note 3	15	<0.5	-	<0.5	<0.5	1.4	<0.5	-	2.2	0.7	<0.5	<0.5	0.9
mg/L	<0.0010		0.02	<0.001	-	0.001	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.001	< 0.001	<0.001
	mg/L mg/L	mg/L 1 mg/L 0.5	mg/L 1 mg/L 0.5 Note 3	Unit RDL PWQO ¹ Concentration Limit ² mg/L 1 1 mg/L 0.5 Note 3 15	Unit RDL PWQO ¹ Concentration Limit ² Image: Concentration of the second	Unit RDL PWQO ¹ Concentration Limit ² Image: Concentration Image: Concentration Image: Concentration Image: Concentration	Unit RDL PWQO ¹ Concentration Limit ² Image: Concentration of the second	Unit RDL PWQ0 ¹ Concentration Limit ² Image: Concentration of the second	Unit RDL PWQ0 ¹ Concentration Limit ² Image: Concentration of the system	Unit RDL PWQ0 ¹ Concentration Limit ² Image: Concentration of Limit ² Image: Concentration of Limat ²	Unit RDL PWQ0 ¹ Concentration Limit ² Image: Concentration of Limit ² Image: Concentration of Limat ²	Unit RDL PWQ0 ¹ Concentration Limit ² Imit ²	Unit RDL PWQ0 ¹ Concentration Limit ² Image: Concentration of Limit ² Image: Concentration of Limat ²	Unit RDL PWQ0 ¹ Concentration Limit ² imit ² <td>Unit PWQ0¹ Concentration Limit² Imit² Imit² Imit² Imit² <t< td=""></t<></td>	Unit PWQ0 ¹ Concentration Limit ² Imit ² <t< td=""></t<>

Notes:

1. Provincial Water Quality Objectives (PWQO); shaded cells denote PWQO exceedance; some PWQOs are dependent on other water quality parameters hence the range in guideline values, refer to PWQO notes.

2. Monthyl Concentration Limit; bolded values denote exceedances in the Environmental Compliance Approval monthly concentration limits.

3. The PWQO for Oil and Grease indicates that oil or petrochemicals should not be present in concentrations that: can be detected as a visible film, sheen or discolouration on the surface, can be detected by odour, can cause tainting of edible organisms, can form detectable deposits on shorelines and bottom sediments.

 Results that are preceeded by "<" denote concentrations that are below the laboratory Reportable Detection Limit (RDL).

Table 3: Condition 6(2) McCarthy Pond Water Quality Results

	Unit	Reportable Detection Limit (RDL)	PWQO ¹	Interim PWQO ²	PTTW Effluent Limits	McCarth	y Quarry
Sample ID Date						Pond	Pond 29-Oct-20
						14-May-20	29-001-20
Field Measured Parameters Conductivity	mS/cm					376	723
pH	pH	n/a	6.5-8.5		6.0-9.5	8.25	8.36
Temperature	°C	n/a				10.4	6.7
Calculated Parameters		1.0				210	300
Hardness (CaCO3) Inorganics	mg/L	1.0				210	300
Total Ammonia-N	mg/L	0.050				<0.050	<0.050
Conductivity	umho/cm	1.0				0.455	0.858
Total Dissolved Solids	mg/L	10				260	510
Fluoride (F-) Total Kjeldahl Nitrogen (TKN)	mg/L mg/L	0.10				0.13 0.44	0.40 0.34
Dissolved Organic Carbon	mg/L	0.20				6.5	6.5
pH	pH	N/A	6.5-8.5		6.0-9.5	8.10	7.68
Phenols-4AAP	mg/L	0.0010	0.001		0.04	<0.0010	<0.0010
Total Phosphorus	mg/L	0.002		0.03 ^{5b}	00	0.010	0.012 <10
Total Suspended Solids Dissolved Sulphate (SO4)	mg/L mg/L	10			30	<10 82	240
Alkalinity (Total as CaCO3)	mg/L	1.0				140	93
Dissolved Chloride (Cl)	mg/L	1				9	58
Nitrite (N)	mg/L	0.010				<0.010	<0.010
Nitrate (N)	mg/L	0.10				<0.10	0.28
Petroleum Hydrocarbons Total Oil & Grease	mg/L	0.50	Note 3		30	<0.50	<0.50
Metals		0.50	11010 0			40.00	
Total Arsenic (As)	ug/L	1	100	5		<1.0	<1.0
Total Cadmium (Cd)	ug/L	0.1	0.2	0.1-0.5 ^{5d}		<0.10	<0.09
Dissolved Calcium (Ca) Total Calcium (Ca)	mg/L ug/L	0.05 200				62 63000	74 68000
Total Chromium (Cr)	ug/L	5	1-89 ^{5e}			<5.0	<5.0
Total Copper (Cu)	ug/L	1	5	1-5 ^{5†}		<1.0	<0.9
Total Iron (Fe)	ug/L	100	300			140	<100
Total Lead (Pb)	ug/L	0.5	5-25 ⁵⁹	1-5 ^{5h}		<0.50	<0.50
Dissolved Magnesium (Mg) Total Magnesium (Mg)	mg/L ug/L	0.05				14 13000	27 26000
Total Magnesium (Mg)	ug/L	2				16	6
Total Nickel (Ni)	ug/L	1	25			1.1	<1.0
Dissolved Potassium (K)	mg/L	1				1.8	7.4
Total Potassium (K)	ug/L	200				1700	7100
Dissolved Sodium (Na) Total Sodium (Na)	mg/L ug/L	0.5				12 12000	56 51000
Total Zinc (Zn)	ug/L	5	30	20		<5.0	<5.0
ome PWQOs are dependent on ot alues, refer to PWQO notes. Interim Provincial Water Quality enote Interim PWQO exceedance arameters hence the range in guid	Objectives (Inte ; some PWQO: feline values, re	erim PWQO); sh s are dependent	aded cells an on other wate	d italics	as general guid	he following phosphorus concent lelines which should be supplem	
 The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can caus leposits on shorelines and bottom s Results that are preceeded by " 	d as a visible fi se tainting of ed sediments.	il or petrochemic Im, sheen or dis lible organisms,	als should no colouration or can form dete	the surface, ctable	phosphorus co (b) A high level a total phospho should apply to (c) Excessive p	Inserte concentrations of a gave of protection against aesthetic d orus concentration for the ice-free all lakes naturally below this vali- all atkes naturally below this vali- ant growth in rivers and streams ncentration below 30 ug/L.	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. The ue;
. The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can caus eposits on shorelines and bottom s . Results that are preceeded by " teportable Detection Limit (RDL).	d as a visible fi se tainting of ed sediments. " denote conce 5a. Aluminum	I or petrochemic Im, sheen or dis- lible organisms, entrations that au (Interim):	als should no colouration or can form dete e below the la	the surface, actable aboratory	phosphorus co (b) A high level a total phospho should apply to (c) Excessive p phosphorus co	ncentrations for the ice-free period of protection against aesthetic d rrus concentration for the ice-free all lakes naturally below this vali lant growth in rivers and streams ncentration below 30 ug/L.	d should not exceed 20 ug/L eterioration will be provided i period of 10 ug/L or less. Ti le; should be eliminated at a to
The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can caus eposits on shorelines and bottom s Results that are preceeded by "< eportable Detection Limit (RDL). At pH 4.5 to 5.5 the Interim PWQC heasured in clay-free samples.	d as a visible fi se tainting of ed sediments. " denote conce 5a. <u>Aluminum</u> D is 15 ug/L bas	I or petrochemic Im, sheen or dis lible organisms, entrations that an (Interim): sed on inorganic	als should no colouration or can form dete re below the la monomeric a	the surface, actable aboratory	phosphorus co (b) A high level a total phospho should apply to (c) Excessive p phosphorus co	ncentrations for the ice-free period of protection against aesthetic d rrus concentration for the ice-free all lakes naturally below this vali- lant growth in rivers and streams ncentration below 30 ug/L.	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. Ti le; should be eliminated at a to
. The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can caus eposits on shorelines and bottom s . Results that are preceeded by " eportable Detection Limit (RDL). 	d as a visible fi se tainting of ed sediments. d' denote conce 5a. <u>Aluminum</u> D is 15 ug/L bas pould be permitte	I or petrochemic Im, sheen or dis lible organisms, entrations that au (Interim): sed on inorganic ed which would i	als should no colouration or can form dete re below the la monomeric a ncrease the a	the surface, ctable aboratory luminum cid soluble	phosphorus co (b) A high level a total phospho should apply to (c) Excessive p phosphorus co <i>5c. Beryllium</i> :	ncentrations for the ice-free period of protection against aesthetic d rrus concentration for the ice-free all lakes naturally below this vali- lant growth in rivers and streams ncentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3)	d should not exceed 20 ug/L tetrioration will be provided period of 10 ug/L or less. Ti le; should be eliminated at a to , use 111 ug/L , use 1100 ug/L
. The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can caus eposits on shorelines and bottom s . Results that are preceeded by "< eportable Detection Limit (RDL). At pH 4.5 to 5.5 the Interim PWQC neasured in clay-free samples. At pH 5.5 to 6.5, no condition sho corganic aluminum concentration in	d as a visible fi se tainting of ed sediments. " denote conce 5a. Aluminum D is 15 ug/L bas buld be permitte n clay-free sam	I or petrochemic Im, sheen or dis lible organisms, entrations that an (Interim): sed on inorganic ed which would i ples to more tha	als should no colouration or can form dete re below the la monomeric a ncrease the a n 10% above	the surface, cctable aboratory luminum cid soluble natural	phosphorus co (b) A high level a total phospho should apply to (c) Excessive p phosphorus co	ncentrations for the ice-free period of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this valid ant growth in rivers and streams incentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness 0-100 mg/L (CaCO	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. Tri je; should be eliminated at a to , use 11 ug/L use 1100 ug/L 3), then use 0.1 ug/L
The PWQO for Oil and Grease in oncentrations that: can be detected aposits on shorelines and bottom s Results that are preceeded by "< eportable Detection Limit (RDL). At pH 4.5 to 5.5 the Interim PWQC ueasured in clay-free samples. At pH 5.5 to 6.5, no condition sho organic aluminum concentration in ackground concentrations for wate	d as a visible fi se tainting of ec sediments. " denote conce 5a. Aluminum D is 15 ug/L bas puld be permittu n clay-free sam prs representati	I or petrochemic Im, sheen or dis lible organisms, entrations that an (Interim): sed on inorganic ed which would i ples to more tha	als should no colouration or can form dete re below the la monomeric a ncrease the a n 10% above	the surface, cctable aboratory luminum cid soluble natural	phosphorus co (b) A high level a total phosphc should apply to (c) Excessive p phosphorus co <i>5c. Beryllium:</i> <i>5d. Cadmium:</i> (Interim)	ncentrations for the ice-free period of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this vali- lant growth in rivers and streams incentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3)	d should not exceed 20 ug/L tetrioration will be provided period of 10 ug/L or less. Tri Je; should be eliminated at a to use 111 ug/L use 1100 ug/L 3), then use 0.1 ug/L then use 0.5 ug/L
The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can caus eposits on shorelines and bottom s Results that are preceeded by " eportable Detection Limit (RDL). At pH 4.5 to 5.5 the Interim PWQO teasured in clay-free samples. At pH 3.5 to 6.5, no condition sho organic aluminum concentration in ackground concentrations for wate at are unaffected by man-made in	d as a visible fi se tainting of ec sediments. " denote conce 5a. Aluminum D is 15 ug/L bas build be permitte n clay-free sam res representati iputs.	I or petrochemic Im, sheen or dis- lible organisms, entrations that au (Interim): sed on inorganic ed which would i ples to more tha ve of that geolog	als should no colouration or can form dete re below the la monomeric a ncrease the a n 10% above pical area of th	Iuminum cid soluble natural e Province	phosphorus co (b) A high level a total phosphc should apply to (c) Excessive p phosphorus co <i>5c. Beryllium:</i> <i>5d. Cadmium:</i> (Interim)	ncentrations for the ice-free period of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this valid ant growth in rivers and streams incentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness 0-100 mg/L (CaCO	d should not exceed 20 ug/L tetrioration will be provided period of 10 ug/L or less. Tri Je; should be eliminated at a to use 111 ug/L use 1100 ug/L 3), then use 0.1 ug/L then use 0.5 ug/L
. The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can caus eposits on shorelines and bottom s . Results that are preceeded by " eportable Detection Limit (RDL). At pH 4.5 to 5.5 the Interim PWQO deasured in clay-free samples. At pH 5.5 to 5.5, no condition sh organic aluminum concentration in ackground concentrations for wate tat are unaffected by man-made in At pH 5.5 to 9.0, the Interim PWQC	d as a visible fi se tainting of ec sediments. " denote conce 5a. Aluminum D is 15 ug/L bas build be permitte n clay-free sam res representati iputs.	I or petrochemic Im, sheen or dis- lible organisms, entrations that au (Interim): sed on inorganic ed which would i ples to more tha ve of that geolog	als should no colouration or can form dete re below the la monomeric a ncrease the a n 10% above pical area of th	Iuminum cid soluble natural e Province	phosphorus co (b) A high level a total phospho should apply to (c) Excessive p phosphorus co 5c. Beryllium: 5d. Cadmium: (Interim) 5e. Chromium	ncentrations for the ice-free period of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this vali- lant growth in rivers and streams incentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3)	d should not exceed 20 ug/L tetrioration will be provided period of 10 ug/L or less. Tri le; s should be eliminated at a to use 11 ug/L , use 1100 ug/L 3), then use 0.1 ug/L t), then use 0.5 ug/L t) (Cr VI)
The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can caus eposits on shorelines and bottom s Results that are preceeded by "< eportable Detection Limit (RDL). At pH 4.5 to 5.5 the Interim PWQC easured in clay-free samples. At pH 5.5 to 6.5, no condition sho organic aluminum concentration in ackground concentrations for wate tat are unaffected by man-made in At pH >6.5 to 9.0, the Interim PWC ee samples.	d as a visible fi se tainting of ed sediments. " denote conce 5a. Aluminum D is 15 ug/L bas ould be permittin n clay-free sam ns representati iputs. QO is 75 ug/L b	I or petrochemic Im, sheen or dis lible organisms, antrations that au (Interim): sed on inorganic ed which would i ples to more tha ve of that geolog	als should no colouration or can form dete e below the la monomeric a ncrease the a n 10% above gical area of th uminum meas	Iuminum cid soluble natural le Province ured in clay-	phosphorus co (b) A high level a total phosphc should apply to (c) Excessive p phosphorus co <i>Sc. Beryllium:</i> <i>5d. Cadmium:</i> (Interim) <i>5e. Chromium</i> <i>5f. Copper:</i>	ncentrations for the ice-free period of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this vali- lant growth in rivers and streams incentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3)	d should not exceed 20 ug/L tetrioration will be provided l period of 10 ug/L or less. Tri e; should be eliminated at a to use 11 ug/L , use 11100 ug/L 3), then use 0.1 ug/L), then use 0.5 ug/L (Cr VI) (Cr III)
. The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can caus eposits on shorelines and bottom s . Results that are preceeded by " teportable Detection Limit (RDL). At pH 4.5 to 5.5 the Interim PWQO neasured in clay-free samples. At pH > 5.5 to 6.5, no condition sho organic aluminum concentration in ackground concentrations for wate at are unaffected by man-made in At pH > 6.5 to 9.0, the Interim PWQC ree samples. If natural background aluminum co	d as a visible fi se tainting of ec sediments. " denote conce 5a. Aluminum D is 15 ug/L bas build be permitte n clay-free sam ers representati ipputs. QO is 75 ug/L b boncentrations in	I or petrochemic Im, sheen or dis- lible organisms, entrations that ar (Interim): sed on inorganic ed which would i ples to more tha ve of that geolog wased on total all o water bodies u	als should no colouration or can form dete e below the la monomeric a ncrease the a n 10% above gical area of th uminum meas naffected by n	Ithe surface, ctable aboratory Iuminum cid soluble natural ne Province ured in clay- nanmade	phosphorus co (b) A high level a total phospho should apply to (c) Excessive p phosphorus co 5c. Beryllium: 5d. Cadmium: (Interim) 5e. Chromium	If Hardness -75 mg/L (CaCO3) If Hardness -75 mg/L (CaCO3) If Hardness -75 mg/L (CaCO3) If Hardness -75 mg/L (CaCO3) If John Statess -75 mg/L (CaCO3) If Hardness -70 mg/L (CaCO3) If Hardness -70 mg/L (CaCO3)	d should not exceed 20 ug/L tetrioration will be provided l period of 10 ug/L or less. The e; should be eliminated at a to , use 111 ug/L , use 1100 ug/L 3), then use 0.1 ug/L b), then use 0.1 ug/L (Cr VI) (Cr III) s 0 - 20, then use 1 ug/L
The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can caus leposits on shorelines and bottom s . Results that are preceeded by "- Reportable Detection Limit (RDL). At pH 4.5 to 5.5 the Interim PWQC neasured in clay-free samples. At pH -5.5 to 6.5, no condition shr torganic aluminum concentration in ackground concentrations for wate at are unaffected by man-made in At pH >-6.5 to 9.0, the Interim PWQC ree samples. If natural background aluminum cor publis are greater than the numeric:	d as a visible fi se tainting of ed sediments. ^c denote conce <i>5a. Aluminum</i> D is 15 ug/L bar puld be permittu n clay-free sam pre representati pputs. 20 is 75 ug/L b poncentrations in al Interim PWQ	I or petrochemic Im, sheen or dis lible organisms, antrations that au (Interim): sed on inorganic ed which would i ples to more tha ve of that geolog wased on total ali n water bodies un O (above), no c	als should no colouration or can form dete e below the la monomeric a n norease the a n 10% above jical area of th uminum meas naffected by n ondition is per	Iuminum cid soluble natural ne Province ured in clay- nanmade mitted that	phosphorus co (b) A high level a total phosphor should apply to (c) Excessive p phosphorus co <i>Sc. Beryllium:</i> <i>sd. Cadmium:</i> (Interim) <i>Se. Chromium</i> <i>Sf. Copper:</i> (Interim)	ncentrations for the ice-free period of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this valid lant growth in rivers and streams incentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Jul for hexavalent chromium 8.9 ug/L for trivalent chromium If Hardness as CaCO3 (mg/L) i If Hardness as CaCO3 (mg/L) i	d should not exceed 20 ug/L tetrioration will be provided i period of 10 ug/L or less. Tri Je; s should be eliminated at a to use 111 ug/L use 1100 ug/L 3), then use 0.1 ug/L 3), then use 0.5 ug/L (Cr VI) (Cr VI) (Cr III) 5 o - 20, then use 1 ug/L s >20, then use 5 ug/L
t. The PWQO for Oil and Grease in oncentrations that: can be detected by dour, can cause leposits on shorelines and bottoms s. Results that are preceeded by " Reportable Detection Limit (RDL). At pH 4.5 to 5.5 the Interim PWQC neasured in clay-free samples. At pH 5.5 to 6.5, no condition shorogranic aluminum concentration ir nackground concentrations for wate hat are unaffected by man-made in the numerica vould increase the aluminum concenter the any puts are greater than the numerica vould increase the aluminum concenter concenter the aluminum concenter the aluminum concenter the aluminum concenter than the numerica vould increase the aluminum concenter concenter than the numerica vould increase the aluminum concenter than	d as a visible fi se tainting of ed sediments. ^c denote conce <i>5a. Aluminum</i> D is 15 ug/L bar puld be permittu n clay-free sam pre representati pputs. 20 is 75 ug/L b poncentrations in al Interim PWQ	I or petrochemic Im, sheen or dis lible organisms, antrations that au (Interim): sed on inorganic ed which would i ples to more tha ve of that geolog wased on total ali n water bodies un O (above), no c	als should no colouration or can form dete e below the la monomeric a n norease the a n 10% above jical area of th uminum meas naffected by n ondition is per	Iuminum cid soluble natural ne Province ured in clay- nanmade mitted that	phosphorus co (b) A high level a total phosphc should apply to (c) Excessive p phosphorus co <i>Sc. Beryllium:</i> <i>5d. Cadmium:</i> (Interim) <i>5e. Chromium</i> <i>5f. Copper:</i>	ncentrations for the ice-free period of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this valid ant growth in rivers and streams incentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness as CaCO3 (mg/L) is If Hardness as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is	d should not exceed 20 ug/L tetrioration will be provided I period of 10 ug/L or less. Tri Je; should be eliminated at a to use 11 ug/L use 1100 ug/L 3), then use 0.1 ug/L 3), then use 0.1 ug/L 4), then use 0.5 ug/L (Cr VI) (Cr VI) 5 o - 20, then use 1 ug/L 5 > 20, then use 5 ug/L < 20, use 5 ug/L
The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can caus leposits on shorelines and bottom s . Results that are preceeded by "- Reportable Detection Limit (RDL). At pH 4.5 to 5.5 the Interim PWQC neasured in clay-free samples. At pH > 5.5 to 6.5, no condition shr norganic aluminum concentration in ackground concentrations for wate hat are unaffected by man-made in At pH > 5.5 to 9.0, the Interim PWQC ree samples. If natural background aluminum cor puts are greater than the numeric:	d as a visible fi se tainting of ed sediments. ^c denote conce <i>5a. Aluminum</i> D is 15 ug/L bar puld be permittu n clay-free sam pre representati pputs. 20 is 75 ug/L b poncentrations in al Interim PWQ	I or petrochemic Im, sheen or dis lible organisms, antrations that au (Interim): sed on inorganic ed which would i ples to more tha ve of that geolog wased on total ali n water bodies un O (above), no c	als should no colouration or can form dete e below the la monomeric a n norease the a n 10% above jical area of th uminum meas naffected by n ondition is per	Iuminum cid soluble natural ne Province ured in clay- nanmade mitted that	phosphorus co (b) A high level a total phosphor should apply to (c) Excessive p phosphorus co <i>Sc. Beryllium:</i> <i>sd. Cadmium:</i> (Interim) <i>Se. Chromium</i> <i>Sf. Copper:</i> (Interim)	ncentrations for the ice-free period of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this vali- lant growth in rivers and streams incentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO If Hardness >100 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness as CaCO3 (mg/L) is If Hardness as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is	d should not exceed 20 ug/L tetrioration will be provided t period of 10 ug/L or less. Tr le; s should be eliminated at a to use 1100 ug/L 3), then use 0.1 ug/L 4), then use 0.1 ug/L 4), then use 0.1 ug/L 4), then use 1. ug/L 5) or 20, then use 1 ug/L 5 < 20, then use 5 ug/L < 20, use 5 ug/L 20 to 40, use 10 ug/L
The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can caus leposits on shorelines and bottom s . Results that are preceeded by " deportable Detection Limit (RDL). At pH 4.5 to 5.5 the Interim PWQC neasured in clay-free samples. At pH -5.5 to 6.5, no condition sho organic aluminum concentration in ackground concentrations for wate nat are unaffected by man-made in ackground aluminum coc es samples. If natural background aluminum co- puts are greater than the numerica oud increase the aluminum concentration and the aluminum concentration in the computed and the metrical sould increase the aluminum concentration and the aluminum concentration aluminum concentration and the aluminum concentration and aluminum concentration and the aluminum concentration and aluminum concentration aluminum concentration and aluminum concentration and aluminum concentration and aluminum concentration aluminum concentration and aluminum concentration a	d as a visible fi se tainting of ed sediments. ^c denote conce <i>5a. Aluminum</i> D is 15 ug/L bar puld be permittu n clay-free sam pre representati pputs. 20 is 75 ug/L b poncentrations in al Interim PWQ	I or petrochemic Im, sheen or dis lible organisms, antrations that au (Interim): sed on inorganic ed which would i ples to more tha ve of that geolog wased on total ali n water bodies un O (above), no c	als should no colouration or can form dete e below the la monomeric a n norease the a n 10% above jical area of th uminum meas naffected by n ondition is per	Iuminum cid soluble natural ne Province ured in clay- nanmade mitted that	phosphorus co (b) A high level a total phosphor should apply to (c) Excessive p phosphorus co <i>Sc. Beryllium:</i> <i>sd. Cadmium:</i> (Interim) <i>Se. Chromium</i> <i>Sf. Copper:</i> (Interim)	ncentrations for the ice-free period of protection against aesthetic d rurs concentration for the ice-free all lakes naturally below this vali- lant growth in rivers and streams incentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >0100 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is	d should not exceed 20 ug/L tetrioration will be provided 1 period of 10 ug/L or less. The s should be eliminated at a to use 11 ug/L , use 1100 ug/L 3), then use 0.1 ug/L 3), then use 0.1 ug/L 1 (Cr VI) (Cr III) 5 0 - 20, then use 1 ug/L 5 >20, then use 5 ug/L < 20 to 40, use 10 ug/L 40 to 80, use 20 ug/L
The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can caus leposits on shorelines and bottom s . Results that are preceeded by " deportable Detection Limit (RDL). At pH 4.5 to 5.5 the Interim PWQC neasured in clay-free samples. At pH -5.5 to 6.5, no condition sho organic aluminum concentration in ackground concentrations for wate nat are unaffected by man-made in ackground aluminum coc es samples. If natural background aluminum co- puts are greater than the numerica oud increase the aluminum concentration and the aluminum concentration in the computed and the metrical sould increase the aluminum concentration and the aluminum concentration aluminum concentration and the aluminum concentration and aluminum concentration and the aluminum concentration and aluminum concentration aluminum concentration and aluminum concentration and aluminum concentration and aluminum concentration aluminum concentration and aluminum concentration a	d as a visible fi se tainting of ed sediments. ^c denote conce <i>5a. Aluminum</i> D is 15 ug/L bar puld be permittu n clay-free sam pre representati pputs. 20 is 75 ug/L b poncentrations in al Interim PWQ	I or petrochemic Im, sheen or dis lible organisms, antrations that au (Interim): sed on inorganic ed which would i ples to more tha ve of that geolog wased on total ali n water bodies un O (above), no c	als should no colouration or can form dete e below the la monomeric a n norease the a n 10% above jical area of th uminum meas naffected by n ondition is per	Iuminum cid soluble natural ne Province ured in clay- nanmade mitted that	phosphorus co (b) A high level a total phospho should apply to (c) Excessive p phosphorus co 5c. Beryllium: 5d. Cadmium: (Interim) 5e. Chromium 5f. Copper: (Interim) 5g. Lead:	ncentrations for the ice-free period of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this vali- lant growth in rivers and streams incentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >70 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness as CaCO3 (mg/L) is If Hardness as CaCO3 (mg/L) If Hardness as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is	d should not exceed 20 ug/L tetrioration will be provided 1 period of 10 ug/L or less. Tr e; should be eliminated at a to , use 11 ug/L , use 1100 ug/L 3), then use 0.1 ug/L 3), then use 0.1 ug/L (Cr VI) (Cr III) s 0 - 20, then use 1 ug/L > 20, use 5 ug/L 20 to 40, use 20 ug/L > 80, use 25 ug/L
The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can caus leposits on shorelines and bottom s . Results that are preceeded by " deportable Detection Limit (RDL). At pH 4.5 to 5.5 the Interim PWQC neasured in clay-free samples. At pH -5.5 to 6.5, no condition sho organic aluminum concentration in ackground concentrations for wate nat are unaffected by man-made in ackground aluminum coc es samples. If natural background aluminum co- puts are greater than the numerica oud increase the aluminum concentration and the aluminum concentration in the computed and the metrical sould increase the aluminum concentration and the aluminum concentration aluminum concentration and the aluminum concentration and aluminum concentration and the aluminum concentration and aluminum concentration aluminum concentration and aluminum concentration and aluminum concentration and aluminum concentration aluminum concentration and aluminum concentration a	d as a visible fi se tainting of ed sediments. ^c denote conce <i>5a. Aluminum</i> D is 15 ug/L bar puld be permittu n clay-free sam pre representati pputs. 20 is 75 ug/L b poncentrations in al Interim PWQ	I or petrochemic Im, sheen or dis lible organisms, antrations that au (Interim): sed on inorganic ed which would i ples to more tha ve of that geolog wased on total ali n water bodies un O (above), no c	als should no colouration or can form dete e below the la monomeric a n norease the a n 10% above jical area of th uminum meas naffected by n ondition is per	Iuminum cid soluble natural ne Province ured in clay- nanmade mitted that	phosphorus co (b) A high level a total phosphc should apply to (c) Excessive p phosphorus co 5c. Beryllium: 5d. Cadmium: (Interim) 5e. Chromium 5f. Copper. (Interim) 5g. Lead:	ncentrations for the ice-free period of protection against aesthetic d rurs concentration for the ice-free all lakes naturally below this vali- lant growth in rivers and streams incentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >0100 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is	d should not exceed 20 ug/L tetrioration will be provided 1 period of 10 ug/L or less. Tr e; should be eliminated at a to , use 11 ug/L , use 1100 ug/L 3), then use 0.1 ug/L 3), then use 0.1 ug/L (Cr VI) (Cr III) s 0 - 20, then use 1 ug/L > 20, use 5 ug/L 20 to 40, use 20 ug/L > 80, use 25 ug/L
The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can caus eposits on shorelines and bottom s Results that are preceeded by "< eportable Detection Limit (RDL). At pH 4.5 to 5.5 the Interim PWQC neasured in clay-free samples. At pH 5.5 to 6.5, no condition sho organic aluminum concentration in ackground concentrations for wate tat are unaffected by man-made in ackground aluminum coc esamples. If natural background aluminum coc puts are greater than the numerica ould increase the aluminum concentration.	d as a visible fi se tainting of ed sediments. ^c denote conce <i>5a. Aluminum</i> D is 15 ug/L bar puld be permittu n clay-free sam pre representati pputs. 20 is 75 ug/L b poncentrations in al Interim PWQ	I or petrochemic Im, sheen or dis lible organisms, antrations that au (Interim): sed on inorganic ed which would i ples to more tha ve of that geolog wased on total ali n water bodies un O (above), no c	als should no colouration or can form dete e below the la monomeric a n norease the a n 10% above jical area of th uminum meas naffected by n ondition is per	Iuminum cid soluble natural ne Province ured in clay- nanmade mitted that	phosphorus co (b) A high level a total phospho should apply to (c) Excessive p phosphorus co 5c. Beryllium: 5d. Cadmium: (Interim) 5e. Chromium 5f. Copper: (Interim) 5g. Lead:	ncentrations for the ice-free period of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this vali- lant growth in rivers and streams incentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >70 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness as CaCO3 (mg/L) is If Hardness as CaCO3 (mg/L) If Hardness as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is	d should not exceed 20 ug/L tetrioration will be provided 1 period of 10 ug/L or less. The should be eliminated at a to , use 11 ug/L , use 1100 ug/L 3), then use 0.1 ug/L 3), then use 0.1 ug/L (Cr III) (Cr III) (Cr III) s 0 - 20, then use 1 ug/L 2 0 to 40, use 2 ug/L > 80, use 25 ug/L s < 30, then use 1 ug/L

Table 4: Condition 6(2) SW1 Water Quality Results

	Unit	Reportable Detection Limit (RDL)	PWQO ¹	Interim PWQO ²	PTTW Effluent Limits	McCart	hy Quarry
Sample ID		. ,				SW1	SW1
Date						14-May-20	29-Oct-20
Field Measured Parameters	1						
Conductivity	mS/cm					675	800
pH	pH	n/a	6.5-8.5		6.0-9.5	7.88	8.40
Temperature	°C	n/a				9.9	6.8
Calculated Parameters							
Anion Sum	me/L	N/A				9.82	9.82
Cation Sum	me/L	N/A				10.3	10.3
Hardness (CaCO3)	mg/L	1.0				360	380
Inorganics					-		0.050
Total Ammonia-N	mg/L	0.050			-	<0.050	< 0.050
Conductivity	umho/cm	1.0				0.822	0.931
Total Dissolved Solids	mg/L	10			-	490	545 0.30
Fluoride (F-)	mg/L	0.10			-	0.11 0.47	0.30
Total Kjeldahl Nitrogen (TKN) Dissolved Organic Carbon	mg/L	0.20				7.8	8.7
pH	mg/L pH	N/A	6.5-8.5		6.0-9.5	7.99	7.94
Phenols-4AAP	mg/L	0.0010	0.5-0.5		0.04	<0.0010	<0.0010
Total Phosphorus	mg/L	0.002		0.03 ^{5b}	0.04	0.006	0.011
Total Suspended Solids	mg/L	10		0.05	30	<10	<10
Dissolved Sulphate (SO4)	mg/L	1				140	190
Alkalinity (Total as CaCO3)	mg/L	1.0				230	210
Dissolved Chloride (Cl)	mg/L	1				43	47
Nitrite (N)	mg/L	0.010				<0.010	<0.010
Nitrate (N)	mg/L	0.10				<0.10	0.34
Petroleum Hydrocarbons							
Total Oil & Grease	mg/L	0.50	Note 3		30	<0.50	<0.50
Metals			400			1.0	4.0
Total Arsenic (As)	ug/L	1	100	5		<1.0	<1.0 <0.09
Total Cadmium (Cd)	ug/L	0.1 0.05	0.2	0.1-0.5 ^{5d}		< <u>0.10</u> 120	120
Dissolved Calcium (Ca) Total Calcium (Ca)	mg/L ug/L	200				120000	110000
Total Chromium (Cr)	ug/L	5	1-89 ^{5e}			<5.0	<5.0
Total Copper (Cu)	ug/L	1	5	1-5 ^{5f}		<1.0	<0.9
Total Iron (Fe)	ug/L	100	300	10		<100	130
Total Lead (Pb)	ug/L	0.5	5-25 ^{5g}	1-5 ^{5h}		<0.50	<0.50
Dissolved Magnesium (Mg)	mg/L	0.05				13	22
Total Magnesium (Mg)	ug/L	50				12000	22000
Total Manganese (Mn)	ug/L	2				13	30
Total Nickel (Ni)	ug/L	1	25		-	<1.0	1.8
Dissolved Potassium (K)	mg/L	1				2.4	5.9
Total Potassium (K)	ug/L	200			-	2200	5700 49
Dissolved Sodium (Na)	mg/L	0.5				37 37000	49
Total Sodium (Na) Total Zinc (Zn)	ug/L ug/L	100 5	30	20	-	<5.0	<5.0
					5b. Phosphore		1010
. Provincial Water Quality Objectiv						tific evidence is insufficient to	dovelop a firm Objective at
ome PWQOs are dependent on ot	her water qualit	y parameters h	ence the rang	e in guideline		une evidence is insufficient to	develop a firm Objective at
alues, refer to PWQO notes.					this time.		
2. Interim Provincial Water Quality	Objectives (Inte	erim PWQO); sl	haded cells ar	nd italics		the following phosphorus con	
denote Interim PWQO exceedance	some PWQO	are dependent	t on other wat	er quality		general guidelines which sho	uld be supplemented by site
parameters hence the range in guid	eline values, re	fer to PQWO n	otes.		specific studies		
3. The PWQO for Oil and Grease in				t be present in		isance concentrations of alga	
concentrations that: can be detected					phosphorus co	ncentrations for the ice-free p	eriod should not exceed 20
an be detected by odour, can caus					ug/L;		
leposits on shorelines and bottom s		ible organisms,	can lonn dell	ectable	(b) A high leve	l of protection against aesthet	ic deterioration will be
leposits on shorelines and bottom s	euments.				provided by a t	otal phosphorus concentratio	n for the ice-free period of 1
 Results that are preceeded by " 	" denote conce	entrations that a	re below the I	aboratory	ug/L or less. Th	his should apply to all lakes na	aturally below this value;
Reportable Detection Limit (RDL).						plant growth in rivers and stre	
						us concentration below 30 ug	
		(In the silves) -			total phoophon		
	5a. Aluminum (
At pH 4.5 to 5.5 the Interim PWQC	o is 15 ug/L bas	ed on inorganic	monomeric a	luminum	5c. Beryllium:	If Hardness <75 mg/L (CaC	O3), use 11 ug/L
neasured in clay-free samples.						If Hardness >75 mg/L (CaC	O3), use 1100 ug/L
At pH >5.5 to 6.5, no condition sho					5d. Cadmium:		
norganic aluminum concentration ir					(Interim)	If Hardness 0-100 mg/L (Ca	
ackground concentrations for wate		ve of that geolog	gical area of t	he Province		If Hardness >100 mg/L (Cal	CO3), then use 0.5 ug/L
hat are unaffected by man-made in	puts.				5e. Chromium	: 1 ug/L for hexavalent chrom	nium (Cr VI)
At pH >6.5 to 9.0, the Interim PWC	O is 75 ug/L b	ased on total al	uminum meas	ured in clay-	1	8.9 ug/L for trivalent chromi	
ree samples.	-			-	Ff Courses	0	()
If natural background aluminum co	ncentrations in	water bodies u	naffected by r	nanmade	5f. Copper:	If Hardness as CaCO3 (mg/	'L) is 0 - 20, then use 1 ug/L
puts are greater than the numerica					(Interim)	If Hardness as CaCO3 (mg/	/L) is >20, then use 5 ug/L
vould increase the aluminum conce					5g. Lead:	If Alkalinity as CaCO3 (mg/L	
natural background level.			,	2,0 01 010	-9. 2000.	,	,
					1	If Alkalinity as CaCO3 (mg/L	
					1	If Alkalinity as CaCO3 (mg/L	.) is 40 to 80, use 20 ug/L
					1	If Alkalinity as CaCO3 (mg/L	
						II AINAIIIIII as Cacos mun	_) IS > 80, USE 25 UG/L
					5h Lead		
					5h. Lead: (Interim)	If Hardness as CaCO3 (mg/	/L) is < 30, then use 1 ug/L
					5h. Lead: (Interim)		/L) is < 30, then use 1 ug/L

Table 5: Condition 6(2) SW2 Water Quality Results

	Unit	Reportable Detection Limit (RDL)	PWQO ¹	Interim PWQO ²	PTTW Effluent Limits	McCarth	y Quarry
ample ID	<u> </u>	. ,			1	SW2	SW2
ate						14-May-20	29-Oct-20
Field Measured Parameters							
Conductivity	mS/cm					846	673
pH	pH	n/a	6.5-8.5		6.0-9.5	7.65	7.99
Temperature	°C	n/a				10.1	7.0
Calculated Parameters Anion Sum	me/L	N/A				6.31	6.31
Cation Sum	me/L	N/A				6.52	6.52
Hardness (CaCO3)	mg/L	1.0				400	360
Inorganics							
Total Ammonia-N	mg/L	0.050				<0.050	<0.050 0.734
Conductivity Total Dissolved Solids	umho/cm	1.0			1	0.764 435	410
Fluoride (F-)	mg/L mg/L	0.10				<0.10	<0.10
Total Kjeldahl Nitrogen (TKN)	mg/L	0.10				0.31	0.30
Dissolved Organic Carbon	mg/L	0.20				5.0	8.6
pH	pH	N/A	6.5-8.5		6.0-9.5	7.98	7.88
Phenols-4AAP	mg/L	0.0010	0.001	e.ee5b	0.04	<0.0010	<0.0010
Total Phosphorus Total Suspended Solids	mg/L mg/L	0.002		0.0350	30	0.012 <10	0.025
Dissolved Sulphate (SO4)	mg/L	10			30	81	42
Alkalinity (Total as CaCO3)	mg/L	1.0				300	320
Dissolved Chloride (Cl)	mg/L	1				26	23
Nitrite (N)	mg/L	0.010				<0.010	<0.010
Nitrate (N)	mg/L	0.10				<0.10	<0.10
Petroleum Hydrocarbons Total Oil & Grease	mg/l	0.50	Note 3		30	<0.50	<0.50
Metals	mg/L	0.30	Note 5		30	NU.00	~0.00
Total Arsenic (As)	ug/L	1	100	5		<1.0	<1.0
Total Cadmium (Cd)	ug/L	0.1	0.2	0.1-0.5 ^{5d}		<0.10	<0.09
Dissolved Calcium (Ca)	mg/L	0.05				130	130
Total Calcium (Ca)	ug/L	200	50			120000	120000
Total Chromium (Cr) Total Copper (Cu)	ug/L ug/L	5	<u>1-89^{5e}</u> 5	1-5 ^{5f}		<5.0 <1.0	<5.0 1.5
Total Iron (Fe)	ug/L	100	300	1-5		140	250
Total Lead (Pb)	ug/L	0.5	5-25 ^{5g}	1-5 ^{5h}		<0.50	<0.50
Dissolved Magnesium (Mg)	mg/L	0.05	0 20			20	10
Total Magnesium (Mg)	ug/L	50				19000	9800
Total Manganese (Mn)	ug/L	2	05			6	14
Total Nickel (Ni)	ug/L	1	25			<1.0	<1.0 1.8
Dissolved Potassium (K) Total Potassium (K)	mg/L ug/L	200				<u>1.1</u> 1100	1700
Dissolved Sodium (Na)	mg/L	0.5				15	20
Total Sodium (Na)	ug/L	100				14000	20000
	ug/L	5	30	20		<5.0	<5.0
Total Zinc (Zn)							
Total Zinc (Zn) . Provincial Water Quality Objectiv ome PWQOs are dependent on oth alues, refer to PWQO notes.					this time.	tific evidence is insufficient to	
. Provincial Water Quality Objectiv ome PWQOs are dependent on oth alues, refer to PWQO notes. . Interim Provincial Water Quality C lenote Interim PWQO exceedance ; arameters hence the range in guide	ber water qualit Dbjectives (Inte some PWQOs eline values, re	y parameters h prim PWQO); sh s are dependent fer to PQWO no	ence the range naded cells an t on other wate otes.	e in guideline Id <i>italics</i> er quality	 Current scient this time. Accordingly, t considered as specific studies 	lific evidence is insufficient to he following phosphorus cond general guidelines which sho	centrations should be uld be supplemented by sit
Provincial Water Quality Objectivo ome PWQOs are dependent on oth alues, refer to PWQO notes. Interim Provincial Water Quality C lenote Interim PWQO exceedance; arameters hence the range in guide The PWQO for Oil and Grease in	ber water qualit Dbjectives (Inte some PWQOs eline values, re dicates that oil	y parameters he prim PWQO); sh s are dependent fer to PQWO no or petrochemic	ance the range naded cells and t on other wate otes. als should no	e in guideline <i>id italics</i> er quality t be present ir	 Current scient this time. Accordingly, t considered as a specific studies (a) To avoid nu 	ific evidence is insufficient to he following phosphorus con- general guidelines which shor :	centrations should be uld be supplemented by si ae in lakes, average total
Provincial Water Quality Objectivorme PWQOs are dependent on othalues, refer to PWQO notes. Interim Provincial Water Quality Clenote Interim PWQO exceedance; arameters hence the range in guide. The PWQO for Oil and Grease in oncentrations that: can be detected	Dijectives (Inte some PWQOs eline values, re dicates that oil as a visible fil	y parameters he prim PWQO); sh s are dependent fer to PQWO no or petrochemic m, sheen or dis	ance the range added cells an t on other wate otes. als should no colouration on	e in guideline d italics er quality t be present in h the surface,	 Current scient this time. Accordingly, t considered as a specific studies (a) To avoid nu 	ific evidence is insufficient to the following phosphorus cond general guidelines which shou : isance concentrations of alga	centrations should be uld be supplemented by si ae in lakes, average total
. Provincial Water Quality Objectivo ome PWQOs are dependent on oth alues, refer to PWQO notes. . Interim Provincial Water Quality C enote Interim PWQO exceedance; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can cause	ber water qualit Dbjectives (Inte some PWQOs eline values, re dicates that oil as a visible fil e tainting of ed	y parameters he prim PWQO); sh s are dependent fer to PQWO no or petrochemic m, sheen or dis	ance the range added cells an t on other wate otes. als should no colouration on	e in guideline d italics er quality t be present in h the surface,	 Current scient this time. Accordingly, t considered as a specific studies (a) To avoid nu phosphorus co ug/L; 	ific evidence is insufficient to the following phosphorus cond general guidelines which shou : isance concentrations of alga	centrations should be uld be supplemented by si ae in lakes, average total period should not exceed 2
. Provincial Water Quality Objectivo ome PWQOs are dependent on oth alues, refer to PWQO notes. . Interim Provincial Water Quality C ienote Interim PWQO exceedance; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can causs eposits on shorelines and bottom s	bigectives (Inte some PWQOs eline values, re dicates that oil as a visible fil e tainting of ed ediments.	y parameters h wim PWQO); <i>st</i> s are dependent fer to PQWO no or petrochemic m, sheen or dis ible organisms,	ance the range maded cells and t on other water otes. als should no colouration on can form dete	e in guideline d <i>italics</i> er quality t be present ir n the surface, ectable	 Current scient this time. Accordingly, t considered as a specific studies (a) To avoid nu phosphorus co ug/L; (b) A high level 	ific evidence is insufficient to he following phosphorus cond general guidelines which short isance concentrations of alge incentrations for the ice-free p	centrations should be uld be supplemented by si ae in lakes, average total veriod should not exceed 2 ic deterioration will be
Provincial Water Quality Objectivo ome PWQOs are dependent on oth alues, refer to PWQO notes. Interim Provincial Water Quality C enote Interim PWQO exceedance; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can cause eposits on shorelines and bottom s . Results that are preceeded by "<	bigectives (Inte some PWQOs eline values, re dicates that oil as a visible fil e tainting of ed ediments.	y parameters h wim PWQO); <i>st</i> s are dependent fer to PQWO no or petrochemic m, sheen or dis ible organisms,	ance the range maded cells and t on other water otes. als should no colouration on can form dete	e in guideline d <i>italics</i> er quality t be present ir n the surface, ectable	 Current scient this time. Accordingly, t considered as a specific studies (a) To avoid nu phosphorus coug/L; (b) A high level provided by a t 10 ug/L or less. 	ific evidence is insufficient to he following phosphorus cond general guidelines which shor: : isance concentrations of algancentrations for the ice-free p of protection against aesthet otal phosphorus concentratio This should apply to all lake:	centrations should be uld be supplemented by sit ae in lakes, average total beriod should not exceed 2 ic deterioration will be n for the ice-free period of s naturally below this value
. Provincial Water Quality Objectivo ome PWQOs are dependent on oth alues, refer to PWQO notes. . Interim Provincial Water Quality C ienote Interim PWQO exceedance; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can causs eposits on shorelines and bottom s	bigectives (Inte some PWQOs eline values, re dicates that oil as a visible fil e tainting of ed ediments.	y parameters h wim PWQO); <i>st</i> s are dependent fer to PQWO no or petrochemic m, sheen or dis ible organisms,	ance the range maded cells and t on other water otes. als should no colouration on can form dete	e in guideline d <i>italics</i> er quality t be present ir n the surface, ectable	 Current scient this time. Accordingly, t considered as a specific studies (a) To avoid nu phosphorus coug/L; (b) A high level provided by a t 10 ug/L or less. 	ific evidence is insufficient to he following phosphorus conr general guidelines which shore isance concentrations of alga ncentrations for the ice-free p of protection against aesthet otal phosphorus concentratio	centrations should be uld be supplemented by si ae in lakes, average total beriod should not exceed 2 ic deterioration will be n for the ice-free period of s naturally below this value
. Provincial Water Quality Objectivo ome PWQOs are dependent on oth alues, refer to PWQO notes. . Interim Provincial Water Quality C tenote Interim PWQO exceedence; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can cause eposits on shorelines and bottom s . Results that are preceeded by "< teportable Detection Limit (RDL).	er water qualit Dbjectives (Inte some PWQOs eline values, re dicates that oil as a visible fil e tainting of ed ediments. " denote conce a. Aluminum (y parameters hu rrim PWQO); <i>si</i> are dependent fer to PQWO nu or petrochemic bible organisms, intrations that a Interim):	ence the rang anaded cells an t on other wate otes. als should no colouration on can form dete re below the la	e in guideline d italics er quality t be present ir the surface, octable aboratory	 Current scient this time. Accordingly, t considered as a specific studies (a) To avoid nu phosphorus co ug/L; (b) A high level provided by a t 10 ug/L or less. (c) Excessive p 	ific evidence is insufficient to he following phosphorus cond general guidelines which shor: : isance concentrations of algancentrations for the ice-free p of protection against aesthet otal phosphorus concentratio This should apply to all lake:	centrations should be uld be supplemented by sit ae in lakes, average total beeriod should not exceed 2 ic deterioration will be n for the ice-free period of s naturally below this value ams should be eliminated
. Provincial Water Quality Objectivo ome PWQOs are dependent on oth alues, refer to PWQO notes. . Interim Provincial Water Quality C ienote Interim PWQO exceedance; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can causs eposits on shorelines and bottom s . Results that are preceeded by "< teportable Detection Limit (RDL). 5 At pH 4.5 to 5.5 the Interim PWQO	er water qualit Dbjectives (Inte some PWQOs eline values, re dicates that oil as a visible fil e tainting of ed ediments. " denote conce a. Aluminum (y parameters hu rrim PWQO); <i>si</i> are dependent fer to PQWO nu or petrochemic bible organisms, intrations that a Interim):	ence the rang anaded cells an t on other wate otes. als should no colouration on can form dete re below the la	e in guideline d italics er quality t be present ir the surface, octable aboratory	 Current scient this time. Accordingly, t considered as specific studies (a) To avoid nu phosphorus co ug/L; (b) A high level provided by a t 10 ug/L or less (c) Excessive p a total phosphore 	ific evidence is insufficient to he following phosphorus cond general guidelines which shor : isance concentrations of alge ncentrations for the ice-free p of protection against aesthet otal phosphorus concentratio This should apply to all lake lant growth in rivers and stre	centrations should be uld be supplemented by si ae in lakes, average total period should not exceed 2 tic deterioration will be n for the ice-free period of s naturally below this value arms should be eliminated ug/L.
Provincial Water Quality Objectivo ome PWQOs are dependent on oth alues, refer to PWQO notes. Interim Provincial Water Quality C ienote Interim PWQO exceedance; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can causs eposits on shorelines and bottom s . Results that are preceeded by "< teportable Detection Limit (RDL). S At pH 4.5 to 5.5 the Interim PWQO neasured in clay-free samples.	er water qualit Dbjectives (Inte some PWQOs eline values, re dicates that oii l as a visible fii l as a visible fii e tainting of ed ediments. * denote conce a. Aluminum (is 15 ug/L bas	y parameters hu rrim PWQO); sit a re dependent fer to PQWO no or petrochemic m, sheen or dis ible organisms, intrations that a Interim): ed on inorganic	ance the rang added cells an c on other wate otes. als should no colouration on can form dete re below the la	e in guideline d italics er quality t be present ir a the surface, cctable aboratory	 Current scient this time. Accordingly, t considered as specific studies (a) To avoid nu phosphorus co ug/L; (b) A high level provided by a t 10 ug/L or less (c) Excessive p a total phosphore 	ific evidence is insufficient to he following phosphorus cond general guidelines which shor : isance concentrations of alge ncentrations for the ice-free p of protection against aesthet otal phosphorus concentratio This should apply to all lakes that growth in rivers and stre rus concentration below 30 u	centrations should be uld be supplemented by si ae in lakes, average total period should not exceed 2 tic deterioration will be n for the ice-free period of s naturally below this value ams should be eliminated g/L.
Provincial Water Quality Objectivo ome PWQOs are dependent on othe alues, refer to PWQO notes. Interim Provincial Water Quality C lenote Interim PWQO exceedence; arameters hence the range in guide The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can cause eposits on shorelines and bottom s Results that are preceeded by "< teportable Detection Limit (RDL).	er water qualit bbjectives (Inte some PWQOs eline values, re dicates that oil as a visible fil a tainting of ed ediments. ¹ denote conce <u>a. Aluminum (</u> is 15 ug/L bas uld be permitte	y parameters hu rim PWQO); <i>sl</i> s are dependent fer to PQWO no or petrochemic ible organisms, intrations that a Interim): ed on inorganic d which would i	ance the rang added cells an on other wate otes. als should no colouration on can form dete re below the la monomeric a ncrease the a	e in guideline d italics er quality t be present ir the surface, ectable aboratory luminum cid soluble	 Current scient this time. Accordingly, t considered as specific studies (a) To avoid nu phosphorus co ug/L; (b) A high level provided by a t 10 ug/L or less (c) Excessive p a total phosphore 	ific evidence is insufficient to he following phosphorus con- general guidelines which shor : isance concentrations of alga coentrations for the ice-free p of protection against aesthet tal phosphorus concentratio This should apply to all lake lant growth in rivers and stre rus concentration below 30 u If Hardness <75 mg/L (CaC If Hardness >75 mg/L (CaC	centrations should be uld be supplemented by si ae in lakes, average total period should not exceed 2 tic deterioration will be n for the ice-free period of s naturally below this value ams should be eliminated g/L. O3), use 11 ug/L O3), use 11 ug/L
. Provincial Water Quality Objectivo ome PWQOs are dependent on oth alues, refer to PWQO notes. . Interim Provincial Water Quality C fenote Interim PWQO exceedance; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can cause eposits on shorelines and bottom s . Results that are preceeded by "< teportable Detection Limit (RDL). 	er water qualit Dbjectives (Inte some PWQOS sline values, re dicates that oil as a visible fil a tainting of ed ediments. " denote conce <u>a. Aluminum (</u> is 15 ug/L bas uld be permitte clay-free samp	y parameters hu rrim PWQO); s/t s are dependent fer to PQWO no or petrochemic ible organisms, intrations that a Interim): ed on inorganic d which would i bles to more tha	ance the rang anaded cells an i on other wate otes. als should no colouration on colouration on colouration on dete re below the la monomeric a ncrease the a n 10% above	e in guideline d italics er quality t be present ir the surface, octable aboratory luminum cid soluble natural	 Current scient this time. Accordingly, t considered as specific studies (a) To avoid nu phosphorus co ug/L; (b) A high level provided by a t 10 ug/L or less (c) Excessive p a total phosphorus 5c. Beryllium: 	ific evidence is insufficient to he following phosphorus con- general guidelines which shor: isance concentrations of alga ncentrations for the ice-free p of protection against aesthet tal phosphorus concentratio This should apply to all lake: lant growth in rivers and stre rus concentration below 30 u If Hardness <75 mg/L (CaC If Hardness 0-100 mg/L (Ca	centrations should be uld be supplemented by si ae in lakes, average total beriod should not exceed 2 ic deterioration will be n for the ice-free period of s naturally below this value ams should be eliminated ig/L. 03), use 11 ug/L 03), use 11 ug/L 03), use 11 00 ug/L iCO3), then use 0.1 ug/L
Provincial Water Quality Objectivo ome PWQOs are dependent on oth alues, refer to PWQO notes. Interim Provincial Water Quality C ienote Interim PWQO exceedance; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can causs eposits on shorelines and bottom s . Results that are preceeded by "< teportable Detection Limit (RDL). S At pH 4.5 to 5.5 the Interim PWQO neasured in clay-free samples. At pH 5.5 to 6.5, no condition sho organic aluminum concentration in ackground concentrations for water	er water qualit Dbjectives (Inte some PWQOS eline values, re dicates that oil as a visible fil as a visible fil e tainting of ed ediments. * denote conce a. Aluminum (is 15 ug/L bas uld be permitte clay-free sam s representati	y parameters hu rrim PWQO); s/t s are dependent fer to PQWO no or petrochemic ible organisms, intrations that a Interim): ed on inorganic d which would i bles to more tha	ance the rang anaded cells an i on other wate otes. als should no colouration on colouration on colouration on dete re below the la monomeric a ncrease the a n 10% above	e in guideline d italics er quality t be present ir the surface, octable aboratory luminum cid soluble natural	Current scient this time. Accordingly, t considered as specific studies (a) To avoid nu phosphorus co ug/L; (b) A high level provided by a t 10 ug/L or less (c) Excessive p a total phospho 5c. Beryllium: 5d. Cadmium: (Interim)	ific evidence is insufficient to he following phosphorus con- general guidelines which shor : isance concentrations of alga- ncentrations for the ice-free p of protection against aesthet tal phosphorus concentratio This should apply to al lake: lant growth in rivers and stre rus concentration below 30 u If Hardness <75 mg/L (CaC If Hardness >75 mg/L (CaC If Hardness >100 mg/L (Ca If Hardness >100 mg/L (Ca	centrations should be uld be supplemented by si ae in lakes, average total beeriod should not exceed 2 ic deterioration will be n for the ice-free period of s naturally below this value ams should be eliminated g/L. 03), use 11 ug/L 03), use 1100 ug/L (CO3), then use 0.1 ug/L CO3), then use 0.5 ug/L
Provincial Water Quality Objectivo ome PWQOs are dependent on othe alues, refer to PWQO notes. Interim Provincial Water Quality C lenote Interim PWQO exceedence; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can cause eposits on shorelines and bottom s . Results that are preceeded by "< teportable Detection Limit (RDL). Source and provide the samples. At pH 4.5 to 5.5 the Interim PWQO reasured in clay-free samples. At pH >5.5 to 6.5, no condition sho organic aluminum concentration in ackground concentrations for water nat are unaffected by man-made ing	er water qualit bbjectives (Inte some PWQOs eline values, re dicates that oil as a visible fil a tainting of ed ediments. ^a denote conce <u>a. Aluminum (</u> is 15 ug/L bas uld be permitte clay-free samp 's representati- nuts.	y parameters hu rim PWQO); <i>sl</i> are dependent fer to PQWO no or petrochemic ible organisms, intrations that a Interim): ed on inorganic d which would i ples to more that geologic	ance the rang aded cells an a on other water otes. als should no colouration on can form deter re below the la monomeric a ncrease the a in 10% above gical area of th	e in guideline d italics er quality t be present in t the surface, ectable aboratory luminum cid soluble natural ne Province	Current scient this time. Accordingly, t considered as specific studies (a) To avoid nu phosphorus co ug/L; (b) A high level provided by a t 10 ug/L or less (c) Excessive p a total phospho 5c. Beryllium: 5d. Cadmium: (Interim)	ific evidence is insufficient to he following phosphorus con- general guidelines which shor: isance concentrations of alga ncentrations for the ice-free p of protection against aesthet tal phosphorus concentratio This should apply to all lake: lant growth in rivers and stre rus concentration below 30 u If Hardness <75 mg/L (CaC If Hardness 0-100 mg/L (Ca	centrations should be uld be supplemented by si ae in lakes, average total beeriod should not exceed 2 ic deterioration will be n for the ice-free period of s naturally below this value ams should be eliminated g/L. 03), use 11 ug/L 03), use 1100 ug/L (CO3), then use 0.1 ug/L CO3), then use 0.5 ug/L
Provincial Water Quality Objectivo ome PWQOs are dependent on othe alues, refer to PWQO notes. Interim Provincial Water Quality C fenote Interim PWQO exceedence; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can cause eposits on shorelines and bottom s . Results that are preceeded by "< teportable Detection Limit (RDL). SATUP 4.5 to 5.5 the Interim PWQO heasured in clay-free samples. At pH 4.5 to 5.5 to 6.5, no condition sho torganic aluminum concentration in ackground concentrations for water at are unaffected by man-made in At pH >6.5 to 9.0, the Interim PWQO	er water qualit bbjectives (Inte some PWQOs eline values, re dicates that oil as a visible fil a tainting of ed ediments. ^a denote conce <u>a. Aluminum (</u> is 15 ug/L bas uld be permitte clay-free samp 's representati- nuts.	y parameters hu rim PWQO); <i>sl</i> are dependent fer to PQWO no or petrochemic ible organisms, intrations that a Interim): ed on inorganic d which would i ples to more that geologic	ance the rang aded cells an a on other water otes. als should no colouration on can form deter re below the la monomeric a ncrease the a in 10% above gical area of th	e in guideline d italics er quality t be present in t the surface, ectable aboratory luminum cid soluble natural ne Province	Current scient this time. Accordingly, t considered as specific studies (a) To avoid nu phosphorus co ug/L; (b) A high level provided by a t 10 ug/L or less (c) Excessive p a total phospho 5c. Beryllium: 5d. Cadmium: (Interim)	ific evidence is insufficient to he following phosphorus con- general guidelines which shor : isance concentrations of alga- ncentrations for the ice-free p of protection against aesthet tal phosphorus concentratio This should apply to al lake: lant growth in rivers and stre rus concentration below 30 u If Hardness <75 mg/L (CaC If Hardness >75 mg/L (CaC If Hardness >100 mg/L (Ca If Hardness >100 mg/L (Ca	centrations should be uld be supplemented by si ae in lakes, average total beeriod should not exceed 2 ic deterioration will be n for the ice-free period of s naturally below this value ams should be eliminated ig/L. O3), use 11 ug/L O3), use 1100 ug/L CO3), then use 0.1 ug/L CO3), then use 0.1 ug/L CO3), then use 0.1 ug/L CO3), then use 0.1 ug/L
Provincial Water Quality Objectiv ome PWQOs are dependent on oth alues, refer to PWQO notes. Interim Provincial Water Quality C fenote Interim PWQO exceedance; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can cause eposits on shorelines and bottom s . Results that are preceeded by "< teportable Detection Limit (RDL). S At pH 4.5 to 5.5 the Interim PWQO to ackground concentration in ackground concentration in ackground concentrations for water hat are unaffected by man-made ing At pH >6.5 to 9.0, the Interim PWQ ee samples. If natural background aluminum con-	er water qualit bejectives (Inte some PWQOs eline values, re dicates that oil as a visible fil a tainting of ed ediments. ¹ denote conce <u>a. Aluminum (</u> is 15 ug/L bas uld be permitte clay-free samp sor sepresentation buts. O is 75 ug/L bi-	y parameters hu rim PWQO); <i>sl</i> are dependent fer to PQWO no or petrochemic bible organisms, intrations that a <u>Interim):</u> ed on inorganic d which would i ples to more that ye of that geolog ased on total all water bodies u	ance the range added cells an a on other water otes. als should no colouration on can form dete re below the la monomeric a ncrease the a n 10% above gical area of the uminum meas naffected by n	e in guideline d italics er quality t be present in t the surface, ectable aboratory luminum cid soluble natural ne Province ured in clay- nanmade	Current scient this time. Accordingly, t considered as specific studies (a) To avoid nu phosphorus co ug/L; (b) A high level provided by a t 10 ug/L or less (c) Excessive p a total phospho 5c. Beryllium: 5d. Cadmium: (Interim)	ific evidence is insufficient to he following phosphorus con- general guidelines which shou: isance concentrations of alga coentrations for the ice-free pro- of protection against aesthet tal phosphorus concentration. This should apply to all lake: lant growth in rivers and stree rus concentration below 30 u If Hardness <75 mg/L (CaC If Hardness >75 mg/L (CaC If Hardness >100 mg/L (CaC if Hardness >100 mg/L (CaC 1 ug/L for hexavalent chrom 8.9 ug/L for trivalent chromis If Hardness as CaCO3 (mg/	centrations should be uld be supplemented by si ae in lakes, average total heriod should not exceed 2 ic deterioration will be n for the ice-free period of s naturally below this value arms should be eliminated lg/L. O3), use 111 ug/L O3), use 1110 ug/L icO3), then use 0.1 ug/L icO3), then use 0.5 ug/L ium (Cr VI) um (Cr III) /L) is 0 - 20, then use 1 ug
Provincial Water Quality Objectivo ome PWQOs are dependent on othe alues, refer to PWQO notes. Interim Provincial Water Quality C ienote Interim PWQO exceedence; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can cause eposits on shorelines and bottom s . Results that are preceeded by "< teportable Detection Limit (RDL). SAT pH 4.5 to 5.5 the Interim PWQO neasured in clay-free samples. At pH >5.5 to 6.5, no condition sho organic aluminum concentration in ackground concentrations for water nat are unaffected by man-made ing At pH >6.5 to 9.0, the Interim PWQ ee samples. If natural background aluminum con- puts are greater than the numerica	er water qualit Dbjectives (Inte some PWQOs sline values, re dicates that oil as a visible fil a tainting of ed ediments. ^a denote conce a. Aluminum (is 15 ug/L bas uld be permittle clay-free samp rs representativ outs. O is 75 ug/L bi coentrations in l Interim PWQ	y parameters hu rim PWQO); <i>si</i> is are dependent fer to PQWO no or petrochemic ible organisms, intrations that a <i>Interim</i>): ed on inorganic d which would i ples to more that ev of that geolog ased on total allu water bodies un D (above), no c	ance the rang naded cells an i on other wate otes. als should no colouration on can form dete re below the la monomeric a n crease the a n 10% above gical area of th uminum meas naffected by n ondition is per	e in guideline d italics er quality t be present ir the surface, ectable aboratory luminum cid soluble natural ne Province ured in clay- nanmade rmitted that	- Current scient this time. - Accordingly, t considered as specific studies (a) To avoid nu phosphorus co ug/L; (b) A high level provided by a t 10 ug/L or less (c) Excessive p a total phosphor 5c. Beryllium: 5d. Cadmium: (Interim) 5f. Copper: (Interim)	ific evidence is insufficient to he following phosphorus con- general guidelines which shoi : isance concentrations of alga coentrations for the ice-free p of protection against aesthet total phosphorus concentratio This should apply to all lake: iant growth in rivers and stre rus concentration below 30 u If Hardness <75 mg/L (CaC If Hardness >75 mg/L (CaC If Hardness >100 mg/L (Cat If Hardness >100 mg/L (Cat i ug/L for hexavalent chromi If Hardness as CaCO3 (mg/ If Hardness as CaCO3 (mg	centrations should be uld be supplemented by si ae in lakes, average total period should not exceed 2 tic deterioration will be n for the ice-free period of s naturally below this value arms should be eliminated tg/L. O3), use 11 ug/L O3), use 1100 ug/L CO3), then use 0.1 ug/L CO3), then use 0.5 ug/L tium (Cr VI) um (Cr III) 'L) is 0 - 20, then use 1 ug/L 'L) is >20, then use 5 ug/L
. Provincial Water Quality Objectiv ome PWQOs are dependent on oth alues, refer to PWQO notes. . Interim Provincial Water Quality C fenote Interim PWQO exceedance; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can cause eposits on shorelines and bottom s . Results that are preceeded by "< teportable Detection Limit (RDL).	er water qualit Dbjectives (Inte some PWQOs sline values, re dicates that oil as a visible fil a tainting of ed ediments. ^a denote conce a. Aluminum (is 15 ug/L bas uld be permittle clay-free samp rs representativ outs. O is 75 ug/L bi coentrations in l Interim PWQ	y parameters hu rim PWQO); <i>si</i> is are dependent fer to PQWO no or petrochemic ible organisms, intrations that a <i>Interim</i>): ed on inorganic d which would i ples to more that ev of that geolog ased on total allu water bodies un D (above), no c	ance the rang naded cells an i on other wate otes. als should no colouration on can form dete re below the la monomeric a n crease the a n 10% above gical area of th uminum meas naffected by n ondition is per	e in guideline d italics er quality t be present ir the surface, ectable aboratory luminum cid soluble natural ne Province ured in clay- nanmade rmitted that	Current scient this time. Accordingly, t considered as g specific studies (a) To avoid nu phosphorus co ug/L; (b) A high level provided by a t 10 ug/L or less (c) Excessive p a total phospho 5c. Beryllium: 5d. Cadmium: (Interim) 5e. Chromium 5f. Copper:	ific evidence is insufficient to he following phosphorus cond general guidelines which shou: isance concentrations of alga occurrations for the ice-free p of protection against aesthet tal phosphorus concentratio This should apply to all lake: lant growth in rivers and stre rus concentration below 30 u If Hardness <75 mg/L (CaC If Hardness >75 mg/L (CaC If Hardness >100 mg/L (Cat If Hardness >100 mg/L (Cat If Jud for hexavalent chromi 8.9 ug/L for trivalent chromi If Hardness as CaCO3 (mg/L If Hardness as CaCO3 (mg/L If Alkalinity as CaCO3 (mg/L If Al	centrations should be uld be supplemented by sit ae in lakes, average total beriod should not exceed 2 ic deterioration will be n for the ice-free period of s naturally below this value ams should be eliminated ug/L. 03), use 11 ug/L 03), use 11 ug/L 03), use 1100 ug/L iCO3), then use 0.1 ug/L CO3), then use 0.5 ug/L ium (Cr III) L) is - 20, then use 1 ug/L L) is < 20, use 5 ug/L
Provincial Water Quality Objectivo ome PWQOs are dependent on othe alues, refer to PWQO notes. Interim Provincial Water Quality C ienote Interim PWQO exceedence; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can cause eposits on shorelines and bottom s . Results that are preceeded by "< teportable Detection Limit (RDL). SAT pH 4.5 to 5.5 the Interim PWQO neasured in clay-free samples. At pH >5.5 to 6.5, no condition sho organic aluminum concentration in ackground concentrations for water nat are unaffected by man-made ing At pH >6.5 to 9.0, the Interim PWQ ee samples. If natural background aluminum con- puts are greater than the numerica	er water qualit Dbjectives (Inte some PWQOs sline values, re dicates that oil as a visible fil a tainting of ed ediments. ^a denote conce a. Aluminum (is 15 ug/L bas uld be permittle clay-free samp rs representativ outs. O is 75 ug/L bi coentrations in l Interim PWQ	y parameters hu rim PWQO); <i>si</i> is are dependent fer to PQWO no or petrochemic ible organisms, intrations that a <i>Interim</i>): ed on inorganic d which would i ples to more that ev of that geolog ased on total allu water bodies un D (above), no c	ance the rang naded cells an i on other wate otes. als should no colouration on can form dete re below the la monomeric a n crease the a n 10% above gical area of th uminum meas naffected by n ondition is per	e in guideline d italics er quality t be present ir the surface, ectable aboratory luminum cid soluble natural ne Province ured in clay- nanmade rmitted that	- Current scient this time. - Accordingly, t considered as specific studies (a) To avoid nu phosphorus co ug/L; (b) A high level provided by a t 10 ug/L or less (c) Excessive p a total phosphor 5c. Beryllium: 5d. Cadmium: (Interim) 5f. Copper: (Interim)	ific evidence is insufficient to he following phosphorus con- general guidelines which shoi : isance concentrations of alga coentrations for the ice-free p of protection against aesthet total phosphorus concentratio This should apply to all lake: iant growth in rivers and stre rus concentration below 30 u If Hardness <75 mg/L (CaC If Hardness >75 mg/L (CaC If Hardness >100 mg/L (Cat If Hardness >100 mg/L (Cat i ug/L for hexavalent chromi If Hardness as CaCO3 (mg/ If Hardness as CaCO3 (mg	centrations should be uld be supplemented by si ae in lakes, average total beriod should not exceed 2 ic deterioration will be n for the ice-free period of s naturally below this value ams should be eliminated ig/L. O3), use 11 ug/L O3), use 11 ug/L CO3), use 1100 ug/L iCO3), then use 0.1 ug/L CO3), then use 0.1 ug/L CO3), then use 0.5 ug/L ium (Cr III) L) is > 20, then use 1 ug L) is > 20, then use 5 ug/L
. Provincial Water Quality Objectiv ome PWQOs are dependent on oth alues, refer to PWQO notes. . Interim Provincial Water Quality C fenote Interim PWQO exceedance; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can cause eposits on shorelines and bottom s . Results that are preceeded by "< teportable Detection Limit (RDL).	er water qualit Dbjectives (Inte some PWQOs sline values, re dicates that oil as a visible fil a tainting of ed ediments. ^a denote conce a. Aluminum (is 15 ug/L bas uld be permittle clay-free samp rs representativ outs. O is 75 ug/L bi coentrations in l Interim PWQ	y parameters hu rim PWQO); <i>si</i> is are dependent fer to PQWO no or petrochemic ible organisms, intrations that a <i>Interim</i>): ed on inorganic d which would i ples to more that ev of that geolog ased on total allu water bodies un D (above), no c	ance the rang naded cells an i on other wate otes. als should no colouration on can form dete re below the la monomeric a n crease the a n 10% above gical area of th uminum meas naffected by n ondition is per	e in guideline d italics er quality t be present ir the surface, ectable aboratory luminum cid soluble natural ne Province ured in clay- nanmade rmitted that	- Current scient this time. - Accordingly, t considered as specific studies (a) To avoid nu phosphorus co ug/L; (b) A high level provided by a t 10 ug/L or less (c) Excessive p a total phosphor 5c. Beryllium: 5d. Cadmium: (Interim) 5f. Copper: (Interim)	ific evidence is insufficient to he following phosphorus cond general guidelines which shou: isance concentrations of alga occurrations for the ice-free p of protection against aesthet tal phosphorus concentratio This should apply to all lake: lant growth in rivers and stre rus concentration below 30 u If Hardness <75 mg/L (CaC If Hardness >75 mg/L (CaC If Hardness >100 mg/L (Cat If Hardness >100 mg/L (Cat If Jud for hexavalent chromi 8.9 ug/L for trivalent chromi If Hardness as CaCO3 (mg/L If Hardness as CaCO3 (mg/L If Alkalinity as CaCO3 (mg/L If Al	centrations should be uld be supplemented by si beriod should not exceed 2 ic deterioration will be n for the ice-free period of s naturally below this valu ams should be eliminated g/L. O3), use 11 ug/L O3), use 11 ug/L O3), use 1100 ug/L iCO3), then use 0.1 ug/L CO3), then use 0.1 ug/L CO3), then use 0.5 ug/L ium (Cr VI) um (Cr III) 'L) is - 20, then use 1 ug L) is - 20, use 5 ug/L .) is - 20 to 40, use 10 ug/L
. Provincial Water Quality Objectiv ome PWQOs are dependent on oth alues, refer to PWQO notes. . Interim Provincial Water Quality C fenote Interim PWQO exceedance; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can cause eposits on shorelines and bottom s . Results that are preceeded by "< teportable Detection Limit (RDL).	er water qualit Dbjectives (Inte some PWQOs sline values, re dicates that oil as a visible fil a tainting of ed ediments. ^a denote conce a. Aluminum (is 15 ug/L bas uld be permittle clay-free samp rs representativ outs. O is 75 ug/L bi coentrations in l Interim PWQ	y parameters hu rim PWQO); <i>si</i> is are dependent fer to PQWO no or petrochemic ible organisms, intrations that a <i>Interim</i>): ed on inorganic d which would i ples to more that ev of that geolog ased on total allu water bodies un D (above), no c	ance the rang naded cells an i on other wate otes. als should no colouration on can form dete re below the la monomeric a n crease the a n 10% above gical area of th uminum meas naffected by n ondition is per	e in guideline d italics er quality t be present ir the surface, ectable aboratory luminum cid soluble natural ne Province ured in clay- nanmade rmitted that	- Current scient this time. - Accordingly, t considered as specific studies (a) To avoid nu phosphorus co ug/L; (b) A high level provided by a t 10 ug/L or less (c) Excessive p a total phosphor 5c. Beryllium: 5d. Cadmium: (Interim) 5f. Copper: (Interim)	ific evidence is insufficient to he following phosphorus cond general guidelines which shou: isance concentrations of alga ncentrations for the ice-free p of protection against aesthet tal phosphorus concentratio This should apply to all lake: lant growth in rivers and stre rus concentration below 30 u If Hardness <75 mg/L (CaC If Hardness >75 mg/L (CaC If Hardness >100 mg/L (Ca If Hardness >100 mg/L (Ca If Hardness >100 mg/L (Ca If Hardness >100 mg/L (Ca If Hardness as CaCO3 (mg/L If Hardness as CaCO3 (mg/L If Alkalinity	centrations should be uld be supplemented by si ae in lakes, average total beeriod should not exceed 2 ic deterioration will be n for the ice-free period of s naturally below this value ams should be eliminated ig/L. O3), use 11 ug/L O3), use 1100 ug/L CO3), use 1100 ug/L CO3), then use 0.1 ug/L CO3), then use 0.1 ug/L CO3), then use 0.5 ug/L ium (Cr III) T_{L} is 0 - 20, then use 1 ug L_{L} is >20, then use 1 ug/L .) is <20, use 5 ug/L .) is 20 to 40, use 10 ug/L L) is 40 to 80, use 20 ug/L
. Provincial Water Quality Objectiv ome PWQOs are dependent on oth alues, refer to PWQO notes. . Interim Provincial Water Quality C fenote Interim PWQO exceedance; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can cause eposits on shorelines and bottom s . Results that are preceeded by "< teportable Detection Limit (RDL).	er water qualit Dbjectives (Inte some PWQOs sline values, re dicates that oil as a visible fil a tainting of ed ediments. ^a denote conce a. Aluminum (is 15 ug/L bas uld be permittle clay-free samp rs representativ outs. O is 75 ug/L bi coentrations in l Interim PWQ	y parameters hu rim PWQO); <i>si</i> is are dependent fer to PQWO no or petrochemic ible organisms, intrations that a <i>Interim</i>): ed on inorganic d which would i ples to more that ev of that geolog ased on total allu water bodies un D (above), no c	ance the rang naded cells an i on other wate otes. als should no colouration on can form dete re below the la monomeric a n crease the a n 10% above gical area of th uminum meas naffected by n ondition is per	e in guideline d italics er quality t be present ir the surface, ectable aboratory luminum cid soluble natural ne Province ured in clay- nanmade rmitted that	- Current scient this time. - Accordingly, t considered as specific studies (a) To avoid nu phosphorus co ug/L; (b) A high level provided by a t 10 ug/L or less (c) Excessive p a total phosphor 5c. Beryllium: 5d. Cadmium: (Interim) 5f. Copper: (Interim)	ific evidence is insufficient to he following phosphorus cond general guidelines which shou: isance concentrations of alga necentrations for the ice-free p of protection against aesthet otal phosphorus concentratio This should apply to all lake lant growth in rivers and stre rus concentration below 30 u If Hardness <75 mg/L (CaC If Hardness >75 mg/L (CaC If Hardness >100 mg/L (Cal If Hardness >100 mg/L (Cal if Hardness as CaCO3 (mg/L if Alradinity as CaCO3 (mg/L if Alkalinity as CaCO3 (mg/L if	centrations should be uld be supplemented by si ae in lakes, average total beeriod should not exceed 2 ic deterioration will be n for the ice-free period of s naturally below this value ams should be eliminated g/L. O3), use 11 ug/L O3), use 1100 ug/L CO3), then use 0.1 ug/L CO3), then use 0.1 ug/L CO3), then use 0.1 ug/L CO3), then use 0.5 ug/L ium (Cr III) L) is 0 - 20, then use 1 ug/L L) is >20, then use 5 ug/L .) is <20 to 40, use 10 ug/L .) is 20 to 40, use 20 ug/L .) is > 0 to 80, use 25 ug/L
. Provincial Water Quality Objectiv ome PWQOs are dependent on oth alues, refer to PWQO notes. . Interim Provincial Water Quality C fenote Interim PWQO exceedance; arameters hence the range in guide . The PWQO for Oil and Grease in oncentrations that: can be detected an be detected by odour, can cause eposits on shorelines and bottom s . Results that are preceeded by "< teportable Detection Limit (RDL).	er water qualit Dbjectives (Inte some PWQOs sline values, re dicates that oil as a visible fil a tainting of ed ediments. ^a denote conce a. Aluminum (is 15 ug/L bas uld be permittle clay-free samp rs representativ outs. O is 75 ug/L bi coentrations in l Interim PWQ	y parameters hu rim PWQO); <i>si</i> is are dependent fer to PQWO no or petrochemic ible organisms, intrations that a <i>Interim</i>): ed on inorganic d which would i ples to more that ev of that geolog ased on total allu water bodies un D (above), no c	ance the rang naded cells an i on other wate otes. als should no colouration on can form dete re below the la monomeric a n crease the a n 10% above gical area of th uminum meas naffected by n ondition is per	e in guideline d italics er quality t be present ir the surface, ectable aboratory luminum cid soluble natural ne Province ured in clay- nanmade rmitted that	Current scient this time. Accordingly, t considered as specific studies (a) To avoid nu phosphorus co ug/L; (b) A high level provided by a t 10 ug/L or less (c) Excessive p a total phosphor 5c. Beryllium: d. Cadmium: (Interim) 5c. Chromium 5f. Copper: (Interim) 5g. Lead:	ific evidence is insufficient to he following phosphorus cond general guidelines which shou: isance concentrations of alga necentrations for the ice-free p of protection against aesthet tal phosphorus concentratio This should apply to all lake: lant growth in rivers and stre rus concentration below 30 u If Hardness <75 mg/L (CaC If Hardness >75 mg/L (CaC If Hardness >100 mg/L (Cad If Hardness >100 mg/L (Cad If Hardness >100 mg/L (Cad If Hardness as CaCO3 (mg/L If Alkalinity as CaCO3 (mg/L If Al	centrations should be uld be supplemented by si ae in lakes, average total beeriod should not exceed 2 ic deterioration will be n for the ice-free period of s naturally below this value arms should be eliminated ig/L. O3), use 11 ug/L O3), use 11 ug/L CO3), then use 0.1 ug/L CO3), then use 0.1 ug/L CO3), then use 0.1 ug/L CO3), then use 0.5 ug/L ium (Cr VI) um (Cr III) L) is 20, then use 1 ug/L L) is 20, use 5 ug/L .) is 20 to 40, use 10 ug/L L) is 20 to 40, use 20 ug/L .) is 0 to 80, use 25 ug/L L) is < 30, then use 1 ug/L

					I Discharge from	Rate of	Rate of
Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Taking (L/sec)	Taking (L/min)
	ECA	Permitted	Rate	1	6,550,000	76	4,545
1-Jan-20	NO F	PUMP	0	0	-	-	-
2-Jan-20	NO F	PUMP	0	0	-	-	-
3-Jan-20	7AM	5PM	36000	600	720,000	20	1,200
4-Jan-20	7AM	5PM	36000	600	720,000	20	1,200
5-Jan-20	NO F	PUMP	0	0	-	-	-
6-Jan-20	NO F	PUMP	0	0	-	-	-
7-Jan-20	NO F	PUMP	0	0	-	-	-
8-Jan-20	NO F	PUMP	0	0	-	-	-
9-Jan-20	NO F	PUMP	0	0	-	-	-
10-Jan-20	NO F	PUMP	0	0	-	-	-
11-Jan-20	NO F	PUMP	0	0	-	-	-
12-Jan-20	NO F	PUMP	0	0	-	-	-
13-Jan-20	7AM	5PM	36000	600	720,000	20	1,200
14-Jan-20	7AM	5PM	36000	600	720,000	20	1,200
15-Jan-20	NO F	PUMP	0	0	-	-	-
16-Jan-20	NO F	PUMP	0	0	-	-	-
17-Jan-20	NO F	PUMP	0	0	-	-	-
18-Jan-20	NO F	PUMP	0	0	-	-	-
19-Jan-20	NO F	PUMP	0	0	-	-	-
20-Jan-20	NO F	PUMP	0	0	-	-	-
21-Jan-20		PUMP	0	0	-	-	-
22-Jan-20		PUMP	0	0	-	-	-
23-Jan-20		PUMP	0	0	-	-	-
24-Jan-20		PUMP	0	0	-	-	-
25-Jan-20		PUMP	0	0	-	-	-
26-Jan-20		PUMP	0	0	-	-	-
27-Jan-20		PUMP	0	0	-	-	-
28-Jan-20		PUMP	0	0	-	-	-
29-Jan-20		PUMP	0	0	-	-	-
30-Jan-20		PUMP	0	0	-	-	-
31-Jan-20		PUMP	0	0	-	-	-
1-Feb-20		PUMP	0	0	-	-	-
2-Feb-20		PUMP	0	0	-	-	-
3-Feb-20	7AM	4PM	32400	540	648,000	20	1,200
4-Feb-20	7AM	4PM	32400	540	648,000	20	1,200
5-Feb-20			0	0	-	-	-
6-Feb-20			0	0	-	-	-
7-Feb-20	NO PUMP		0	0	-	-	-
8-Feb-20	NO PUMP		0	0	-	-	-
9-Feb-20			0	0	-	-	-
10-Feb-20			0	0	-	-	-
11-Feb-20			0	0	-	-	-
12-Feb-20	NOF	PUMP	0	0	-	-	-

Table 6: Measured Water Volume and Rate of Discharge from Quarry Sump

Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Rate of Taking (L/sec)	Rate of Taking (L/min)
		Permitted	I		6,550,000	76	4,545
13-Feb-20		UMP	0	0	-	-	-
14-Feb-20		UMP	0	0	-	-	-
15-Feb-20			0	0	-	-	-
16-Feb-20 17-Feb-20			0	0	-	-	-
17-Feb-20 18-Feb-20			0	0	-	-	-
18-Feb-20 19-Feb-20			0	0	-	-	-
20-Feb-20			0	0		-	-
21-Feb-20			0	0	-	_	-
22-Feb-20		PUMP	0	0	-	_	-
23-Feb-20		UMP	0	0	-	-	-
24-Feb-20		UMP	0	0	-	-	-
25-Feb-20		UMP	0	0	-	-	-
26-Feb-20	NO P	UMP	0	0	-	-	-
27-Feb-20	NO F	UMP	0	0	-	-	-
28-Feb-20	NO P	UMP	0	0	-	-	-
29-Feb-20	NO P	UMP	0	0	-	-	-
1-Mar-20	NO P	UMP	0	0	-	-	-
2-Mar-20	NO F	UMP	0	0	-	-	-
3-Mar-20	NO P	UMP	0	0	-	-	-
4-Mar-20		PUMP	0	0	-	-	-
5-Mar-20		UMP	0	0	-	-	-
6-Mar-20		UMP	0	0	-	-	-
7-Mar-20		UMP	0	0	-	-	-
8-Mar-20			0	0	-	-	-
9-Mar-20			0	0	-	-	-
10-Mar-20			0	0	-	-	-
11-Mar-20 12-Mar-20			0	0	-	-	-
12-Mar-20 13-Mar-20			0	0	-	-	-
14-Mar-20			0	0	-	-	-
14-Mar-20			0	0	-	-	-
16-Mar-20			0	0	-	-	-
17-Mar-20			0	0	-	-	-
18-Mar-20		PUMP	0	0	-	-	-
19-Mar-20		UMP	0	0	-	-	-
20-Mar-20		UMP	0	0	-	-	-
21-Mar-20		UMP	0	0	-	-	-
22-Mar-20		UMP	0	0	-	-	-
23-Mar-20	7AM	4PM	32400	540	648,000	20	1,200
24-Mar-20	7AM	4PM	32400	540	648,000	20	1,200
25-Mar-20	7AM	4PM	32400	540	648,000	20	1,200
26-Mar-20	7AM	4PM	32400	540	648,000	20	1,200

Table 6: Measured Water Volume and Rate of Discharge from Quarry Sump

		measurea			i Discharge from		
Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Rate of Taking	Rate of Taking
						(L/sec)	(L/min)
	ECA	Permitted	Rate		6,550,000	76	4,545
27-Mar-20	7AM	4PM	32400	540	648,000	20	1,200
28-Mar-20	NO P	UMP	0	0	-	-	-
29-Mar-20	NO P	UMP	0	0	-	-	-
30-Mar-20	7AM	4PM	32400	540	648,000	20	1,200
31-Mar-20	7AM	4PM	32400	540	648,000	20	1,200
1-Apr-20	7AM	4PM	32400	540	648,000	20	1,200
2-Apr-20	7AM	4PM	32400	540	648,000	20	1,200
3-Apr-20	7AM	4PM	32400	540	648,000	20	1,200
4-Apr-20	NO P	UMP	0	0	-	-	-
5-Apr-20	NO P	UMP	0	0	-	-	-
6-Apr-20	7AM	4PM	32400	540	648,000	20	1,200
7-Apr-20	7AM	4PM	32400	540	648,000	20	1,200
8-Apr-20	7AM	4PM	32400	540	648,000	20	1,200
9-Apr-20	7AM	4PM	32400	540	648,000	20	1,200
10-Apr-20		UMP	0	0	-	-	-
11-Apr-20		UMP	0	0	-	-	-
12-Apr-20		UMP	0	0	-	-	-
13-Apr-20		UMP	0	0	-	-	-
14-Apr-20	7AM	4PM	32400	540	648,000	20	1,200
15-Apr-20	7AM	4PM	32400	540	648,000	20	1,200
16-Apr-20	7AM	4PM	32400	540	648,000	20	1,200
17-Apr-20	7AM	4PM	32400	540	648,000	20	1,200
18-Apr-20 19-Apr-20		UMP UMP	0	0	-	-	-
20-Apr-20	7AM	4PM	32400	540	- 648,000	20	- 1,200
20-Apr-20 21-Apr-20	7AM 7AM	4PM	32400	540	648,000	20	1,200
22-Apr-20	7AM 7AM	4PM	32400	540	648,000	20	1,200
23-Apr-20	7AM	4PM	32400	540	648,000	20	1,200
24-Apr-20	7AM	4PM	32400	540	648,000	20	1,200
25-Apr-20		UMP	0	0	-	-	-
26-Apr-20		UMP	0	0	-	-	-
27-Apr-20		UMP	0	0	-	-	-
28-Apr-20		UMP	0	0	-	-	-
29-Apr-20	NO P	UMP	0	0	-	-	-
30-Apr-20	NO P	UMP	0	0	-	-	-
1-May-20	NO P	UMP	0	0	-	-	-
2-May-20	NO P	UMP	0	0	-	-	-
3-May-20	NO PUMP		0	0		-	-
4-May-20	NO PUMP		0	0	-	-	-
5-May-20	NO PUMP		0	0	-	-	-
6-May-20	NO P	UMP	0	0	-	-	-
7-May-20	NO P	UMP	0	0	-	-	-
8-May-20	NO P	UMP	0	0	-	-	-

Table 6: Measured Water Volume and Rate of Discharge from Quarry Sump

		Incusureu			i Discharge from	· · ·	•
	.					Rate of	Rate of
Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Taking	Taking
						(L/sec)	(L/min)
		Permitted			6,550,000	76	4,545
9-May-20		PUMP	0	0	-	-	-
10-May-20		PUMP	0	0	-	-	-
11-May-20		PUMP	0	0	-	-	-
12-May-20		PUMP	0	0	-	-	-
13-May-20		PUMP	0	0	-	-	-
14-May-20		PUMP	0	0	-	-	-
15-May-20	NO P	PUMP	0	0	-	-	-
16-May-20	NO P	PUMP	0	0	-	-	-
17-May-20	NO P	PUMP	0	0	-	-	-
18-May-20	NO P	PUMP	0	0	-	-	-
19-May-20	NO P	PUMP	0	0	-	-	-
20-May-20	NO P	PUMP	0	0	-	-	-
21-May-20	NO F	PUMP	0	0	-	-	-
22-May-20	NO P	PUMP	0	0	-	-	-
23-May-20	NO P	PUMP	0	0	-	-	-
24-May-20	NO P	PUMP	0	0	-	-	-
25-May-20	NO P	PUMP	0	0	-	-	-
26-May-20	NO P	PUMP	0	0	-	-	-
27-May-20	NO P	PUMP	0	0	-	-	-
28-May-20	NO P	PUMP	0	0	-	-	-
29-May-20	NO P	PUMP	0	0	-	-	-
30-May-20	NO P	PUMP	0	0	-	-	-
31-May-20	NO P	PUMP	0	0	-	-	-
, 1-Jun-20	NO P	PUMP	0	0	-	-	-
2-Jun-20		PUMP	0	0	-	-	-
3-Jun-20		PUMP	0	0	-	-	-
4-Jun-20		PUMP	0	0	-	-	-
5-Jun-20		PUMP	0	0	-	-	_
6-Jun-20		PUMP	0	0	-	-	-
7-Jun-20		PUMP	0	0	-	-	_
8-Jun-20		PUMP	0	0	-	_	_
9-Jun-20		PUMP	0	0	-	_	-
10-Jun-20		PUMP	0	0	-	-	-
11-Jun-20			0	0	-	-	-
12-Jun-20		PUMP	0	0	-	-	-
13-Jun-20		PUMP	0	0	-	-	-
14-Jun-20		PUMP	0	0	-	-	-
14-Jun-20		PUMP	0	0	-	-	-
16-Jun-20		PUMP	0	0			-
					-	-	-
17-Jun-20	NUP	PUMP	0	0	-	-	-

Table 6: Measured Water Volume and Rate of Discharge from Quarry Sump

					i Discharge ironi	Rate of	Rate of
Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Taking	Taking
		-				(L/sec)	(L/min)
	ECA	Permitted	Rate		6,550,000	76	4,545
18-Jun-20	NO F	PUMP	0	0	-	-	-
19-Jun-20	NO F	PUMP	0	0	-	-	-
20-Jun-20	NO F	PUMP	0	0	-	-	-
21-Jun-20	NO F	PUMP	0	0	-	-	-
22-Jun-20	NO F	PUMP	0	0	-	-	-
23-Jun-20	NO F	PUMP	0	0	-	-	-
24-Jun-20		PUMP	0	0	-	-	-
25-Jun-20	NO F	PUMP	0	0	-	-	-
26-Jun-20		PUMP	0	0	-	-	-
27-Jun-20		PUMP	0	0	-	-	-
28-Jun-20		PUMP	0	0	-	-	-
29-Jun-20		PUMP	0	0	-	-	-
30-Jun-20		PUMP	0	0	-	-	-
1-Jul-20		PUMP	0	0	-	-	-
2-Jul-20		PUMP	0	0	-	-	-
3-Jul-20		PUMP	0	0	-	-	-
4-Jul-20		PUMP	0	0	-	-	-
5-Jul-20		PUMP	0	0	-	-	-
6-Jul-20	NO F	PUMP	0	0	-	-	-
7-Jul-20	NO F	PUMP	0	0	-	-	-
8-Jul-20	NO F	PUMP	0	0	-	-	-
9-Jul-20		PUMP	0	0	-	-	-
10-Jul-20	NO F	PUMP	0	0	-	-	-
11-Jul-20		PUMP	0	0	-	-	-
12-Jul-20		PUMP	0	0	-	-	-
13-Jul-20	NO F	PUMP	0	0	-	-	-
14-Jul-20		PUMP	0	0	-	-	-
15-Jul-20		PUMP	0	0	-	-	-
16-Jul-20		PUMP	0	0	-	-	-
17-Jul-20		PUMP	0	0	-	-	-
18-Jul-20		PUMP	0	0	-	-	-
19-Jul-20		PUMP	0	0	-	-	-
20-Jul-20		PUMP	0	0	-	-	-
21-Jul-20		PUMP	0	0	-	-	-
22-Jul-20		PUMP	0	0	-	-	-
23-Jul-20		PUMP	0	0	-	-	-
24-Jul-20		PUMP	0	0	-	-	-
25-Jul-20		PUMP	0	0	-	-	-
26-Jul-20		PUMP	0	0	-	-	-
27-Jul-20		PUMP	0	0	-	-	-
28-Jul-20		PUMP	0	0	-	-	-
29-Jul-20		PUMP	0	0	-	-	-
30-Jul-20	NO F	PUMP	0	0	-	-	-

Table 6: Measured Water Volume and Rate of Discharge from Quarry Sump

Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Rate of Taking (L/sec)	Rate of Taking (L/min)
	ECA	Permitted	Rate		6,550,000	76	4,545
31-Jul-20	1	PUMP	0	0	-	-	-
1-Aug-20	NO F	PUMP	0	0	-	-	-
2-Aug-20	NO P	PUMP	0	0	-	-	-
3-Aug-20	NO F	PUMP	0	0	-	-	-
4-Aug-20	NO P	PUMP	0	0	-	-	-
5-Aug-20	NO P	PUMP	0	0	-	-	-
6-Aug-20	NO P	UMP	0	0	-	-	-
7-Aug-20	9AM	4PM	25200	420	504,000	20	1,200
8-Aug-20		PUMP	0	0	-	-	-
9-Aug-20		UMP	0	0	-	-	-
10-Aug-20	7AM	4PM	32400	540	648,000	20	1,200
11-Aug-20	7AM	4PM	32400	540	648,000	20	1,200
12-Aug-20	7AM	4PM	32400	540	648,000	20	1,200
13-Aug-20	7AM	4PM	32400	540	648,000	20	1,200
14-Aug-20 15-Aug-20	7AM	4PM PUMP	32400 0	540	648,000	- 20	1,200
16-Aug-20		PUMP	0	0	-	-	-
17-Aug-20	7AM	4PM	32400	540	- 648,000	20	1,200
18-Aug-20	7AM	4PM	32400	540	648,000	20	1,200
19-Aug-20	7AM	4PM	32400	540	648,000	20	1,200
20-Aug-20	7AM	4PM	32400	540	648,000	20	1,200
21-Aug-20	7AM	4PM	32400	540	648,000	20	1,200
22-Aug-20	NO F	UMP	0	0	-	-	-
23-Aug-20	NO P	PUMP	0	0	-	-	-
24-Aug-20	7AM	4PM	32400	540	648,000	20	1,200
25-Aug-20	7AM	4PM	32400	540	648,000	20	1,200
26-Aug-20	7AM	4PM	32400	540	648,000	20	1,200
27-Aug-20	7AM	4PM	32400	540	648,000	20	1,200
28-Aug-20	7AM	4PM	32400	540	648,000	20	1,200
29-Aug-20		PUMP	0	0	-	-	-
30-Aug-20			0	0	-	-	-
31-Aug-20	7AM	4PM	32400	540	648,000	20	1,200
1-Sep-20	7AM	4PM	32400	540 540	648,000	20	1,200
2-Sep-20	7AM	4PM	32400	540 540	648,000	20	1,200
3-Sep-20 4-Sep-20	7AM 7AM	4PM 4PM	32400 32400	540 540	648,000 648,000	20 20	1,200
4-Sep-20 5-Sep-20		PUMP	0	0		- 20	1,200
6-Sep-20		PUMP	0	0	-	-	-
7-Sep-20		PUMP	0	0	-	_	-
8-Sep-20	7AM	4PM	32400	540	648,000	20	1,200
9-Sep-20	7AM	4PM	32400	540	648,000	20	1,200
10-Sep-20	7AM	4PM	32400	540	648,000	20	1,200
11-Sep-20	7AM	4PM	32400	540	648,000	20	1,200

Table 6: Measured Water Volume and Rate of Discharge from Quarry Sump

						Data of	Data of
		-				Rate of	Rate of
Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Taking	Taking
						(L/sec)	(L/min)
		Permitted			6,550,000	76	4,545
12-Sep-20	NO P		0	0	-	-	-
13-Sep-20	NO P		0	0	-	-	-
14-Sep-20	7AM	4PM	32400	540	648,000	20	1,200
15-Sep-20	7AM	4PM	32400	540	648,000	20	1,200
16-Sep-20	7AM	4PM	32400	540	648,000	20	1,200
17-Sep-20	7AM	4PM	32400	540	648,000	20	1,200
18-Sep-20	7AM	4PM	32400	540	648,000	20	1,200
19-Sep-20	NO P		0	0	-	-	-
20-Sep-20	NO P		0	0	-	-	-
21-Sep-20	7AM	4PM	32400	540	648,000	20	1,200
22-Sep-20	7AM	4PM	32400	540	648,000	20	1,200
23-Sep-20	7AM	4PM	32400	540	648,000	20	1,200
24-Sep-20	7AM	4PM	32400	540	648,000	20	1,200
25-Sep-20	7AM	4PM	32400	540	648,000	20	1,200
26-Sep-20	NO P		0	0	-	-	-
27-Sep-20	NO P		0	0	-	-	-
28-Sep-20	7AM	4PM	32400	540	648,000	20	1,200
29-Sep-20	7AM	4PM	32400	540	648,000	20	1,200
30-Sep-20	7AM	4PM	32400	540	648,000	20	1,200
1-Oct-20	7AM	4PM	32400	540	648,000	20	1,200
2-Oct-20	7AM NO P	4PM	32400	540	648,000	20	1,200
3-Oct-20 4-Oct-20	NO P		0	0	-	-	-
5-Oct-20	7AM	4PM	32400	540	- 648,000	20	- 1,200
6-Oct-20	7AM 7AM	4PM	32400	540	648,000	20	
7-Oct-20	7AM 7AM	4PM	32400	540	648,000	20	1,200 1,200
8-Oct-20	7AM 7AM	4PM	32400	540	648,000	20	1,200
9-Oct-20	7AM	4PM	32400	540	648,000	20	1,200
10-Oct-20	NO P		0	0	-	- 20	-
11-Oct-20	NO P		0	0	-	_	_
12-Oct-20	NO P		0	0	_	_	_
13-Oct-20	7AM	4PM	32400	540	648,000	20	1,200
14-Oct-20	7AM	4PM	32400	540	648,000	20	1,200
15-Oct-20	7AM	4PM	32400	540	648,000	20	1,200
16-Oct-20	7AM	4PM	32400	540	648,000	20	1,200
17-Oct-20	NO P		0	0	-	-	-
18-Oct-20	NO P		0	0	-	-	-
19-Oct-20	7AM	4PM	32400	540	648,000	20	1,200
20-Oct-20	7AM	4PM	32400	540	648,000	20	1,200
21-Oct-20	7AM	4PM	32400	540	648,000	20	1,200
22-Oct-20	7AM	4PM	32400	540	648,000	20	1,200
23-Oct-20	7AM	4PM	32400	540	648,000	20	1,200
24-Oct-20	NO P	UMP	0	0	-	-	-

Table 6: Measured Water Volume and Rate of Discharge from Quarry Sump

		Wiedsared			i Discharge from	,	•
	.					Rate of	Rate of
Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Taking	Taking
						(L/sec)	(L/min)
		Permitted		1	6,550,000	76	4,545
25-Oct-20		UMP	0	0	-	-	-
26-Oct-20	7AM	4PM	32400	540	648,000	20	1,200
27-Oct-20	7AM	4PM	32400	540	648,000	20	1,200
28-Oct-20	7AM	4PM	32400	540	648,000	20	1,200
29-Oct-20	7AM	4PM	32400	540	648,000	20	1,200
30-Oct-20	7AM	4PM	32400	540	648,000	20	1,200
31-Oct-20		UMP	0	0	-	-	-
1-Nov-20		UMP	0	0	-	-	-
2-Nov-20	7AM	4PM	32400	540	648,000	20	1,200
3-Nov-20	7AM	4PM	32400	540	648,000	20	1,200
4-Nov-20	7AM	4PM	32400	540	648,000	20	1,200
5-Nov-20	7AM	4PM	32400	540	648,000	20	1,200
6-Nov-20	7AM	4PM	32400	540	648,000	20	1,200
7-Nov-20		UMP	0	0	-	-	-
8-Nov-20		UMP	0	0	-	-	-
9-Nov-20	7AM	4PM	32400	540	648,000	20	1,200
10-Nov-20	7AM	4PM	32400	540	648,000	20	1,200
11-Nov-20	7AM	4PM	32400	540	648,000	20	1,200
12-Nov-20	7AM	4PM	32400	540	648,000	20	1,200
13-Nov-20	7AM	4PM	32400	540	648,000	20	1,200
14-Nov-20		UMP	0	0	-	-	-
15-Nov-20		UMP	0	0	-	-	-
16-Nov-20	7AM	4PM	32400	540	648,000	20	1,200
17-Nov-20	7AM	4PM	32400	540	648,000	20	1,200
18-Nov-20	7AM	4PM	32400	540	648,000	20	1,200
19-Nov-20	7AM	4PM	32400	540	648,000	20	1,200
20-Nov-20	7AM	4PM	32400	540	648,000	20	1,200
21-Nov-20		UMP	0	0	-	-	-
22-Nov-20			0	0	-	-	-
23-Nov-20	7AM	4PM	32400	540	648,000	20	1,200
24-Nov-20	7AM	4PM	32400	540 540	648,000	20	1,200
25-Nov-20	7AM	4PM	32400 32400	540 540	648,000	20	1,200
26-Nov-20	7AM	4PM		540 540	648,000	20	1,200
27-Nov-20	7AM	4PM	32400	540	648,000	20	1,200
28-Nov-20			0	0	-	-	-
29-Nov-20			_	0	-	-	-
30-Nov-20 1-Dec-20	7AM 7AM	4PM 4PM	32400 32400	540 540	648,000	20	1,200
				540 540	648,000	20	1,200
2-Dec-20	7AM	4PM	32400	540 540	648,000	20	1,200
3-Dec-20	7AM	4PM	32400	540 540	648,000	20	1,200
4-Dec-20	7AM	4PM	32400	540	648,000	20	1,200
5-Dec-20			0	0	-	-	-
6-Dec-20	NO P	UMP	0	0	-	-	-

Table 6: Measured Water Volume and Rate of Discharge from Quarry Sump

Table 0. Measured water volume and kate of Discharge nom Quarty Sump							
	• ••••	•				Rate of	Rate of
Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Taking	Taking
						(L/sec)	(L/min)
ECA Permitted Rate				6,550,000	76	4,545	
7-Dec-20	7AM	4PM	32400	540	648,000	20	1,200
8-Dec-20	7AM	4PM	32400	540	648,000	20	1,200
9-Dec-20	7AM	4PM	32400	540	648,000	20	1,200
10-Dec-20	7AM	4PM	32400	540	648,000	20	1,200
11-Dec-20	7AM	4PM	32400	540	648,000	20	1,200
12-Dec-20	NO P	UMP	0	0	-	-	-
13-Dec-20	NO P	UMP	0	0	-	-	-
14-Dec-20	7AM	4PM	32400	540	648,000	20	1,200
15-Dec-20	7AM	4PM	32400	540	648,000	20	1,200
16-Dec-20	7AM	4PM	32400	540	648,000	20	1,200
17-Dec-20	7AM	4PM	32400	540	648,000	20	1,200
18-Dec-20	7AM	4PM	32400	540	648,000	20	1,200
19-Dec-20	NO P	UMP	0	0	-	-	-
20-Dec-20	NO P	UMP	0	0	-	-	-
21-Dec-20	NO P	UMP	0	0	-	-	-
22-Dec-20	NO P	UMP	0	0	-	-	-
23-Dec-20	NO P	UMP	0	0	-	-	-
24-Dec-20	NO P	UMP	0	0	-	-	-
25-Dec-20	NO P	UMP	0	0	-	-	-
26-Dec-20	NO P	UMP	0	0	-	-	-
27-Dec-20	NO P	UMP	0	0	-	-	-
28-Dec-20	NO P	UMP	0	0	-	-	-
29-Dec-20	NO P	UMP	0	0	-	-	-
30-Dec-20	NO P	UMP	0	0	-	-	-
31-Dec-20	NO P	UMP	0	0	-	-	-

Table 6: Measured Water Volume and Rate of Discharge from Quarry Sump

APPENDIX A

ECA No. 7737-BH6QEA

PERMIT TO TAKE WATER Ground Water NUMBER 1603-BKTPQH

Pursuant to Section 34.1 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990 this Permit To Take Water is hereby issued to:

QBJR Aggregates Inc. 949 Wilson Ave Toronto, Ontario, M3K 1G2 Canada

For the water Quarry Sump, McCarthy Quarry *taking from:*

Located at: Lot 1, Concession 1, Geographic Township of Mara Ramara, County of Simcoe

For the purposes of this Permit, and the terms and conditions specified below, the following definitions apply:

DEFINITIONS

- (a) "Director" means any person appointed in writing as a Director pursuant to section 5 of the OWRA for the purposes of section 34.1, OWRA.
- (b) "Provincial Officer" means any person designated in writing by the Minister as a Provincial Officer pursuant to section 5 of the OWRA.
- (c) "Ministry" means Ontario Ministry of the Environment, Conservation and Parks.
- (d) "District Office" means the Barrie District Office.
- (e) "Permit" means this Permit to Take Water No. 1603-BKTPQH including its Schedules, if any, issued in accordance with Section 34.1 of the OWRA.
- (f) "Permit Holder" means QBJR Aggregates Inc..
- (g) "OWRA" means the Ontario Water Resources Act, R.S.O. 1990, c. O. 40, as amended.

You are hereby notified that this Permit is issued subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. Compliance with Permit

- 1.1 Except where modified by this Permit, the water taking shall be in accordance with the application for this Permit To Take Water, dated October 23, 2019 and signed by Jenny Coco, CEO, and all Schedules included in this Permit.
- 1.2 The Permit Holder shall ensure that any person authorized by the Permit Holder to take water under this Permit is provided with a copy of this Permit and shall take all reasonable measures to ensure that any such person complies with the conditions of this Permit.
- 1.3 Any person authorized by the Permit Holder to take water under this Permit shall comply with the conditions of this Permit.
- 1.4 This Permit is not transferable to another person.
- 1.5 This Permit provides the Permit Holder with permission to take water in accordance with the conditions of this Permit, up to the date of the expiry of this Permit. This Permit does not constitute a legal right, vested or otherwise, to a water allocation, and the issuance of this Permit does not guarantee that, upon its expiry, it will be renewed.
- 1.6 The Permit Holder shall keep this Permit available at all times at or near the site of the taking, and shall produce this Permit immediately for inspection by a Provincial Officer upon his or her request.
- 1.7 The Permit Holder shall report any changes of address to the Director within thirty days of any such change. The Permit Holder shall report any change of ownership of the property for which this Permit is issued within thirty days of any such change. A change in ownership in the property shall cause this Permit to be cancelled.

2. General Conditions and Interpretation

2.1 Inspections

The Permit Holder must forthwith, upon presentation of credentials, permit a Provincial Officer to carry out any and all inspections authorized by the OWRA, the *Environmental Protection Act*, R.S.O. 1990, the *Pesticides Act*, R.S.O. 1990, or the *Safe Drinking Water Act*, S. O. 2002.

2.2 Other Approvals

The issuance of, and compliance with this Permit, does not:

(a) relieve the Permit Holder or any other person from any obligation to comply with any other applicable legal requirements, including the provisions of the *Ontario Water Resources Act*, and

the Environmental Protection Act, and any regulations made thereunder; or

(b) limit in any way any authority of the Ministry, a Director, or a Provincial Officer, including the authority to require certain steps be taken or to require the Permit Holder to furnish any further information related to this Permit.

2.3 Information

The receipt of any information by the Ministry, the failure of the Ministry to take any action or require any person to take any action in relation to the information, or the failure of a Provincial Officer to prosecute any person in relation to the information, shall not be construed as:

(a) an approval, waiver or justification by the Ministry of any act or omission of any person that contravenes this Permit or other legal requirement; or

(b) acceptance by the Ministry of the information's completeness or accuracy.

2.4 Rights of Action

The issuance of, and compliance with this Permit shall not be construed as precluding or limiting any legal claims or rights of action that any person, including the Crown in right of Ontario or any agency thereof, has or may have against the Permit Holder, its officers, employees, agents, and contractors.

2.5 Severability

The requirements of this Permit are severable. If any requirements of this Permit, or the application of any requirements of this Permit to any circumstance, is held invalid or unenforceable, the application of such requirements to other circumstances and the remainder of this Permit shall not be affected thereby.

2.6 Conflicts

Where there is a conflict between a provision of any submitted document referred to in this Permit, including its Schedules, and the conditions of this Permit, the conditions in this Permit shall take precedence.

3. Water Takings Authorized by This Permit

3.1 **Expiry**

This Permit expires on **January 31, 2025**. No water shall be taken under authority of this Permit after the expiry date.

3.2 Amounts of Taking Permitted

The Permit Holder shall only take water from the source, during the periods and at the rates and amounts of taking specified in Table A. Water takings are authorized only for the purposes specified in Table A.

<u>Table A</u>

	Source Name / Description:	Source: Type:	Taking Specific Purpose:	Taking Major Category:	Max. Taken per Minute (litres):	Max. Num. of Hrs Taken per Day:		Max. Num. of Days Taken per Year:	Zone/ Easting/ Northing:
1	Quarry Sump	Pond Connected	Pits and Quarries	Dewatering	4,545	24	6,544,800	250	17 650950 4933500
							6,544,800		

3.3 There is an additional water taking limitation per year for Source 1 described as Quarry Sump within Table A. The maximum taking per year from the Quarry Sump is 196,500,000 litres.

4. Monitoring

- 4.1 The Permit Holder shall not lower the water in the quarry below an elevation of 232.0 metres above sea level.
- 4.2 The Permit Holder shall conduct daily water level monitoring with the use of pressure transducers and data loggers at:
 - a) The residential well known by the MOE Water Well Record Number 5727662 and identified as well DW3 on Figure 2 in Item 2 of Schedule A of this Permit, if granted permission by the property owner.
 - b) The monitoring wells named OW4-1, OW4-2, OW5-1, OW6-1, OW6-2, OW8-3, OW9-2, and Bored Well (shown on Figure 2, in Item 2 of Schedule A of this Permit).
 - c) The City of Kwartha Lakes monitoring well CKL-1, if granted permission by the property owner.

These pressure transducers and data loggers shall be inspected and downloaded at least every 6 months.

- 4.3 The Permit Holder shall conduct monthly water level monitoring with the use of a manual water level meter at:
 - a) The residential well known by the MOE Water Well Record Number 5727662 and identified as well DW3 on Figure 2 in Item 2 of Schedule A of this Permit, if granted permission by the property owner.
 - b) The residential wells named DW1, DW2, and DW4, if granted permission by the property owner (shown on Figure 2, in Item 2 of Schedule A of this Permit).
 - c) The monitoring wells named AM1b, AMX-R, TW1-1, OW4-1, OW4-2, OW5-1, OW5-2, OW5-3, OW6-1, OW6-2, OW6-3, OW7-1, OW7-2, OW7-3, OW8-1, OW8-2, OW8-3, OW9-1, OW9-2, and Bored Well (shown on Figure 2 in Item 2 of Schedule A of this Permit).
 - d) The City of Kwartha Lakes monitoring wells CKL-1 and CKL-2, if granted permission by the property owner .

The Permit Holder may suspend monthly water level monitoring under Condition 4.3 for the months of January and/or February if no water is taken from the quarry on those months.

- 4.4 The Permit Holder shall, if granted permission by the property owner, measure and record static water levels in the residential wells named DW6, DW7, and DW8, as shown on Figure 2 in Item 2 of Schedule A of this Permit, at least once in every two (2) month period during which water is taken from the quarry. The Permit Holder may suspend monthly water level monitoring under Condition 4.4 for the months of January and/or February if no water is taken from the quarry on those months.
- 4.5 The Permit Holder shall, if granted permission by the property owner, on a semi-annual basis collect raw water samples from the residential wells named DW1, DW2, and the well identified in condition 4.2(a). Each sample shall be tested, at a minimum, for the parameters listed in Table 1 below:

	ty i didificters for ites		
pH	Sulphate	DOC	Copper
Alkalinity (CaCO3)	Magnesium	Colour	Iron
Bicarbonate	Calcium	Turbidity	Lead
Conductivity	Sodium	Aluminium	Manganese
Fluoride	Potassium	Arsenic	Selenium
Chloride	Ammonia (N)	Barium	Zinc
Nitrate	Phosphate	Boron	Hardness (CaCO3)
Nitrite	Phosphorus	Cadmium	TDS (iron sum calc.)
Chromium	Anion Sum	Ion Ratio	Langelier Index
Tannins	Cation Sum	% Difference	

Table 1: Water Quality Parameters for Residential Wells

The Permit Holder shall immediately report to the respective well owner, the Director, and District Office any sampling result that exceeds the Ontario Drinking Water Quality Standards as prescribed by O.Reg. 169/03, as amended.

4.6 The Permit Holder shall on a semi-annual basis conduct the groundwater quality monitoring from the on-site groundwater monitors listed in Table 2. Each sample shall be tested, at a minimum, for the parameters listed in Table 3.

Ia	Table 2: On-Site Groundwater Monitors for Water Quality Sampling					
Al	M1b	OW4-I	OW5-III	OW8-I		
Al	MX-R	OW4-II	OW6-II	OW8-II		
T١	W1-1	OW5-I	OW7-I	OW9-I		
Bo	ored Well	OW5-II	OW7-II	OW9-II		

Table 5. Water Quality Farameters for On-Site Oroundwater Monitors					
pH	Magnesium	Sulphate	Conductivity		
Alkalinity	Calcium	Nitrate	DOC		
Bicarbonate	Sodium	Nitrite	Colour		
Fluoride	Potassium	Phosphate	TDS		
Chloride	Ammonia	Phosphorus	Hardness		

Table 3. Water Quality Parameters for On-Site Groundwater Monitors

- 4.7 The Permit Holder shall notify the Director, in writing, within 30 days if the groundwater level or groundwater quality monitoring of any well listed under conditions 4.2, 4.3, 4.4, 4.5, and 4.6 is not possible, including being denied access to a private well. In the event of damage or loss of any monitoring well, monitoring devices or related equipment, the Permit Holder shall be allowed 30 calendar days from the date of discovery of the occurrence to repair or replace equipment. If a well is too damaged to be repaired or monitored, or if the well is deemed unsafe to be monitored, then the Director will decide if a replacement well is required and will modify the appropriate monitoring conditions in a written letter to the Permit Holder.
- 4.8 The Permit Holder shall maintain a record of all water takings. This record shall include the dates and times of water takings, and the total measured or calculated amounts for water pumped per day for each day that water is taken under the authorization of this Permit.
- 4.9 The Permit Holder shall keep all required records up to date and available at or near the site of the taking and shall produce the records immediately for inspection by a Provincial Officer upon his or her request.
- 4.10 The Permit Holder shall provide to the Director an annual monitoring report no later than March 1 each year during the life of this Permit. The annual monitoring report shall be prepared by an individual with P.Geo. or equivalent qualifications and shall include, at a minimum:
 - The review and assessment of all monitoring data required by this Permit. a)
 - An up-date of the quarry operations and predicted quarrying and dewatering for b) the next twelve (12) months.

- c) An assessment of the groundwater trends using the on-site on off-site monitoring data. This analysis should state the actual impact area of quarry dewatering and determine the potential for off-site impacts. If any impacts are predicted then a detailed mitigation plan shall be included within this report.
- d) Analysis that includes amount of water pumped, precipitation data, and an estimate of how much groundwater was pumped versus surface water.
- e) Figures that include site maps with current quarry depths, groundwater contour maps, impact area of quarry dewatering, groundwater elevation graphs, and geological cross-sections.
- f) Any groundwater interference complaints.
- g) Description of all communication with the public.
- h) Conclusions and recommendations, if any, to improve the monitoring and reporting at the site.

An electronic copy of the data collected must also accompany the report.

- 4.11 The Permit Holder shall make available on a publicly-accessible site on the internet the water quality and quantity data that it is required to monitor and record under this Permit and O.Reg. 387/04, as amended, and a copy of every report that is required to be prepared under this Permit. For greater clarity, the Permit Holder shall not publish any personal information as defined by the *Freedom of Information and Protection of Privacy Act*, R.S.O. 1990, c. F.31, as amended.
- 4.12 The Permit Holder shall maintain a Public Liaison Committee ("PLC") comprised of not more than seven (7) members that will meet at least once every four (4) months, unless the majority of the PLC decide that more or less frequent meetings are required. The PLC shall be comprised of: two (2) members appointed by the Permit Holder one of whom shall act as Chairperson; one (1) member from each of the Township and the County, if they wish to have representatives; and three (3) members appointed by the public, if they wish to have representatives, who must be permanent residents within a 3 kilometre radius of the quarry property. The PLC shall serve in an advisory / community liaison role and shall have no powers to direct the Permit Holder or the Ministry.
- 4.13 Any request for an amendment or renewal of this Permit must be accompanied by a report prepared by an individual with P.Geo. or equivalent qualifications and shall include, at a minimum:
 - a) The review and assessment of all monitoring data required by this Permit.
 - b) An up-date of the quarry operations and predicted quarrying and dewatering for the duration of the requested permit.
 - c) An assessment of the groundwater trends using the on-site on off-site monitoring data. This analysis should state the actual impact area of quarry dewatering and determine the potential for off-site impacts. If any impacts are predicted then a detailed mitigation plan shall be included within this report.
 - d) Analysis that includes amount of water pumped, precipitation data, and an estimate of how much groundwater was pumped versus surface water.

- e) Figures that include site maps with current quarry depths, groundwater contour maps, impact area of quarry dewatering, groundwater elevation graphs, and geological cross-sections.
- f) Any groundwater interference complaints.
- g) Description of all communication with the public.
- h) Conclusions and recommendations, if any, to improve the monitoring and reporting at the site.

An electronic copy of the data collected must also accompany the report. Any application for renewal of this Permit must be submitted to the Ministry at least ninety (90) days prior to the expiry of this Permit.

4.14 The Permit Holder shall, as directed by the Ministry, participate in a cumulative impact assessment for the Carden Plain Area with other quarry operators who have been issued a permit to take water in this area.

5. Impacts of the Water Taking

5.1 Notification

The Permit Holder shall immediately notify the local District Office of any complaint arising from the taking of water authorized under this Permit and shall report any action which has been taken or is proposed with regard to such complaint. The Permit Holder shall immediately notify the local District Office if the taking of water is observed to have any significant impact on the surrounding waters. After hours, calls shall be directed to the Ministry's Spills Action Centre at 1-800-268-6060.

5.2 For Groundwater Takings

If the taking of water is observed to cause any negative impact to other water supplies obtained from any adequate sources that were in use prior to initial issuance of a Permit for this water taking, the Permit Holder shall take such action necessary to make available to those affected, a supply of water equivalent in quantity and quality to their normal takings, or shall compensate such persons for their reasonable costs of so doing, or shall reduce the rate and amount of taking to prevent or alleviate the observed negative impact. Pending permanent restoration of the affected supplies, the Permit Holder shall provide, to those affected, temporary water supplies adequate to meet their normal requirements, or shall compensate such persons for their reasonable costs of doing so.

If permanent interference is caused by the water taking, the Permit Holder shall restore the water supplies of those permanently affected.

- 5.2.1 Where the water supply provided by the well known by MOE Water Well Record Number 5727662 is restored in accordance with Condition 5.2, the Permit Holder shall restore the supply in a manner satisfactory to the Director, taking into account the residential needs, requirements and preferences of the persons serviced by the well.
- 5.3 Upon the receipt of a groundwater interference complaint, the Permit Holder shall:

- a) Implement the McCarthy Quarry Complaint Resolution Process as described in Item 3 of Schedule A of this Permit.
- b) In addition, appropriate notification and actions must be taken as described in conditions 5.1 and 5.2 of this Permit. The provisions of conditions 5.1 and 5.2 shall take precedence over the provisions of condition 5.3(a) if there is a conflict.

6. Director May Amend Permit

The Director may amend this Permit by letter requiring the Permit Holder to suspend or reduce the taking to an amount or threshold specified by the Director in the letter. The suspension or reduction in taking shall be effective immediately and may be revoked at any time upon notification by the Director. This condition does not affect your right to appeal the suspension or reduction in taking to the Environmental Review Tribunal under the *Ontario Water Resources Act*, Section 100 (4).

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is included to ensure that the conditions in this Permit are complied with and can be enforced.
- 2. Condition 2 is included to clarify the legal interpretation of aspects of this Permit.
- 3. Conditions 3 through 6 are included to protect the quality of the natural environment so as to safeguard the ecosystem and human health and foster efficient use and conservation of waters. These conditions allow for the beneficial use of waters while ensuring the fair sharing, conservation and sustainable use of the waters of Ontario. The conditions also specify the water takings that are authorized by this Permit and the scope of this Permit.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, you may by written notice served upon me, the Environmental Review Tribunal and the Minister of the Environment, Conservation and Parks, within 15 days after receipt of this Notice, require a hearing by the Tribunal. The Minister of the Environment, Conservation and Parks will place notice of your appeal on the Environmental Registry. Section 101 of the <u>Ontario Water Resources Act</u>, as amended provides that the Notice requiring a hearing shall state:

- 1. The portions of the Permit or each term or condition in the Permit in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

In addition to these legal requirements, the Notice should also include:

- a. The name of the appellant;
- b. The address of the appellant;
- c. The Permit to Take Water number;
- d. The date of the Permit to Take Water;
- e. The name of the Director;
- f. The municipality within which the works are located;

This notice must be served upon:

The Secretary Environmental Review Tribunal 655 Bay Street, 15th Floor Toronto ON M5G 1E5 Fax: (416) 326-5370 Email: ERTTribunalsecretary@ontario.ca	<u>AND</u>	The Minister of the Environment, Conservation and Parks 777 Bay Street, 5th Floor Toronto, Ontario M7J 2J3	<u>AND</u>	The Director, Section 34.1, Ministry of the Environment, Conservation and Parks 8th Floor 5775 Yonge St Toronto ON M2M 4J1 Fax: (416) 325-6347
---	------------	--	------------	--

Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal:

by Telephone at	by Fax at	by e-mail at
(416) 212-6349	(416) 326-5370	www.ert.gov.on.ca
Toll Free 1(866) 448-2248	Toll Free 1(844) 213-3474	

This instrument is subject to Section 38 of the **Environmental Bill of Rights** that allows residents of Ontario to seek leave to appeal the decision on this instrument. Residents of Ontario may seek to appeal for 15 days from the date this decision is placed on the Environmental Registry. By accessing the Environmental Registry, you can determine when the leave to appeal period ends.

This Permit cancels and replaces Permit Number 7818-9QJNL4, issued on 2014/12/30.

Dated at Toronto this 31st day of January, 2020.

Allen Durgh l
Ellen Klupfel Director, Section 34.1 Ontario Water Resources Act, R.S.O. 1990

Schedule A

This Schedule "A" forms part of Permit To Take Water 1603-BKTPQH, dated January 31, 2020.

1. Permit to Take Water Application, dated October 23, 2019 and signed by Jenny Coco.

2. Golder Associates Ltd. (November 1, 2019). Hydrogeological Assessment, Permit to Take Water Renewal, McCarthy Quarry.

APPENDIX B

Permit To Take Water No. 1603-BKTPQH

PERMIT TO TAKE WATER Ground Water NUMBER 1603-BKTPQH

Pursuant to Section 34.1 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990 this Permit To Take Water is hereby issued to:

QBJR Aggregates Inc. 949 Wilson Ave Toronto, Ontario, M3K 1G2 Canada

For the water Quarry Sump, McCarthy Quarry *taking from:*

Located at: Lot 1, Concession 1, Geographic Township of Mara Ramara, County of Simcoe

For the purposes of this Permit, and the terms and conditions specified below, the following definitions apply:

DEFINITIONS

- (a) "Director" means any person appointed in writing as a Director pursuant to section 5 of the OWRA for the purposes of section 34.1, OWRA.
- (b) "Provincial Officer" means any person designated in writing by the Minister as a Provincial Officer pursuant to section 5 of the OWRA.
- (c) "Ministry" means Ontario Ministry of the Environment, Conservation and Parks.
- (d) "District Office" means the Barrie District Office.
- (e) "Permit" means this Permit to Take Water No. 1603-BKTPQH including its Schedules, if any, issued in accordance with Section 34.1 of the OWRA.
- (f) "Permit Holder" means QBJR Aggregates Inc..
- (g) "OWRA" means the Ontario Water Resources Act, R.S.O. 1990, c. O. 40, as amended.

You are hereby notified that this Permit is issued subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. Compliance with Permit

- 1.1 Except where modified by this Permit, the water taking shall be in accordance with the application for this Permit To Take Water, dated October 23, 2019 and signed by Jenny Coco, CEO, and all Schedules included in this Permit.
- 1.2 The Permit Holder shall ensure that any person authorized by the Permit Holder to take water under this Permit is provided with a copy of this Permit and shall take all reasonable measures to ensure that any such person complies with the conditions of this Permit.
- 1.3 Any person authorized by the Permit Holder to take water under this Permit shall comply with the conditions of this Permit.
- 1.4 This Permit is not transferable to another person.
- 1.5 This Permit provides the Permit Holder with permission to take water in accordance with the conditions of this Permit, up to the date of the expiry of this Permit. This Permit does not constitute a legal right, vested or otherwise, to a water allocation, and the issuance of this Permit does not guarantee that, upon its expiry, it will be renewed.
- 1.6 The Permit Holder shall keep this Permit available at all times at or near the site of the taking, and shall produce this Permit immediately for inspection by a Provincial Officer upon his or her request.
- 1.7 The Permit Holder shall report any changes of address to the Director within thirty days of any such change. The Permit Holder shall report any change of ownership of the property for which this Permit is issued within thirty days of any such change. A change in ownership in the property shall cause this Permit to be cancelled.

2. General Conditions and Interpretation

2.1 Inspections

The Permit Holder must forthwith, upon presentation of credentials, permit a Provincial Officer to carry out any and all inspections authorized by the OWRA, the *Environmental Protection Act*, R.S.O. 1990, the *Pesticides Act*, R.S.O. 1990, or the *Safe Drinking Water Act*, S. O. 2002.

2.2 Other Approvals

The issuance of, and compliance with this Permit, does not:

(a) relieve the Permit Holder or any other person from any obligation to comply with any other applicable legal requirements, including the provisions of the *Ontario Water Resources Act*, and

the Environmental Protection Act, and any regulations made thereunder; or

(b) limit in any way any authority of the Ministry, a Director, or a Provincial Officer, including the authority to require certain steps be taken or to require the Permit Holder to furnish any further information related to this Permit.

2.3 Information

The receipt of any information by the Ministry, the failure of the Ministry to take any action or require any person to take any action in relation to the information, or the failure of a Provincial Officer to prosecute any person in relation to the information, shall not be construed as:

(a) an approval, waiver or justification by the Ministry of any act or omission of any person that contravenes this Permit or other legal requirement; or

(b) acceptance by the Ministry of the information's completeness or accuracy.

2.4 Rights of Action

The issuance of, and compliance with this Permit shall not be construed as precluding or limiting any legal claims or rights of action that any person, including the Crown in right of Ontario or any agency thereof, has or may have against the Permit Holder, its officers, employees, agents, and contractors.

2.5 Severability

The requirements of this Permit are severable. If any requirements of this Permit, or the application of any requirements of this Permit to any circumstance, is held invalid or unenforceable, the application of such requirements to other circumstances and the remainder of this Permit shall not be affected thereby.

2.6 Conflicts

Where there is a conflict between a provision of any submitted document referred to in this Permit, including its Schedules, and the conditions of this Permit, the conditions in this Permit shall take precedence.

3. Water Takings Authorized by This Permit

3.1 **Expiry**

This Permit expires on **January 31, 2025**. No water shall be taken under authority of this Permit after the expiry date.

3.2 Amounts of Taking Permitted

The Permit Holder shall only take water from the source, during the periods and at the rates and amounts of taking specified in Table A. Water takings are authorized only for the purposes specified in Table A.

<u>Table A</u>

	Source Name / Description:	Source: Type:	Taking Specific Purpose:	Taking Major Category:	Max. Taken per Minute (litres):	Max. Num. of Hrs Taken per Day:		Max. Num. of Days Taken per Year:	Zone/ Easting/ Northing:
1	Quarry Sump	Pond Connected	Pits and Quarries	Dewatering	4,545	24	6,544,800	250	17 650950 4933500
	· · · ·			Total Taking:	6,544,800				

3.3 There is an additional water taking limitation per year for Source 1 described as Quarry Sump within Table A. The maximum taking per year from the Quarry Sump is 196,500,000 litres.

4. Monitoring

- 4.1 The Permit Holder shall not lower the water in the quarry below an elevation of 232.0 metres above sea level.
- 4.2 The Permit Holder shall conduct daily water level monitoring with the use of pressure transducers and data loggers at:
 - a) The residential well known by the MOE Water Well Record Number 5727662 and identified as well DW3 on Figure 2 in Item 2 of Schedule A of this Permit, if granted permission by the property owner.
 - b) The monitoring wells named OW4-1, OW4-2, OW5-1, OW6-1, OW6-2, OW8-3, OW9-2, and Bored Well (shown on Figure 2, in Item 2 of Schedule A of this Permit).
 - c) The City of Kwartha Lakes monitoring well CKL-1, if granted permission by the property owner.

These pressure transducers and data loggers shall be inspected and downloaded at least every 6 months.

- 4.3 The Permit Holder shall conduct monthly water level monitoring with the use of a manual water level meter at:
 - a) The residential well known by the MOE Water Well Record Number 5727662 and identified as well DW3 on Figure 2 in Item 2 of Schedule A of this Permit, if granted permission by the property owner.
 - b) The residential wells named DW1, DW2, and DW4, if granted permission by the property owner (shown on Figure 2, in Item 2 of Schedule A of this Permit).
 - c) The monitoring wells named AM1b, AMX-R, TW1-1, OW4-1, OW4-2, OW5-1, OW5-2, OW5-3, OW6-1, OW6-2, OW6-3, OW7-1, OW7-2, OW7-3, OW8-1, OW8-2, OW8-3, OW9-1, OW9-2, and Bored Well (shown on Figure 2 in Item 2 of Schedule A of this Permit).
 - d) The City of Kwartha Lakes monitoring wells CKL-1 and CKL-2, if granted permission by the property owner .

The Permit Holder may suspend monthly water level monitoring under Condition 4.3 for the months of January and/or February if no water is taken from the quarry on those months.

- 4.4 The Permit Holder shall, if granted permission by the property owner, measure and record static water levels in the residential wells named DW6, DW7, and DW8, as shown on Figure 2 in Item 2 of Schedule A of this Permit, at least once in every two (2) month period during which water is taken from the quarry. The Permit Holder may suspend monthly water level monitoring under Condition 4.4 for the months of January and/or February if no water is taken from the quarry on those months.
- 4.5 The Permit Holder shall, if granted permission by the property owner, on a semi-annual basis collect raw water samples from the residential wells named DW1, DW2, and the well identified in condition 4.2(a). Each sample shall be tested, at a minimum, for the parameters listed in Table 1 below:

pH	Sulphate	DOC	Copper					
Alkalinity (CaCO3)	Magnesium	Colour	Iron					
Bicarbonate	Calcium	Turbidity	Lead					
Conductivity	Sodium	Aluminium	Manganese					
Fluoride	Potassium	Arsenic	Selenium					
Chloride	Ammonia (N)	Barium	Zinc					
Nitrate	Phosphate	Boron	Hardness (CaCO3)					
Nitrite	Phosphorus	Cadmium	TDS (iron sum calc.)					
Chromium	Anion Sum	Ion Ratio	Langelier Index					
Tannins	Cation Sum	% Difference						

Table 1: Water Quality Parameters for Residential Wells

The Permit Holder shall immediately report to the respective well owner, the Director, and District Office any sampling result that exceeds the Ontario Drinking Water Quality Standards as prescribed by O.Reg. 169/03, as amended.

4.6 The Permit Holder shall on a semi-annual basis conduct the groundwater quality monitoring from the on-site groundwater monitors listed in Table 2. Each sample shall be tested, at a minimum, for the parameters listed in Table 3.

1a	Table 2: On-Site Groundwater Monitors for Water Quality Sampling								
Al	M1b	OW4-I	OW5-III	OW8-I					
Al	MX-R	OW4-II	OW6-II	OW8-II					
T١	W1-1	OW5-I	OW7-I	OW9-I					
Bo	ored Well	OW5-II	OW7-II	OW9-II					

Table 5. Water Quality Farameters for On-Site Oroundwater Monitors								
pH	Magnesium		Conductivity					
Alkalinity	Calcium	Nitrate	DOC					
Bicarbonate	Sodium	Nitrite	Colour					
Fluoride	Potassium	Phosphate	TDS					
Chloride	Ammonia	Phosphorus	Hardness					

Table 3. Water Quality Parameters for On-Site Groundwater Monitors

- 4.7 The Permit Holder shall notify the Director, in writing, within 30 days if the groundwater level or groundwater quality monitoring of any well listed under conditions 4.2, 4.3, 4.4, 4.5, and 4.6 is not possible, including being denied access to a private well. In the event of damage or loss of any monitoring well, monitoring devices or related equipment, the Permit Holder shall be allowed 30 calendar days from the date of discovery of the occurrence to repair or replace equipment. If a well is too damaged to be repaired or monitored, or if the well is deemed unsafe to be monitored, then the Director will decide if a replacement well is required and will modify the appropriate monitoring conditions in a written letter to the Permit Holder.
- 4.8 The Permit Holder shall maintain a record of all water takings. This record shall include the dates and times of water takings, and the total measured or calculated amounts for water pumped per day for each day that water is taken under the authorization of this Permit.
- 4.9 The Permit Holder shall keep all required records up to date and available at or near the site of the taking and shall produce the records immediately for inspection by a Provincial Officer upon his or her request.
- 4.10 The Permit Holder shall provide to the Director an annual monitoring report no later than March 1 each year during the life of this Permit. The annual monitoring report shall be prepared by an individual with P.Geo. or equivalent qualifications and shall include, at a minimum:
 - The review and assessment of all monitoring data required by this Permit. a)
 - An up-date of the quarry operations and predicted quarrying and dewatering for b) the next twelve (12) months.

- c) An assessment of the groundwater trends using the on-site on off-site monitoring data. This analysis should state the actual impact area of quarry dewatering and determine the potential for off-site impacts. If any impacts are predicted then a detailed mitigation plan shall be included within this report.
- d) Analysis that includes amount of water pumped, precipitation data, and an estimate of how much groundwater was pumped versus surface water.
- e) Figures that include site maps with current quarry depths, groundwater contour maps, impact area of quarry dewatering, groundwater elevation graphs, and geological cross-sections.
- f) Any groundwater interference complaints.
- g) Description of all communication with the public.
- h) Conclusions and recommendations, if any, to improve the monitoring and reporting at the site.

An electronic copy of the data collected must also accompany the report.

- 4.11 The Permit Holder shall make available on a publicly-accessible site on the internet the water quality and quantity data that it is required to monitor and record under this Permit and O.Reg. 387/04, as amended, and a copy of every report that is required to be prepared under this Permit. For greater clarity, the Permit Holder shall not publish any personal information as defined by the *Freedom of Information and Protection of Privacy Act*, R.S.O. 1990, c. F.31, as amended.
- 4.12 The Permit Holder shall maintain a Public Liaison Committee ("PLC") comprised of not more than seven (7) members that will meet at least once every four (4) months, unless the majority of the PLC decide that more or less frequent meetings are required. The PLC shall be comprised of: two (2) members appointed by the Permit Holder one of whom shall act as Chairperson; one (1) member from each of the Township and the County, if they wish to have representatives; and three (3) members appointed by the public, if they wish to have representatives, who must be permanent residents within a 3 kilometre radius of the quarry property. The PLC shall serve in an advisory / community liaison role and shall have no powers to direct the Permit Holder or the Ministry.
- 4.13 Any request for an amendment or renewal of this Permit must be accompanied by a report prepared by an individual with P.Geo. or equivalent qualifications and shall include, at a minimum:
 - a) The review and assessment of all monitoring data required by this Permit.
 - b) An up-date of the quarry operations and predicted quarrying and dewatering for the duration of the requested permit.
 - c) An assessment of the groundwater trends using the on-site on off-site monitoring data. This analysis should state the actual impact area of quarry dewatering and determine the potential for off-site impacts. If any impacts are predicted then a detailed mitigation plan shall be included within this report.
 - d) Analysis that includes amount of water pumped, precipitation data, and an estimate of how much groundwater was pumped versus surface water.

- e) Figures that include site maps with current quarry depths, groundwater contour maps, impact area of quarry dewatering, groundwater elevation graphs, and geological cross-sections.
- f) Any groundwater interference complaints.
- g) Description of all communication with the public.
- h) Conclusions and recommendations, if any, to improve the monitoring and reporting at the site.

An electronic copy of the data collected must also accompany the report. Any application for renewal of this Permit must be submitted to the Ministry at least ninety (90) days prior to the expiry of this Permit.

4.14 The Permit Holder shall, as directed by the Ministry, participate in a cumulative impact assessment for the Carden Plain Area with other quarry operators who have been issued a permit to take water in this area.

5. Impacts of the Water Taking

5.1 Notification

The Permit Holder shall immediately notify the local District Office of any complaint arising from the taking of water authorized under this Permit and shall report any action which has been taken or is proposed with regard to such complaint. The Permit Holder shall immediately notify the local District Office if the taking of water is observed to have any significant impact on the surrounding waters. After hours, calls shall be directed to the Ministry's Spills Action Centre at 1-800-268-6060.

5.2 For Groundwater Takings

If the taking of water is observed to cause any negative impact to other water supplies obtained from any adequate sources that were in use prior to initial issuance of a Permit for this water taking, the Permit Holder shall take such action necessary to make available to those affected, a supply of water equivalent in quantity and quality to their normal takings, or shall compensate such persons for their reasonable costs of so doing, or shall reduce the rate and amount of taking to prevent or alleviate the observed negative impact. Pending permanent restoration of the affected supplies, the Permit Holder shall provide, to those affected, temporary water supplies adequate to meet their normal requirements, or shall compensate such persons for their reasonable costs of doing so.

If permanent interference is caused by the water taking, the Permit Holder shall restore the water supplies of those permanently affected.

- 5.2.1 Where the water supply provided by the well known by MOE Water Well Record Number 5727662 is restored in accordance with Condition 5.2, the Permit Holder shall restore the supply in a manner satisfactory to the Director, taking into account the residential needs, requirements and preferences of the persons serviced by the well.
- 5.3 Upon the receipt of a groundwater interference complaint, the Permit Holder shall:

- a) Implement the McCarthy Quarry Complaint Resolution Process as described in Item 3 of Schedule A of this Permit.
- b) In addition, appropriate notification and actions must be taken as described in conditions 5.1 and 5.2 of this Permit. The provisions of conditions 5.1 and 5.2 shall take precedence over the provisions of condition 5.3(a) if there is a conflict.

6. Director May Amend Permit

The Director may amend this Permit by letter requiring the Permit Holder to suspend or reduce the taking to an amount or threshold specified by the Director in the letter. The suspension or reduction in taking shall be effective immediately and may be revoked at any time upon notification by the Director. This condition does not affect your right to appeal the suspension or reduction in taking to the Environmental Review Tribunal under the *Ontario Water Resources Act*, Section 100 (4).

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is included to ensure that the conditions in this Permit are complied with and can be enforced.
- 2. Condition 2 is included to clarify the legal interpretation of aspects of this Permit.
- 3. Conditions 3 through 6 are included to protect the quality of the natural environment so as to safeguard the ecosystem and human health and foster efficient use and conservation of waters. These conditions allow for the beneficial use of waters while ensuring the fair sharing, conservation and sustainable use of the waters of Ontario. The conditions also specify the water takings that are authorized by this Permit and the scope of this Permit.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, you may by written notice served upon me, the Environmental Review Tribunal and the Minister of the Environment, Conservation and Parks, within 15 days after receipt of this Notice, require a hearing by the Tribunal. The Minister of the Environment, Conservation and Parks will place notice of your appeal on the Environmental Registry. Section 101 of the <u>Ontario Water Resources Act</u>, as amended provides that the Notice requiring a hearing shall state:

- 1. The portions of the Permit or each term or condition in the Permit in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

In addition to these legal requirements, the Notice should also include:

- a. The name of the appellant;
- b. The address of the appellant;
- c. The Permit to Take Water number;
- d. The date of the Permit to Take Water;
- e. The name of the Director;
- f. The municipality within which the works are located;

This notice must be served upon:

The Secretary Environmental Review Tribunal 655 Bay Street, 15th Floor Toronto ON M5G 1E5 Fax: (416) 326-5370 Email: ERTTribunalsecretary@ontario.ca	<u>AND</u>	The Minister of the Environment, Conservation and Parks 777 Bay Street, 5th Floor Toronto, Ontario M7J 2J3	<u>AND</u>	The Director, Section 34.1, Ministry of the Environment, Conservation and Parks 8th Floor 5775 Yonge St Toronto ON M2M 4J1 Fax: (416) 325-6347
---	------------	--	------------	--

Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal:

by Telephone at	by Fax at	by e-mail at
(416) 212-6349	(416) 326-5370	www.ert.gov.on.ca
Toll Free 1(866) 448-2248	Toll Free 1(844) 213-3474	

This instrument is subject to Section 38 of the **Environmental Bill of Rights** that allows residents of Ontario to seek leave to appeal the decision on this instrument. Residents of Ontario may seek to appeal for 15 days from the date this decision is placed on the Environmental Registry. By accessing the Environmental Registry, you can determine when the leave to appeal period ends.

This Permit cancels and replaces Permit Number 7818-9QJNL4, issued on 2014/12/30.

Dated at Toronto this 31st day of January, 2020.

Allen Durgf l

Ellen Klupfel Director, Section 34.1 Ontario Water Resources Act, R.S.O. 1990

Schedule A

This Schedule "A" forms part of Permit To Take Water 1603-BKTPQH, dated January 31, 2020.

1. Permit to Take Water Application, dated October 23, 2019 and signed by Jenny Coco.

2. Golder Associates Ltd. (November 1, 2019). Hydrogeological Assessment, Permit to Take Water Renewal, McCarthy Quarry.

APPENDIX C (ON CD)

Water Quality Results

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 734802-01-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/01/16 Report #: R6038875 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C007448

Received: 2020/01/10, 09:10

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/01/14	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/01/14	2020/01/14	CAM SOP-00326	EPA1664B m,SM5520A m
рН	1	2020/01/14	2020/01/14	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/01/15	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/01/14	2020/01/14	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/01/14	2020/01/15	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 734802-01-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/01/16 Report #: R6038875 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C007448 Received: 2020/01/10, 09:10

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

BV Labs ID			LSZ226					
Sampling Data			2020/01/09					
Sampling Date			15:33					
COC Number			734802-01-01					
	UNITS	Criteria	POND	RDL	QC Batch			
Calculated Parameters								
Total Animal/Vegetable Oil and Grease	mg/L	-	<0.50	0.50	6536712			
Inorganics								
рН	рН	6.5:8.5	7.53	N/A	6537089			
Phenols-4AAP	mg/L	0.001	<0.0010	0.0010	6538704			
Total Suspended Solids	mg/L	-	2	1	6538343			
Petroleum Hydrocarbons								
Total Oil & Grease	mg/L	-	<0.50	0.50	6537149			
Total Oil & Grease Mineral/Synthetic	mg/L	0.5	<0.50	0.50	6537150			
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch	QC Batch = Quality Control Batch							
Criteria: Ontario Provincial Water Quality Objectives								
Ref. to MOEE Water Management docum	nent dat	ed Feb.19	999					
N/A = Not Applicable								

Page 3 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each te	Each temperature is the average of up to three cooler temperatures taken at receipt						
	Package 1	11.0°C					

Sample LSZ226 [POND] : Analysis completed as per client request.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6537089	KAD	Spiked Blank	рН	2020/01/14		101	%	98 - 103
6537089	KAD	RPD	рН	2020/01/14	0.12		%	N/A
6537149	GSG	Spiked Blank	Total Oil & Grease	2020/01/14		98	%	85 - 115
6537149	GSG	RPD	Total Oil & Grease	2020/01/14	1.8		%	25
6537149	GSG	Method Blank	Total Oil & Grease	2020/01/14	<0.50		mg/L	
6537150	GSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/01/14		95	%	85 - 115
6537150	GSG	RPD	Total Oil & Grease Mineral/Synthetic	2020/01/14	3.8		%	25
6537150	GSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/01/14	<0.50		mg/L	
6538343	SDE	QC Standard	Total Suspended Solids	2020/01/15		98	%	85 - 115
6538343	SDE	Method Blank	Total Suspended Solids	2020/01/15	<1		mg/L	
6538343	SDE	RPD	Total Suspended Solids	2020/01/15	13		%	25
6538704	BMO	Matrix Spike	Phenols-4AAP	2020/01/15		97	%	80 - 120
6538704	BMO	Spiked Blank	Phenols-4AAP	2020/01/15		99	%	80 - 120
6538704	BMO	Method Blank	Phenols-4AAP	2020/01/15	<0.0010		mg/L	
6538704	BMO	RPD	Phenols-4AAP	2020/01/15	0		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Service Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 752753-01-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/03/11 Report #: R6106341 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C061052

Received: 2020/03/06, 08:48

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/03/11	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/03/11	2020/03/11	CAM SOP-00326	EPA1664B m,SM5520A m
рН	1	2020/03/07	2020/03/09	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/03/09	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/03/11	2020/03/11	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/03/07	2020/03/09	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 752753-01-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/03/11 Report #: R6106341 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C061052 Received: 2020/03/06, 08:48

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

BV Labs ID			MEJ107				
Sampling Data			2020/03/05				
Sampling Date			11:44				
COC Number			752753-01-01				
	UNITS	Criteria	POND	RDL	QC Batch		
Calculated Parameters							
Total Animal/Vegetable Oil and Grease	mg/L	-	<0.50	0.50	6622743		
Inorganics							
рН	рН	6.5:8.5	7.54	N/A	6624695		
Phenols-4AAP	mg/L	0.001	0.0010	0.0010	6625508		
Total Suspended Solids	mg/L	-	3	1	6624723		
Petroleum Hydrocarbons							
Total Oil & Grease	mg/L	-	<0.50	0.50	6629669		
Total Oil & Grease Mineral/Synthetic	mg/L	0.5	<0.50	0.50	6629673		
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							
Criteria: Ontario Provincial Water Quality Objectives							
Ref. to MOEE Water Management docum	nent dat	ed Feb.19	999				
N/A = Not Applicable							

Page 3 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 12.7°C

Results relate only to the items tested.

Page 4 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

6624695 SAU Spiked Blank pH 2020/03/09 101 % 98- 6624695 SAU RPD pH 2020/03/09 0.57 % N, 6624695 SAU RPD pH 2020/03/09 0.57 % N, 6624723 MKX QC Standard Total Suspended Solids 2020/03/09 102 % 85 - 6624723 MKX Method Blank Total Suspended Solids 2020/03/09 15 % 2 6624723 MKX RPD Total Suspended Solids 2020/03/09 15 % 2 6625508 BMO Matrix Spike Phenols-4AAP 2020/03/09 101 % 80 - 6625508 BMO Spiked Blank Phenols-4AAP 2020/03/09 0 mg/L 6625508 BMO Method Blank Phenols-4AAP 2020/03/09 0 % 2 6625508 BMO RPD Phenols-4AAP 2020/03/09 0 % 2 6629669 FA Spiked Blank Total Oil & Grease	QA/QC								
6624695SAURPDpH2020/03/090.57%N,6624723MKXQC StandardTotal Suspended Solids2020/03/09102%85 -6624723MKXMethod BlankTotal Suspended Solids2020/03/09<1	Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6624723MKXQC StandardTotal Suspended Solids2020/03/09102%856624723MKXMethod BlankTotal Suspended Solids2020/03/091mg/L6624723MKXRPDTotal Suspended Solids2020/03/0915%26625508BMOMatrix SpikePhenols-4AAP2020/03/0997%806625508BMOSpiked BlankPhenols-4AAP2020/03/09101%806625508BMOMethod BlankPhenols-4AAP2020/03/09<0.0010	6624695	SAU	Spiked Blank	рН	2020/03/09		101	%	98 - 103
6624723MKXMethod BlankTotal Suspended Solids2020/03/09<1mg/L6624723MKXRPDTotal Suspended Solids2020/03/0915%26625708BMOMatrix SpikePhenols-4AAP2020/03/09101%80 -6625508BMOSpiked BlankPhenols-4AAP2020/03/09101%80 -6625508BMOMethod BlankPhenols-4AAP2020/03/09<0.0010	6624695	SAU	RPD	рН	2020/03/09	0.57		%	N/A
6624723MKXRPDTotal Suspended Solids2020/03/0915%26625508BMOMatrix SpikePhenols-4AAP2020/03/0997%80 -6625508BMOSpiked BlankPhenols-4AAP2020/03/09101%80 -6625508BMOMethod BlankPhenols-4AAP2020/03/09<0.0010	6624723	MKX	QC Standard	Total Suspended Solids	2020/03/09		102	%	85 - 115
6625508BMOMatrix SpikePhenols-4AAP2020/03/0997%806625508BMOSpiked BlankPhenols-4AAP2020/03/09101%806625508BMOMethod BlankPhenols-4AAP2020/03/09<0.0010	6624723	MKX	Method Blank	Total Suspended Solids	2020/03/09	<1		mg/L	
6625508 BMO Spiked Blank Phenols-4AAP 2020/03/09 101 % 80 - 6625508 BMO Method Blank Phenols-4AAP 2020/03/09 <0.0010	6624723	MKX	RPD	Total Suspended Solids	2020/03/09	15		%	25
6625508 BMO Method Blank Phenols-4AAP 2020/03/09 <0.0010 mg/L 6625508 BMO RPD Phenols-4AAP 2020/03/09 0 % 2 6625608 FA Spiked Blank Total Oil & Grease 2020/03/11 94 % 85 - 6629669 FA RPD Total Oil & Grease 2020/03/11 4.4 % 2 6629669 FA Method Blank Total Oil & Grease 2020/03/11 4.4 % 2 6629673 FA Spiked Blank Total Oil & Grease Mineral/Synthetic 2020/03/11 <0.50	6625508	BMO	Matrix Spike	Phenols-4AAP	2020/03/09		97	%	80 - 120
6625508 BMO RPD Phenols-4AAP 2020/03/09 0 % 2 6629669 FA Spiked Blank Total Oil & Grease 2020/03/11 94 % 85 - 6629669 FA RPD Total Oil & Grease 2020/03/11 4.4 % 2 6629669 FA Method Blank Total Oil & Grease 2020/03/11 <0.50	6625508	BMO	Spiked Blank	Phenols-4AAP	2020/03/09		101	%	80 - 120
6629669 FA Spiked Blank Total Oil & Grease 2020/03/11 94 % 85 - 6629669 FA RPD Total Oil & Grease 2020/03/11 4.4 % 2 6629669 FA Method Blank Total Oil & Grease 2020/03/11 <0.50	6625508	BMO	Method Blank	Phenols-4AAP	2020/03/09	<0.0010		mg/L	
6629669 FA RPD Total Oil & Grease 2020/03/11 4.4 % 2 6629669 FA Method Blank Total Oil & Grease 2020/03/11 <0.50	6625508	BMO	RPD	Phenols-4AAP	2020/03/09	0		%	20
6629669 FA Method Blank Total Oil & Grease 2020/03/11 <0.50 mg/L 6629673 FA Spiked Blank Total Oil & Grease Mineral/Synthetic 2020/03/11 92 % 85 - 6629673 FA RPD Total Oil & Grease Mineral/Synthetic 2020/03/11 2.2 % 2	6629669	FA	Spiked Blank	Total Oil & Grease	2020/03/11		94	%	85 - 115
6629673 FA Spiked Blank Total Oil & Grease Mineral/Synthetic 2020/03/11 92 % 85 - 6629673 FA RPD Total Oil & Grease Mineral/Synthetic 2020/03/11 2.2 % 2	6629669	FA	RPD	Total Oil & Grease	2020/03/11	4.4		%	25
6629673 FA RPD Total Oil & Grease Mineral/Synthetic 2020/03/11 2.2 % 2	6629669	FA	Method Blank	Total Oil & Grease	2020/03/11	<0.50		mg/L	
	6629673	FA	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/03/11		92	%	85 - 115
6629673 FA Method Blank Total Oil & Grease Mineral/Synthetic 2020/03/11 <0.50 mg/L	6629673	FA	RPD	Total Oil & Grease Mineral/Synthetic	2020/03/11	2.2		%	25
	6629673	FA	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/03/11	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 1407634 Site Location: MCCARTHY Your C.O.C. #: 766888-01-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/04/27 Report #: R6156884 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C096446

Received: 2020/04/17, 08:56

Sample Matrix: Surface Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/04/27	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/04/27	2020/04/27	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/04/21	2020/04/21	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/04/22	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/04/27	2020/04/27	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/04/21	2020/04/22	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Site Location: MCCARTHY Your C.O.C. #: 766888-01-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/04/27 Report #: R6156884 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C096446 Received: 2020/04/17, 08:56

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com

Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF SURFACE WATER

BV Labs ID			MLV045						
Sampling Date			2020/04/16 09:45						
COC Number			766888-01-01						
	UNITS	Criteria	POND	RDL	QC Batch				
Calculated Parameters									
Total Animal/Vegetable Oil and Grease	mg/L	-	<0.50	0.50	6688099				
Inorganics									
рН	рН	6.5:8.5	7.86	N/A	6690434				
Phenols-4AAP	0.001	<0.0010	0.0010	6691711					
Total Suspended Solids	mg/L	-	3	1	6690045				
Petroleum Hydrocarbons	•		•						
Total Oil & Grease	Total Oil & Grease mg/L - <0.50 0.50 66987								
Total Oil & Grease Mineral/Synthetic mg/L 0.5 <0.50 0.50 6698754									
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Criteria: Ontario Provincial Water Quality Objectives									
Ref. to MOEE Water Management document dated Feb.1999									
N/A = Not Applicable									

GENERAL COMMENTS

Each te	emperature is the	average of up to t	nree cooler temperatures taken at receipt						
	Package 1	10.0°C]						
			-						
Result	Results relate only to the items tested.								

Page 4 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6690045	JS7	QC Standard	Total Suspended Solids	2020/04/22		95	%	85 - 115
6690045	JS7	Method Blank	Total Suspended Solids	2020/04/22	<1		mg/L	
6690045	JS7	RPD	Total Suspended Solids	2020/04/22	NC		%	25
6690434	YPA	Spiked Blank	рН	2020/04/21		101	%	98 - 103
6690434	YPA	RPD	рН	2020/04/21	2.0		%	N/A
6691711	BMO	Matrix Spike	Phenols-4AAP	2020/04/22		100	%	80 - 120
6691711	BMO	Spiked Blank	Phenols-4AAP	2020/04/22		100	%	80 - 120
6691711	BMO	Method Blank	Phenols-4AAP	2020/04/22	<0.0010		mg/L	
6691711	BMO	RPD	Phenols-4AAP	2020/04/22	NC		%	20
6698753	GSG	Spiked Blank	Total Oil & Grease	2020/04/27		98	%	85 - 115
6698753	GSG	RPD	Total Oil & Grease	2020/04/27	1.8		%	25
6698753	GSG	Method Blank	Total Oil & Grease	2020/04/27	<0.50		mg/L	
6698754	GSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/04/27		95	%	85 - 115
6698754	GSG	RPD	Total Oil & Grease Mineral/Synthetic	2020/04/27	3.2		%	25
6698754	GSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/04/27	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Page 6 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Site Location: MCCARTHY Your C.O.C. #: 762593-06-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/05/04 Report #: R6163763 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: COA1936

Received: 2020/04/24, 09:23

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/05/04	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/05/04	2020/05/04	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/04/30	2020/04/30	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/04/28	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/05/04	2020/05/04	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/04/29	2020/04/29	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Site Location: MCCARTHY Your C.O.C. #: 762593-06-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/05/04 Report #: R6163763 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0A1936 Received: 2020/04/24, 09:23

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

BV Labs ID			MMW353				
Sampling Data			2020/04/23				
Sampling Date			14:00				
COC Number			762593-06-01				
	UNITS	Criteria	POND	RDL	QC Batch		
Calculated Parameters							
Total Animal/Vegetable Oil and Grease	mg/L	-	<0.50	0.50	6695786		
Inorganics							
рН	рН	6.5:8.5	8.11	N/A	6704117		
Phenols-4AAP	mg/L	0.001	<0.0010	0.0010	6698448		
Total Suspended Solids	mg/L	-	8	1	6700324		
Petroleum Hydrocarbons							
Total Oil & Grease	mg/L	-	<0.50	0.50	6708525		
Total Oil & Grease Mineral/Synthetic	mg/L	0.5	<0.50	0.50	6708528		
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							
Criteria: Ontario Provincial Water Quality	Criteria: Ontario Provincial Water Quality Objectives						
Ref. to MOEE Water Management docum	nent dat	ed Feb.19	999				
N/A = Not Applicable							

Page 3 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 12.3°C

Results relate only to the items tested.

Page 4 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6698448	BMO	Matrix Spike	Phenols-4AAP	2020/04/27		95	%	80 - 120
6698448	BMO	Spiked Blank	Phenols-4AAP	2020/04/27		95	%	80 - 120
6698448	BMO	Method Blank	Phenols-4AAP	2020/04/27	<0.0010		mg/L	
6698448	BMO	RPD	Phenols-4AAP	2020/04/27	NC		%	20
6700324	JS7	QC Standard	Total Suspended Solids	2020/04/29		100	%	85 - 115
6700324	JS7	Method Blank	Total Suspended Solids	2020/04/29	<1		mg/L	
6700324	JS7	RPD	Total Suspended Solids	2020/04/29	NC		%	25
6704117	SAU	Spiked Blank	рН	2020/04/30		102	%	98 - 103
6704117	SAU	RPD	рН	2020/04/30	0.0077		%	N/A
6708525	GSG	Spiked Blank	Total Oil & Grease	2020/05/04		99	%	85 - 115
6708525	GSG	RPD	Total Oil & Grease	2020/05/04	2.3		%	25
6708525	GSG	Method Blank	Total Oil & Grease	2020/05/04	<0.50		mg/L	
6708528	GSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/05/04		98	%	85 - 115
6708528	GSG	RPD	Total Oil & Grease Mineral/Synthetic	2020/05/04	5.2		%	25
6708528	GSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/05/04	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Service Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 1407634 Site Location: MCCARTHY Your C.O.C. #: 752753-04-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/05/09 Report #: R6169339 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: COA7320

Received: 2020/05/01, 09:05

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/05/09	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/05/09	2020/05/09	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/05/05	2020/05/05	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/05/05	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/05/09	2020/05/09	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/05/05	2020/05/06	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Site Location: MCCARTHY Your C.O.C. #: 752753-04-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/05/09 Report #: R6169339 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0A7320 Received: 2020/05/01, 09:05

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

BV Labs ID			MNX540		
Sampling Date			2020/04/30 10:05		
COC Number			752753-04-01		
	UNITS	Criteria	POND	RDL	QC Batch
Calculated Parameters					
Total Animal/Vegetable Oil and Grease	mg/L	-	<0.50	0.50	6708580
Inorganics					
рН	рН	6.5:8.5	7.88	N/A	6710330
Phenols-4AAP	mg/L	0.001	<0.0010	0.0010	6709948
Total Suspended Solids	mg/L	-	37	1	6710372
Petroleum Hydrocarbons	•		•		
Total Oil & Grease	mg/L	-	<0.50	0.50	6717581
Total Oil & Grease Mineral/Synthetic	mg/L	0.5	<0.50	0.50	6717582
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					
Criteria: Ontario Provincial Water Quality					
Ref. to MOEE Water Management docum	nent dat	ed Feb.19	999		
N/A = Not Applicable					

Page 3 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each te	emperature is the a	verage of up to th	ree cooler temperatures taken at receipt
	Package 1	13.0°C	
		•	
Results	s relate only to the	items tested.	

Page 4 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6709948	BMO	Matrix Spike	Phenols-4AAP	2020/05/05		97	%	80 - 120
6709948	BMO	Spiked Blank	Phenols-4AAP	2020/05/05		99	%	80 - 120
6709948	BMO	Method Blank	Phenols-4AAP	2020/05/05	< 0.0010		mg/L	
6709948	BMO	RPD	Phenols-4AAP	2020/05/05	NC		%	20
6710330	GTO	Spiked Blank	рН	2020/05/05		99	%	98 - 103
6710330	GTO	RPD	рН	2020/05/05	0.34		%	N/A
6710372	JS7	QC Standard	Total Suspended Solids	2020/05/06		98	%	85 - 115
6710372	JS7	Method Blank	Total Suspended Solids	2020/05/06	<1		mg/L	
6710372	JS7	RPD	Total Suspended Solids	2020/05/06	NC		%	25
6717581	GSG	Spiked Blank	Total Oil & Grease	2020/05/09		99	%	85 - 115
6717581	GSG	RPD	Total Oil & Grease	2020/05/09	1.8		%	25
6717581	GSG	Method Blank	Total Oil & Grease	2020/05/09	<0.50		mg/L	
6717582	GSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/05/09		97	%	85 - 115
6717582	GSG	RPD	Total Oil & Grease Mineral/Synthetic	2020/05/09	4.8		%	25
6717582	GSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/05/09	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Page 6 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Site#: McCarthy Your C.O.C. #: 762593-04-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/05/15 Report #: R6175746 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: COB3277

Received: 2020/05/08, 09:33

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/05/14	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/05/14	2020/05/14	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/05/12	2020/05/12	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/05/12	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/05/14	2020/05/14	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/05/12	2020/05/13	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Site#: McCarthy Your C.O.C. #: 762593-04-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/05/15 Report #: R6175746 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0B3277 Received: 2020/05/08, 09:33

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

BV Labs ID			MPB379		
Sampling Date			2020/05/07 14:03		
COC Number			762593-04-01		
	UNITS	Criteria	POND	RDL	QC Batch
Calculated Parameters					
Total Animal/Vegetable Oil and Grease	mg/L	-	<0.50	0.50	6717887
Inorganics					
рН	рН	6.5:8.5	8.00	N/A	6720542
Phenols-4AAP	mg/L	0.001	<0.0010	0.0010	6720126
Total Suspended Solids	mg/L	-	19	1	6720573
Petroleum Hydrocarbons			-		
Total Oil & Grease	mg/L	-	<0.50	0.50	6725800
Total Oil & Grease Mineral/Synthetic	mg/L	0.5	<0.50	0.50	6725802
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					
Criteria: Ontario Provincial Water Quality	/ Objecti	ives			
Ref. to MOEE Water Management docun	nent dat	ed Feb.19	999		
N/A = Not Applicable					

Page 3 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each t	emperature is the ave	erage of up to th	ree cooler temperatures taken at receipt
	Package 1	13.3°C	
	-		
Result	s relate only to the it	ems tested.	

Page 4 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6720126	BMO	Matrix Spike	Phenols-4AAP	2020/05/12		96	%	80 - 120
6720126	BMO	Spiked Blank	Phenols-4AAP	2020/05/12		97	%	80 - 120
6720126	BMO	Method Blank	Phenols-4AAP	2020/05/12	<0.0010		mg/L	
6720126	BMO	RPD	Phenols-4AAP	2020/05/12	NC		%	20
6720542	GTO	Spiked Blank	рН	2020/05/12		100	%	98 - 103
6720542	GTO	RPD	рН	2020/05/12	0.52		%	N/A
6720573	JS7	QC Standard	Total Suspended Solids	2020/05/13		95	%	85 - 115
6720573	JS7	Method Blank	Total Suspended Solids	2020/05/13	<1		mg/L	
6720573	JS7	RPD	Total Suspended Solids	2020/05/13	7.4		%	25
6725800	KRW	Spiked Blank	Total Oil & Grease	2020/05/14		98	%	85 - 115
6725800	KRW	RPD	Total Oil & Grease	2020/05/14	3.4		%	25
6725800	KRW	Method Blank	Total Oil & Grease	2020/05/14	<0.50		mg/L	
6725802	KRW	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/05/14		91	%	85 - 115
6725802	KRW	RPD	Total Oil & Grease Mineral/Synthetic	2020/05/14	5.4		%	25
6725802	KRW	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/05/14	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 1407634 Your C.O.C. #: 772251-02-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/05/22 Report #: R6182339 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0B9782

Received: 2020/05/15, 09:52

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/05/21	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/05/21	2020/05/21	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/05/21	2020/05/21	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/05/20	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/05/21	2020/05/21	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/05/20	2020/05/21	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Your C.O.C. #: 772251-02-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/05/22 Report #: R6182339 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0B9782 Received: 2020/05/15, 09:52

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

		MQM041		MQM041				
		2020/05/14 10:30		2020/05/14 10:30				
		772251-02-01		772251-02-01				
UNITS	Criteria	POND	RDL	POND Lab-Dup	QC Batch			
mg/L	-	<0.50	0.50	N/A	6729239			
рН	6.5:8.5	8.13	N/A	8.25	6734007			
mg/L	0.001	<0.0010	0.0010	N/A	6732033			
mg/L	-	2	1	N/A	6732079			
mg/L	-	<0.50	0.50	N/A	6734179			
mg/L	0.5	<0.50	0.50	N/A	6734180			
Lab-Dup = Laboratory Initiated Duplicate								
Criteria: Ontario Provincial Water Quality Objectives Ref. to MOEE Water Management document dated Feb.1999 N/A = Not Applicable								
	mg/L pH mg/L mg/L mg/L mg/L	pH 6.5:8.5 mg/L 0.001 mg/L - mg/L - mg/L 0.5	Markov 2020/05/14 10:30 772251-02-01 UNITS Criteria POND mg/L - <0.50	2020/05/14 10:30 2020/05/14 10:30 10:30 772251-02-01 UNITS Criteria POND RDL mg/L - <0.50 0.50 pH 6.5:8.5 8.13 N/A mg/L 0.001 <0.0010 0.0010 mg/L - 2 1 mg/L - <0.50 0.50 mg/L - <0.50 0.50 objectives Objectives	2020/05/14 10:30 2020/05/14 10:30 772251-02-01 772251-02-01 UNITS Criteria POND RDL POND Lab-Dup mg/L - <0.50			

Page 3 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	4.7°C
Package 2	3.3°C
Package 3	4.3°C

Results relate only to the items tested.

Page 4 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6732033	BMO	Matrix Spike	Phenols-4AAP	2020/05/20		93	%	80 - 120
6732033	BMO	Spiked Blank	Phenols-4AAP	2020/05/20		96	%	80 - 120
6732033	BMO	Method Blank	Phenols-4AAP	2020/05/20	<0.0010		mg/L	
6732033	BMO	RPD	Phenols-4AAP	2020/05/20	NC		%	20
6732079	JS7	QC Standard	Total Suspended Solids	2020/05/21		96	%	85 - 115
6732079	JS7	Method Blank	Total Suspended Solids	2020/05/21	<1		mg/L	
6732079	JS7	RPD	Total Suspended Solids	2020/05/21	NC		%	25
6734007	GTO	Spiked Blank	рН	2020/05/21		99	%	98 - 103
6734007	GTO	RPD [MQM041-03]	рН	2020/05/21	1.4		%	N/A
6734179	KK4	Spiked Blank	Total Oil & Grease	2020/05/21		94	%	85 - 115
6734179	KK4	RPD	Total Oil & Grease	2020/05/21	1.8		%	25
6734179	KK4	Method Blank	Total Oil & Grease	2020/05/21	<0.50		mg/L	
6734180	KK4	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/05/21		94	%	85 - 115
6734180	KK4	RPD	Total Oil & Grease Mineral/Synthetic	2020/05/21	0.53		%	25
6734180	KK4	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/05/21	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 772254-05-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/06/05 Report #: R6199226 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: COD1869

Received: 2020/05/29, 10:03

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/06/05	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/06/05	2020/06/05	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/06/03	2020/06/03	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/06/03	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/06/05	2020/06/05	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/06/03	2020/06/04	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 772254-05-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/06/05 Report #: R6199226 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0D1869 Received: 2020/05/29, 10:03

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

BV Labs ID		MTB539						
Sampling Data		2020/05/28						
Sampling Date		02:30						
COC Number		772254-05-01						
	UNITS	590331	RDL	QC Batch				
Calculated Parameters								
Total Animal/Vegetable Oil and Grease	mg/L	2.9	0.50	6765747				
Inorganics								
рН	рН	7.90	N/A	6766136				
Phenols-4AAP	mg/L	<0.0010	0.0010	6767164				
Total Suspended Solids	mg/L	11	1	6765386				
Petroleum Hydrocarbons								
Total Oil & Grease	mg/L	3.7	0.50	6771502				
Total Oil & Grease Mineral/Synthetic	mg/L	0.80	0.50	6771503				
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
N/A = Not Applicable								

Page 3 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 20.0°C

Results relate only to the items tested.

Page 4 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6765386	JS7	QC Standard	Total Suspended Solids	2020/06/04		95	%	85 - 115
6765386	JS7	Method Blank	Total Suspended Solids	2020/06/04	<1		mg/L	
6765386	JS7	RPD	Total Suspended Solids	2020/06/04	18		%	25
6766136	SAU	Spiked Blank	рН	2020/06/03		101	%	98 - 103
6766136	SAU	RPD	рН	2020/06/03	0.11		%	N/A
6767164	BMO	Matrix Spike	Phenols-4AAP	2020/06/03		96	%	80 - 120
6767164	BMO	Spiked Blank	Phenols-4AAP	2020/06/03		96	%	80 - 120
6767164	BMO	Method Blank	Phenols-4AAP	2020/06/03	< 0.0010		mg/L	
6767164	BMO	RPD	Phenols-4AAP	2020/06/03	NC		%	20
6771502	GSG	Spiked Blank	Total Oil & Grease	2020/06/05		98	%	85 - 115
6771502	GSG	RPD	Total Oil & Grease	2020/06/05	2.1		%	25
6771502	GSG	Method Blank	Total Oil & Grease	2020/06/05	<0.50		mg/L	
6771503	GSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/06/05		97	%	85 - 115
6771503	GSG	RPD	Total Oil & Grease Mineral/Synthetic	2020/06/05	4.8		%	25
6771503	GSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/06/05	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 772254-04-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/06/10 Report #: R6205041 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: COD8171

Received: 2020/06/05, 09:19

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/06/10	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/06/10	2020/06/10	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/06/05	2020/06/08	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/06/08	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/06/10	2020/06/10	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/06/08	2020/06/10	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 772254-04-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/06/10 Report #: R6205041 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0D8171 Received: 2020/06/05, 09:19

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

BV Labs ID		MUK965		
Sampling Date		2020/06/04 14:00		
COC Number		772254-04-01		
	UNITS	590331	RDL	QC Batch
Calculated Parameters				
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	0.50	6772314
Inorganics				
рН	рН	8.08	N/A	6772731
Phenols-4AAP	mg/L	<0.0010	0.0010	6774647
Total Suspended Solids	mg/L	2	1	6774004
Petroleum Hydrocarbons				
Total Oil & Grease	mg/L	<0.50	0.50	6778820
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	6778821
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable				

Page 3 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Page 4 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6772731	NYS	Spiked Blank	рН	2020/06/08		102	%	98 - 103
6772731	NYS	RPD	рН	2020/06/08	0.023		%	N/A
6774004	MJ1	QC Standard	Total Suspended Solids	2020/06/10		100	%	85 - 115
6774004	MJ1	Method Blank	Total Suspended Solids	2020/06/10	<1		mg/L	
6774004	MJ1	RPD	Total Suspended Solids	2020/06/10	18		%	25
6774647	BMO	Matrix Spike	Phenols-4AAP	2020/06/08		97	%	80 - 120
6774647	BMO	Spiked Blank	Phenols-4AAP	2020/06/08		95	%	80 - 120
6774647	BMO	Method Blank	Phenols-4AAP	2020/06/08	<0.0010		mg/L	
6774647	BMO	RPD	Phenols-4AAP	2020/06/08	NC		%	20
6778820	GSG	Spiked Blank	Total Oil & Grease	2020/06/10		99	%	85 - 115
6778820	GSG	RPD	Total Oil & Grease	2020/06/10	2.1		%	25
6778820	GSG	Method Blank	Total Oil & Grease	2020/06/10	<0.50		mg/L	
6778821	GSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/06/10		97	%	85 - 115
6778821	GSG	RPD	Total Oil & Grease Mineral/Synthetic	2020/06/10	3.2		%	25
6778821	GSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/06/10	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Page 6 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 728212-03-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/06/17 Report #: R6213420 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0E5310

Received: 2020/06/12, 09:12

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/06/17	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/06/17	2020/06/17	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/06/13	2020/06/15	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/06/15	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/06/17	2020/06/17	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/06/16	2020/06/17	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 728212-03-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/06/17 Report #: R6213420 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0E5310 Received: 2020/06/12, 09:12

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

BV Labs ID		MVY862		MVY862						
Sampling Date		2020/06/11		2020/06/11						
		11:30		11:30						
COC Number		728212-03-01		728212-03-01						
	UNITS	POND	RDL	POND Lab-Dup	QC Batch					
Calculated Parameters										
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	0.50	N/A	6785224					
Inorganics										
рН	рН	7.62	N/A	7.61	6785911					
Phenols-4AAP	mg/L	<0.0010	0.0010	N/A	6786445					
Total Suspended Solids	mg/L	5	1	N/A	6785680					
Petroleum Hydrocarbons		-		-						
Total Oil & Grease	mg/L	<0.50	0.50	N/A	6790397					
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	N/A	6790398					
RDL = Reportable Detection Limit		-		-						
QC Batch = Quality Control Batch										
Lab-Dup = Laboratory Initiated Duplicate										
N/A = Not Applicable										

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 17.7°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6785680	JS7	QC Standard	Total Suspended Solids	2020/06/17		97	%	85 - 115
6785680	JS7	Method Blank	Total Suspended Solids	2020/06/17	<1		mg/L	
6785680	JS7	RPD	Total Suspended Solids	2020/06/17	5.4		%	25
6785911	SAU	Spiked Blank	рН	2020/06/15		101	%	98 - 103
6785911	SAU	RPD [MVY862-03]	рН	2020/06/15	0.13		%	N/A
6786445	BMO	Matrix Spike	Phenols-4AAP	2020/06/15		101	%	80 - 120
6786445	BMO	Spiked Blank	Phenols-4AAP	2020/06/15		100	%	80 - 120
6786445	BMO	Method Blank	Phenols-4AAP	2020/06/15	< 0.0010		mg/L	
6786445	BMO	RPD	Phenols-4AAP	2020/06/15	NC		%	20
6790397	GSG	Spiked Blank	Total Oil & Grease	2020/06/17		97	%	85 - 115
6790397	GSG	RPD	Total Oil & Grease	2020/06/17	1.8		%	25
6790397	GSG	Method Blank	Total Oil & Grease	2020/06/17	<0.50		mg/L	
6790398	GSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/06/17		92	%	85 - 115
6790398	GSG	RPD	Total Oil & Grease Mineral/Synthetic	2020/06/17	4.8		%	25
6790398	GSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/06/17	<0.50		mg/L	
1								

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 772254-03-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/06/24 Report #: R6222243 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0F2926

Received: 2020/06/19, 09:46

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/06/24	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/06/24	2020/06/24	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/06/22	2020/06/23	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/06/23	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/06/24	2020/06/24	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/06/23	2020/06/24	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 772254-03-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/06/24 Report #: R6222243 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0F2926 Received: 2020/06/19, 09:46

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

BV Labs ID		MXN242		
Sampling Data		2020/06/18		
Sampling Date		14:30		
COC Number		772254-03-01		
	UNITS	POND	RDL	QC Batch
Calculated Parameters				
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	0.50	6795247
Inorganics				
рН	рН	8.19	N/A	6799638
Phenols-4AAP	mg/L	<0.0010	0.0010	6798084
Total Suspended Solids	mg/L	8	1	6800869
Petroleum Hydrocarbons				
Total Oil & Grease	mg/L	<0.50	0.50	6802335
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	6802336
RDL = Reportable Detection Limit		-		
QC Batch = Quality Control Batch				
N/A = Not Applicable				

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 22.0°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6798084	BMO	Matrix Spike	Phenols-4AAP	2020/06/23		105	%	80 - 120
6798084	BMO	Spiked Blank	Phenols-4AAP	2020/06/23		104	%	80 - 120
6798084	BMO	Method Blank	Phenols-4AAP	2020/06/23	< 0.0010		mg/L	
6798084	BMO	RPD	Phenols-4AAP	2020/06/23	15		%	20
6799638	SAU	Spiked Blank	рН	2020/06/23		102	%	98 - 103
6799638	SAU	RPD	рН	2020/06/23	0.93		%	N/A
6800869	JS7	QC Standard	Total Suspended Solids	2020/06/24		100	%	N/A
6800869	JS7	Method Blank	Total Suspended Solids	2020/06/24	<1		mg/L	
6800869	JS7	RPD	Total Suspended Solids	2020/06/24	0		%	25
6802335	GSG	Spiked Blank	Total Oil & Grease	2020/06/24		99	%	85 - 115
6802335	GSG	RPD	Total Oil & Grease	2020/06/24	2.3		%	25
6802335	GSG	Method Blank	Total Oil & Grease	2020/06/24	<0.50		mg/L	
6802336	GSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/06/24		97	%	85 - 115
6802336	GSG	RPD	Total Oil & Grease Mineral/Synthetic	2020/06/24	5.3		%	25
6802336	GSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/06/24	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 752753-03-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/07/06 Report #: R6235892 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0F9331

Received: 2020/06/26, 09:10

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/07/04	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/07/04	2020/07/04	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/07/02	2020/07/02	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/07/03	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/07/04	2020/07/04	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/07/02	2020/07/03	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 752753-03-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/07/06 Report #: R6235892 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0F9331 Received: 2020/06/26, 09:10

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

BV Labs ID		MYY959	MYY959		
Sampling Date		2020/06/25 13:30	2020/06/25 13:30		
COC Number		752753-03-01	752753-03-01		
	UNITS	POND	POND Lab-Dup	RDL	QC Batch
Calculated Parameters					
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	N/A	0.50	6812780
Inorganics					
рН	рН	8.10	N/A	N/A	6815381
Phenols-4AAP	mg/L	<0.0010	<0.0010	0.0010	6817198
Total Suspended Solids	mg/L	5	N/A	1	6812736
Petroleum Hydrocarbons					
Total Oil & Grease	mg/L	<0.50	N/A	0.50	6818998
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	N/A	0.50	6818999
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate N/A = Not Applicable					

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 23.0°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6812736	JS7	QC Standard	Total Suspended Solids	2020/07/03		95	%	85 - 115
6812736	JS7	Method Blank	Total Suspended Solids	2020/07/03	<1		mg/L	
6812736	JS7	RPD	Total Suspended Solids	2020/07/03	10		%	25
6815381	NYS	Spiked Blank	рН	2020/07/02		102	%	98 - 103
6815381	NYS	RPD	рН	2020/07/02	0.31		%	N/A
6817198	LHA	Matrix Spike [MYY959-04]	Phenols-4AAP	2020/07/03		94	%	80 - 120
6817198	LHA	Spiked Blank	Phenols-4AAP	2020/07/03		99	%	80 - 120
6817198	LHA	Method Blank	Phenols-4AAP	2020/07/03	<0.0010		mg/L	
6817198	LHA	RPD [MYY959-04]	Phenols-4AAP	2020/07/03	NC		%	20
6818998	GSG	Spiked Blank	Total Oil & Grease	2020/07/04		98	%	85 - 115
6818998	GSG	RPD	Total Oil & Grease	2020/07/04	1.8		%	25
6818998	GSG	Method Blank	Total Oil & Grease	2020/07/04	<0.50		mg/L	
6818999	GSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/07/04		96	%	85 - 115
6818999	GSG	RPD	Total Oil & Grease Mineral/Synthetic	2020/07/04	3.2		%	25
6818999	GSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/07/04	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 1407634 Your C.O.C. #: 772251-01-01

Attention: Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/05/25 Report #: R6185519 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0B9834

Received: 2020/05/15, 09:54

Sample Matrix: Water # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	4	N/A	2020/05/21	CAM SOP-00448	SM 23 2320 B m
Chloride by Automated Colourimetry	4	N/A	2020/05/21	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	4	N/A	2020/05/21	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	1	N/A	2020/05/21	CAM SOP-00446	SM 23 5310 B m
Dissolved Organic Carbon (DOC) (1)	3	N/A	2020/05/23	CAM SOP-00446	SM 23 5310 B m
Fluoride	4	2020/05/21	2020/05/21	CAM SOP-00449	SM 23 4500-F C m
Hardness (calculated as CaCO3)	4	N/A	2020/05/22	CAM SOP 00102/00408/00447	SM 2340 B
Lab Filtered Metals by ICPMS	4	2020/05/20	2020/05/21	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS	4	N/A	2020/05/21	CAM SOP-00447	EPA 6020B m
Anion and Cation Sum	4	N/A	2020/05/22		
Total Ammonia-N	4	N/A	2020/05/22	CAM SOP-00441	USGS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (2)	4	N/A	2020/05/21	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Total Oil and Grease	4	2020/05/21	2020/05/21	CAM SOP-00326	EPA1664B m,SM5520B m
рН	4	2020/05/21	2020/05/21	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	4	N/A	2020/05/20	CAM SOP-00444	OMOE E3179 m
Sulphate by Automated Colourimetry	4	N/A	2020/05/21	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids	4	2020/05/20	2020/05/21	CAM SOP-00428	SM 23 2540C m
Total Kjeldahl Nitrogen in Water	3	2020/05/22	2020/05/22	CAM SOP-00938	OMOE E3516 m
Total Kjeldahl Nitrogen in Water	1	2020/05/22	2020/05/25	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	4	2020/05/22	2020/05/25	CAM SOP-00407	SM 23 4500 P B H m
Total Suspended Solids	3	2020/05/20	2020/05/21	CAM SOP-00428	SM 23 2540D m
Total Suspended Solids	1	2020/05/21	2020/05/21	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless

Page 1 of 13

Your Project #: 1407634 Your C.O.C. #: 772251-01-01

Attention: Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/05/25 Report #: R6185519 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0B9834

Received: 2020/05/15, 09:54

indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 13

RESULTS OF ANALYSES OF WATER

BV Labs ID		MQM269			MQM269			MQM270		
Sampling Date		2020/05/14 10:30			2020/05/14 10:30			2020/05/14 10:00		
COC Number		772251-01-01			772251-01-01			772251-01-01		
	UNITS	POND	RDL	QC Batch	POND Lab-Dup	RDL	QC Batch	SW1	RDL	QC Batch
Calculated Parameters	•					•			*	•
Anion Sum	me/L	4.78	N/A	6729238				8.65	N/A	6729238
Cation Sum	me/L	4.84	N/A	6729238				8.86	N/A	6729238
Hardness (CaCO3)	mg/L	210	1.0	6729230				360	1.0	6729230
Inorganics										•
Total Ammonia-N	mg/L	<0.050	0.050	6737479				<0.050	0.050	6737479
Conductivity	mS/cm	0.455	0.001	6733875				0.822	0.001	6733875
Total Dissolved Solids	mg/L	260	10	6732144				490	10	6732144
Fluoride (F-)	mg/L	0.13	0.10	6733876				0.11	0.10	6733876
Total Kjeldahl Nitrogen (TKN)	mg/L	0.44	0.10	6738282				0.47	0.10	6738282
Dissolved Organic Carbon	mg/L	6.5	0.40	6740975				7.8	0.40	6732269
рН	рН	8.10		6733880				7.99		6733880
Phenols-4AAP	mg/L	<0.0010	0.0010	6732033	<0.0010	0.0010	6732033	<0.0010	0.0010	6732033
Total Phosphorus	mg/L	0.010	0.004	6738035				0.006	0.004	6738035
Total Suspended Solids	mg/L	<10	10	6731213				<10	10	6731213
Dissolved Sulphate (SO4)	mg/L	82	1.0	6732599				140	1.0	6732599
Alkalinity (Total as CaCO3)	mg/L	140	1.0	6733873				230	1.0	6733873
Dissolved Chloride (Cl-)	mg/L	9.3	1.0	6732594				43	1.0	6732594
Nitrite (N)	mg/L	<0.010	0.010	6733860				<0.010	0.010	6733860
Nitrate (N)	mg/L	<0.10	0.10	6733860				<0.10	0.10	6733860
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	6733860				<0.10	0.10	6733860
Petroleum Hydrocarbons		•			•			•	•	
Total Oil & Grease	mg/L	<0.50	0.50	6734179				<0.50	0.50	6734179
RDL = Reportable Detection Lii QC Batch = Quality Control Bat Lab-Dup = Laboratory Initiated	ch.	te								
N/A = Not Applicable	-									

N/A = Not Applicable

RESULTS OF ANALYSES OF WATER

BV Labs ID		MQM270			MQM271		MQM272		
Sampling Date		2020/05/14 10:00			2020/05/14 12:00		2020/05/14 10:00		
COC Number		772251-01-01			772251-01-01		772251-01-01		
	UNITS	SW1 Lab-Dup	RDL	QC Batch	SW2	QC Batch	SW1-D	RDL	QC Batch
Calculated Parameters	<u> </u>		-		·	·			
Anion Sum	me/L				8.40	6729238	8.64	N/A	6729238
Cation Sum	me/L				8.73	6729238	8.99	N/A	6729238
Hardness (CaCO3)	mg/L				400	6729230	360	1.0	6729230
Inorganics									
Total Ammonia-N	mg/L				<0.050	6737479	<0.050	0.050	6737479
Conductivity	mS/cm	0.820	0.001	6733875	0.764	6733875	0.820	0.001	6733875
Total Dissolved Solids	mg/L				435	6732144	495	10	6732144
Fluoride (F-)	mg/L	0.10	0.10	6733876	<0.10	6733876	0.10	0.10	6733876
Total Kjeldahl Nitrogen (TKN)	mg/L	0.45	0.10	6738282	0.31	6738282	0.36	0.10	6738282
Dissolved Organic Carbon	mg/L				5.0	6740975	8.0	0.40	6740975
рН	рН	7.99		6733880	7.98	6733880	7.98		6733880
Phenols-4AAP	mg/L				<0.0010	6732033	<0.0010	0.0010	6732033
Total Phosphorus	mg/L				0.012	6738035	0.005	0.004	6738035
Total Suspended Solids	mg/L				<10	6731213	<10	10	6732172
Dissolved Sulphate (SO4)	mg/L				81	6732599	140	1.0	6732599
Alkalinity (Total as CaCO3)	mg/L	230	1.0	6733873	300	6733873	230	1.0	6733873
Dissolved Chloride (Cl-)	mg/L				26	6732594	43	1.0	6732594
Nitrite (N)	mg/L				<0.010	6733860	<0.010	0.010	6733860
Nitrate (N)	mg/L				<0.10	6733860	<0.10	0.10	6733860
Nitrate + Nitrite (N)	mg/L				<0.10	6733860	<0.10	0.10	6733860
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L				<0.50	6734179	<0.50	0.50	6734179
RDL = Reportable Detection Li QC Batch = Quality Control Bat Lab-Dup = Laboratory Initiated	ch	e							
N/A = Not Applicable	-								

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

BV Labs ID		MQM269	MQM270	MQM271	MQM272			MQM272		
Sampling Date		2020/05/14 10:30	2020/05/14 10:00	2020/05/14 12:00	2020/05/14 10:00			2020/05/14 10:00		
COC Number		772251-01-01	772251-01-01	772251-01-01	772251-01-01			772251-01-01		
	UNITS	POND	SW1	SW2	SW1-D	RDL	QC Batch	SW1-D Lab-Dup	RDL	QC Batch
Metals										
Dissolved Aluminum (Al)	ug/L	<5.0	9.6	<5.0	<5.0	5.0	6732680	<5.0	5.0	6732680
Total Arsenic (As)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	6734006			
Total Cadmium (Cd)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	6734006			
Dissolved Calcium (Ca)	ug/L	62000	120000	130000	120000	200	6732680	120000	200	6732680
Total Calcium (Ca)	ug/L	63000	120000	120000	120000	200	6734006			
Total Chromium (Cr)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	6734006			
Total Copper (Cu)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	6734006			
Total Iron (Fe)	ug/L	140	<100	140	<100	100	6734006			
Total Lead (Pb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	6734006			
Dissolved Magnesium (Mg)	ug/L	14000	13000	20000	13000	50	6732680	13000	50	6732680
Total Magnesium (Mg)	ug/L	13000	12000	19000	12000	50	6734006			
Total Manganese (Mn)	ug/L	16	13	6.4	14	2.0	6734006			
Total Nickel (Ni)	ug/L	1.1	<1.0	<1.0	<1.0	1.0	6734006			
Dissolved Potassium (K)	ug/L	1800	2400	1100	2400	200	6732680	2400	200	6732680
Total Potassium (K)	ug/L	1700	2200	1100	2300	200	6734006			
Dissolved Sodium (Na)	ug/L	12000	37000	15000	38000	100	6732680	37000	100	6732680
Total Sodium (Na)	ug/L	12000	37000	14000	37000	100	6734006			
Total Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	6734006			
RDL = Reportable Detection L	.imit									
QC Batch = Quality Control Ba Lab-Dup = Laboratory Initiate		ate								

TEST SUMMARY

/05/15	5
/05/14	4
/	05/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	6733873	N/A	2020/05/21	Surinder Rai
Chloride by Automated Colourimetry	KONE	6732594	N/A	2020/05/21	Deonarine Ramnarine
Conductivity	AT	6733875	N/A	2020/05/21	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	6740975	N/A	2020/05/23	Nimarta Singh
Fluoride	ISE	6733876	2020/05/21	2020/05/21	Surinder Rai
Hardness (calculated as CaCO3)		6729230	N/A	2020/05/22	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	6732680	2020/05/20	2020/05/21	Arefa Dabhad
Total Metals Analysis by ICPMS	ICP/MS	6734006	N/A	2020/05/21	Azita Fazaeli
Anion and Cation Sum	CALC	6729238	N/A	2020/05/22	Automated Statchk
Total Ammonia-N	LACH/NH4	6737479	N/A	2020/05/22	Amanpreet Sappal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	6733860	N/A	2020/05/21	Chandra Nandlal
Total Oil and Grease	BAL	6734179	2020/05/21	2020/05/21	Khushboo Kapoor
рН	AT	6733880	2020/05/21	2020/05/21	Surinder Rai
Phenols (4AAP)	TECH/PHEN	6732033	N/A	2020/05/20	Bramdeo Motiram
Sulphate by Automated Colourimetry	KONE	6732599	N/A	2020/05/21	Deonarine Ramnarine
Total Dissolved Solids	BAL	6732144	2020/05/20	2020/05/21	Jingwei (Alvin) Shi
Total Kjeldahl Nitrogen in Water	SKAL	6738282	2020/05/22	2020/05/22	Rajni Tyagi
Total Phosphorus (Colourimetric)	LACH/P	6738035	2020/05/22	2020/05/25	Shivani Shivani
Total Suspended Solids	BAL	6731213	2020/05/20	2020/05/21	Massarat Jan

BV Labs ID: Sample ID: Matrix:	MQM269 Dup POND Water					Collected: 2020/05/14 Shipped: Received: 2020/05/15
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Phenols (4AAP)		TECH/PHEN	6732033	N/A	2020/05/20	Bramdeo Motiram
BV Labs ID: Sample ID: Matrix:	MQM270 SW1 Water					Collected: 2020/05/14 Shipped: Received: 2020/05/15
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity		AT	6733873	N/A	2020/05/21	Surinder Rai
Chloride by Automated C	Colourimetry	KONE	6732594	N/A	2020/05/21	Deonarine Ramnarine
Conductivity		AT	6733875	N/A	2020/05/21	Surinder Rai
Dissolved Organic Carbor	n (DOC)	TOCV/NDIR	6732269	N/A	2020/05/21	Nimarta Singh
Fluoride		ISE	6733876	2020/05/21	2020/05/21	Surinder Rai
Hardness (calculated as C	CaCO3)		6729230	N/A	2020/05/22	Automated Statchk
Lab Filtered Metals by ICI	PMS	ICP/MS	6732680	2020/05/20	2020/05/21	Arefa Dabhad
Total Metals Analysis by I	ICPMS	ICP/MS	6734006	N/A	2020/05/21	Azita Fazaeli
Anion and Cation Sum		CALC	6729238	N/A	2020/05/22	Automated Statchk
Total Ammonia-N		LACH/NH4	6737479	N/A	2020/05/22	Amanpreet Sappal
Nitrate (NO3) and Nitrite	(NO2) in Water	LACH	6733860	N/A	2020/05/21	Chandra Nandlal
Total Oil and Grease		BAL	6734179	2020/05/21	2020/05/21	Khushboo Kapoor
рН		AT	6733880	2020/05/21	2020/05/21	Surinder Rai

Page 6 of 13

TEST SUMMARY

Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	,, -
Matrix:						Received:	2020/05/15
Sample ID:	SW1					Shipped:	
BV Labs ID:	MQM270					Collected:	2020/05/14

TECH/PHEN	6732033	N/A	2020/05/20	Bramdeo Motiram
KONE	6732599	N/A	2020/05/21	Deonarine Ramnarine
BAL	6732144	2020/05/20	2020/05/21	Jingwei (Alvin) Shi
SKAL	6738282	2020/05/22	2020/05/25	Rajni Tyagi
LACH/P	6738035	2020/05/22	2020/05/25	Shivani Shivani
BAL	6731213	2020/05/20	2020/05/21	Massarat Jan
	KONE BAL SKAL LACH/P	KONE 6732599 BAL 6732144 SKAL 6738282 LACH/P 6738035	KONE 6732599 N/A BAL 6732144 2020/05/20 SKAL 6738282 2020/05/22 LACH/P 6738035 2020/05/22	KONE 6732599 N/A 2020/05/21 BAL 6732144 2020/05/20 2020/05/21 SKAL 6738282 2020/05/22 2020/05/25 LACH/P 6738035 2020/05/22 2020/05/25

BV Labs ID: MQM270 Dup Sample ID: SW1 Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	6733873	N/A	2020/05/21	Surinder Rai
Conductivity	AT	6733875	N/A	2020/05/21	Surinder Rai
Fluoride	ISE	6733876	2020/05/21	2020/05/21	Surinder Rai
рН	AT	6733880	2020/05/21	2020/05/21	Surinder Rai
Total Kjeldahl Nitrogen in Water	SKAL	6738282	2020/05/22	2020/05/25	Rajni Tyagi

BV Labs ID:	MQM271
Sample ID:	SW2
Matrix:	Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	6733873	N/A	2020/05/21	Surinder Rai
Chloride by Automated Colourimetry	KONE	6732594	N/A	2020/05/21	Deonarine Ramnarine
Conductivity	AT	6733875	N/A	2020/05/21	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	6740975	N/A	2020/05/23	Nimarta Singh
Fluoride	ISE	6733876	2020/05/21	2020/05/21	Surinder Rai
Hardness (calculated as CaCO3)		6729230	N/A	2020/05/22	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	6732680	2020/05/20	2020/05/21	Arefa Dabhad
Total Metals Analysis by ICPMS	ICP/MS	6734006	N/A	2020/05/21	Azita Fazaeli
Anion and Cation Sum	CALC	6729238	N/A	2020/05/22	Automated Statchk
Total Ammonia-N	LACH/NH4	6737479	N/A	2020/05/22	Amanpreet Sappal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	6733860	N/A	2020/05/21	Chandra Nandlal
Total Oil and Grease	BAL	6734179	2020/05/21	2020/05/21	Khushboo Kapoor
рН	AT	6733880	2020/05/21	2020/05/21	Surinder Rai
Phenols (4AAP)	TECH/PHEN	6732033	N/A	2020/05/20	Bramdeo Motiram
Sulphate by Automated Colourimetry	KONE	6732599	N/A	2020/05/21	Deonarine Ramnarine
Total Dissolved Solids	BAL	6732144	2020/05/20	2020/05/21	Jingwei (Alvin) Shi
Total Kjeldahl Nitrogen in Water	SKAL	6738282	2020/05/22	2020/05/22	Rajni Tyagi
Total Phosphorus (Colourimetric)	LACH/P	6738035	2020/05/22	2020/05/25	Shivani Shivani
Total Suspended Solids	BAL	6731213	2020/05/20	2020/05/21	Massarat Jan

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Page 7 of 13

Shipped: **Received:** 2020/05/15

Collected: 2020/05/14 Shipped: **Received:** 2020/05/15

Collected: 2020/05/14

TEST SUMMARY

Matrix: Test Description	Water	Instrumentation	Batch	Extracted	Date Analyzed	Received: Analyst	2020/05/15
BV Labs ID: Sample ID:						Collected: Shipped:	2020/05/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	6733873	N/A	2020/05/21	Surinder Rai
Chloride by Automated Colourimetry	KONE	6732594	N/A	2020/05/21	Deonarine Ramnarine
Conductivity	AT	6733875	N/A	2020/05/21	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	6740975	N/A	2020/05/23	Nimarta Singh
Fluoride	ISE	6733876	2020/05/21	2020/05/21	Surinder Rai
Hardness (calculated as CaCO3)		6729230	N/A	2020/05/22	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	6732680	2020/05/20	2020/05/21	Arefa Dabhad
Total Metals Analysis by ICPMS	ICP/MS	6734006	N/A	2020/05/21	Azita Fazaeli
Anion and Cation Sum	CALC	6729238	N/A	2020/05/22	Automated Statchk
Total Ammonia-N	LACH/NH4	6737479	N/A	2020/05/22	Amanpreet Sappal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	6733860	N/A	2020/05/21	Chandra Nandlal
Total Oil and Grease	BAL	6734179	2020/05/21	2020/05/21	Khushboo Kapoor
рН	AT	6733880	2020/05/21	2020/05/21	Surinder Rai
Phenols (4AAP)	TECH/PHEN	6732033	N/A	2020/05/20	Bramdeo Motiram
Sulphate by Automated Colourimetry	KONE	6732599	N/A	2020/05/21	Deonarine Ramnarine
Total Dissolved Solids	BAL	6732144	2020/05/20	2020/05/21	Jingwei (Alvin) Shi
Total Kjeldahl Nitrogen in Water	SKAL	6738282	2020/05/22	2020/05/22	Rajni Tyagi
Total Phosphorus (Colourimetric)	LACH/P	6738035	2020/05/22	2020/05/25	Shivani Shivani
Total Suspended Solids	BAL	6732172	2020/05/21	2020/05/21	Massarat Jan

BV Labs ID: MQ Sample ID: SW Matrix: Wat	I-D				Collected: 2020/05/14 Shipped: 2020/05/15 Received: 2020/05/15
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Lab Filtered Metals by ICPMS	ICP/MS	6732680	2020/05/20	2020/05/21	Arefa Dabhad

Page o OF13 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Page 8 of 13

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	4.7°C
Package 2	3.3°C
Package 3	4.3°C
Package 3	4.3°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

			QUALITI ASSUM					
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6731213	MJ1	QC Standard	Total Suspended Solids	2020/05/21	Value	102	%	85 - 115
6731213	MJ1	Method Blank	Total Suspended Solids	2020/05/21	<10	102	mg/L	05 115
6731213	MJ1	RPD	Total Suspended Solids	2020/05/21	NC		%	25
6732033	BMO	Matrix Spike	Phenols-4AAP	2020/05/20	Ne	93	%	80 - 120
0752055	DIVIO	[MQM269-07]		2020/03/20		55	70	00 - 120
6732033	BMO	Spiked Blank	Phenols-4AAP	2020/05/20		96	%	80 - 120
6732033	BMO	Method Blank	Phenols-4AAP	2020/05/20	<0.0010	50	mg/L	00 120
6732033	BMO	RPD [MQM269-07]	Phenols-4AAP	2020/05/20	NC		%	20
6732144	JS7	QC Standard	Total Dissolved Solids	2020/05/21	110	100	%	90 - 110
6732144	JS7	Method Blank	Total Dissolved Solids	2020/05/21	<10	100	mg/L	50 110
6732144	JS7	RPD	Total Dissolved Solids	2020/05/21	0.60		%	25
6732172	MJ1	QC Standard	Total Suspended Solids	2020/05/21	0.00	101	%	85 - 115
6732172	MJ1	Method Blank	Total Suspended Solids	2020/05/21	<10	101	mg/L	05 115
6732172	MJ1	RPD	Total Suspended Solids	2020/05/21	NC		%	25
6732269	NS3	Matrix Spike	Dissolved Organic Carbon	2020/05/21	NC	NC	%	80 - 120
6732269	NS3	Spiked Blank	Dissolved Organic Carbon	2020/05/21		96	%	80 - 120
6732269	NS3	Method Blank	Dissolved Organic Carbon	2020/05/21	<0.40	50	mg/L	00 - 120
6732269	NS3	RPD	Dissolved Organic Carbon Dissolved Organic Carbon	2020/05/21	1.0		111g/L %	20
6732594	DRM	Matrix Spike	Dissolved Chloride (Cl-)	2020/05/21	1.0	NC	%	80 - 120
6732594	DRIVI	Spiked Blank	Dissolved Chloride (Cl-)	2020/05/21		101	%	80 - 120 80 - 120
6732594	DRM	Method Blank	Dissolved Chloride (Cl-)	2020/05/21	<1.0	101	∽ mg/L	80 - 120
6732594	DRIVI	RPD	Dissolved Chloride (Cl-)	2020/05/21	1.9		111g/L %	20
6732594	DRIVI	Matrix Spike	Dissolved Sulphate (SO4)	2020/05/21	1.9	NC	%	20 75 - 125
6732599	DRIVI	Spiked Blank	Dissolved Sulphate (SO4)	2020/05/21		104	%	75 - 125 80 - 120
6732599	DRIVI	Method Blank		2020/05/21	<1.0	104		80 - 120
			Dissolved Sulphate (SO4)				mg/L	20
6732599		RPD	Dissolved Sulphate (SO4)	2020/05/21	0.19	100	%	20
6732680	ADA	Matrix Spike [MQM272-01]	Dissolved Aluminum (Al)	2020/05/21		100	%	80 - 120
			Dissolved Calcium (Ca)	2020/05/21		NC	%	80 - 120
			Dissolved Magnesium (Mg)	2020/05/21		106	%	80 - 120
			Dissolved Potassium (K)	2020/05/21		106	%	80 - 120
			Dissolved Sodium (Na)	2020/05/21		NC	%	80 - 120
6732680	ADA	Spiked Blank	Dissolved Aluminum (Al)	2020/05/21		95	%	80 - 120
			Dissolved Calcium (Ca)	2020/05/21		107	%	80 - 120
			Dissolved Magnesium (Mg)	2020/05/21		101	%	80 - 120
			Dissolved Potassium (K)	2020/05/21		101	%	80 - 120
			Dissolved Sodium (Na)	2020/05/21		97	%	80 - 120
6732680	ADA	Method Blank	Dissolved Aluminum (Al)	2020/05/21	<5.0		ug/L	
			Dissolved Calcium (Ca)	2020/05/21	<200		ug/L	
			Dissolved Magnesium (Mg)	2020/05/21	<50		ug/L	
			Dissolved Potassium (K)	2020/05/21	<200		ug/L	
			Dissolved Sodium (Na)	2020/05/21	<100		ug/L	
6732680	ADA	RPD [MQM272-01]	Dissolved Aluminum (Al)	2020/05/21	NC		%	20
			Dissolved Calcium (Ca)	2020/05/21	1.2		%	20
			Dissolved Magnesium (Mg)	2020/05/21	4.2		%	20
			Dissolved Potassium (K)	2020/05/21	1.6		%	20
			Dissolved Sodium (Na)	2020/05/21	2.7		%	20
6733860	C_N	Matrix Spike	Nitrite (N)	2020/05/21		107	%	80 - 120
	-		Nitrate (N)	2020/05/21		103	%	80 - 120
6733860	C_N	Spiked Blank	Nitrite (N)	2020/05/21		108	%	80 - 120
	-		Nitrate (N)	2020/05/21		104	%	80 - 120
6733860	CΝ	Method Blank	Nitrite (N)	2020/05/21	<0.010		mg/L	

Page 10 of 13

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Baton		de i fre	Nitrate (N)	2020/05/21	<0.10	necorery	mg/L	40 2
6733860	C_N	RPD	Nitrite (N)	2020/05/21	10		%	20
	-		Nitrate (N)	2020/05/21	NC		%	20
6733873	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2020/05/21		95	%	85 - 115
6733873	SAU	Method Blank	Alkalinity (Total as CaCO3)	2020/05/21	<1.0		mg/L	
6733873	SAU	RPD [MQM270-01]	Alkalinity (Total as CaCO3)	2020/05/21	0.47		%	20
6733875	SAU	Spiked Blank	Conductivity	2020/05/21		100	%	85 - 115
6733875	SAU	Method Blank	Conductivity	2020/05/21	< 0.001		mS/cm	
6733875	SAU	RPD [MQM270-01]	Conductivity	2020/05/21	0.24		%	25
6733876	SAU	Matrix Spike [MQM270-01]	Fluoride (F-)	2020/05/21		97	%	80 - 120
6733876	SAU	Spiked Blank	Fluoride (F-)	2020/05/21		106	%	80 - 120
6733876	SAU	Method Blank	Fluoride (F-)	2020/05/21	<0.10		mg/L	
6733876	SAU	RPD [MQM270-01]	Fluoride (F-)	2020/05/21	6.7		%	20
6733880	SAU	Spiked Blank	рН	2020/05/21		102	%	98 - 103
6733880	SAU	RPD [MQM270-01]	рН	2020/05/21	0.053		%	N/A
6734006	AFZ	Matrix Spike	Total Arsenic (As)	2020/05/21		101	%	80 - 120
			Total Cadmium (Cd)	2020/05/21		89	%	80 - 120
			Total Calcium (Ca)	2020/05/21		NC	%	80 - 120
			Total Chromium (Cr)	2020/05/21		NC	%	80 - 120
			Total Copper (Cu)	2020/05/21		99	%	80 - 120
			Total Iron (Fe)	2020/05/21		91	%	80 - 120
			Total Lead (Pb)	2020/05/21		82	%	80 - 120
			Total Magnesium (Mg)	2020/05/21		93	%	80 - 120
			Total Manganese (Mn)	2020/05/21		93	%	80 - 120
			Total Nickel (Ni)	2020/05/21		88	%	80 - 120
			Total Potassium (K)	2020/05/21		NC	%	80 - 120
			Total Sodium (Na)	2020/05/21		NC	%	80 - 120
			Total Zinc (Zn)	2020/05/21		84	%	80 - 120
6734006	AFZ	Spiked Blank	Total Arsenic (As)	2020/05/21		98	%	80 - 120
			Total Cadmium (Cd)	2020/05/21		98	%	80 - 120
			Total Calcium (Ca)	2020/05/21		98	%	80 - 120
			Total Chromium (Cr)	2020/05/21		93	%	80 - 120
			Total Copper (Cu)	2020/05/21		96	%	80 - 120
			Total Iron (Fe)	2020/05/21		93	%	80 - 120
			Total Lead (Pb)	2020/05/21		92	%	80 - 120
			Total Magnesium (Mg)	2020/05/21		93	%	80 - 120
			Total Manganese (Mn)	2020/05/21		93	%	80 - 120
			Total Nickel (Ni)	2020/05/21		93	%	80 - 120
			Total Potassium (K)	2020/05/21		93	%	80 - 120
			Total Sodium (Na)	2020/05/21		95	%	80 - 120
			Total Zinc (Zn)	2020/05/21		101	%	80 - 120
6734006	AFZ	Method Blank	Total Arsenic (As)	2020/05/21	<1.0		ug/L	
			Total Cadmium (Cd)	2020/05/21	<0.10		ug/L	
			Total Calcium (Ca)	2020/05/21	<200		ug/L	
			Total Chromium (Cr)	2020/05/21	<5.0		ug/L	
			Total Copper (Cu)	2020/05/21	<1.0		ug/L	
			Total Iron (Fe)	2020/05/21	<100		ug/L	
			Total Lead (Pb)	2020/05/21	<0.50		ug/L	
			Total Magnesium (Mg)	2020/05/21	<50		ug/L	
			Total Manganese (Mn)	2020/05/21	<2.0		ug/L	
			Total Nickel (Ni)	2020/05/21	<1.0		ug/L	

Page 11 of 13

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC	loi+		Daramator	Data Analyzad	Value	Decover		OC Limit
Batch	Init	QC Type	Parameter Total Potassium (K)	Date Analyzed 2020/05/21	Value <200	Recovery	UNITS ug/L	QC Limit
			Total Sodium (Na)	2020/05/21	<200 <100		ug/L ug/L	
			Total Zinc (Zn)	2020/05/21	<5.0		ug/L	
6734006	A F 7	RPD		2020/05/21	<5.0 NC		ug/L %	20
6734006	AFZ	RPD	Total Arsenic (As)					20
			Total Cadmium (Cd)	2020/05/21	3.0		%	20
			Total Calcium (Ca)	2020/05/21	0.090		%	20
			Total Chromium (Cr)	2020/05/21	0.24		%	20
			Total Copper (Cu)	2020/05/21	7.0		%	20
			Total Iron (Fe)	2020/05/21	1.0		%	20
			Total Lead (Pb)	2020/05/21	4.6		%	20
			Total Magnesium (Mg)	2020/05/21	1.0		%	20
			Total Manganese (Mn)	2020/05/21	NC		%	20
			Total Nickel (Ni)	2020/05/21	0.47		%	20
			Total Potassium (K)	2020/05/21	1.0		%	20
			Total Sodium (Na)	2020/05/21	0.030		%	20
			Total Zinc (Zn)	2020/05/21	NC		%	20
5734179	KK4	Spiked Blank	Total Oil & Grease	2020/05/21		94	%	85 - 11
6734179	KK4	RPD	Total Oil & Grease	2020/05/21	1.8		%	25
6734179	KK4	Method Blank	Total Oil & Grease	2020/05/21	<0.50		mg/L	
6737479	ASP	Matrix Spike	Total Ammonia-N	2020/05/22		98	%	75 - 125
6737479	ASP	Spiked Blank	Total Ammonia-N	2020/05/22		100	%	80 - 120
6737479	ASP	Method Blank	Total Ammonia-N	2020/05/22	<0.050		mg/L	
6737479	ASP	RPD	Total Ammonia-N	2020/05/22	0.57		%	20
6738035	SSV	Matrix Spike	Total Phosphorus	2020/05/25		90	%	80 - 120
6738035	SSV	QC Standard	Total Phosphorus	2020/05/25		96	%	80 - 120
6738035	SSV	Spiked Blank	Total Phosphorus	2020/05/25		101	%	80 - 120
6738035	SSV	Method Blank	Total Phosphorus	2020/05/25	< 0.004		mg/L	
6738035	SSV	RPD	Total Phosphorus	2020/05/25	NC		%	20
6738282	RTY	Matrix Spike [MQM270-05]	Total Kjeldahl Nitrogen (TKN)	2020/05/25		104	%	80 - 120
6738282	RTY	QC Standard	Total Kjeldahl Nitrogen (TKN)	2020/05/22		110	%	80 - 120
6738282	RTY	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2020/05/22		106	%	80 - 120
6738282	RTY	Method Blank	Total Kjeldahl Nitrogen (TKN)	2020/05/22	<0.10		mg/L	
6738282	RTY	RPD [MQM270-05]	Total Kjeldahl Nitrogen (TKN)	2020/05/25	2.8		%	20
6740975	NS3	Matrix Spike	Dissolved Organic Carbon	2020/05/23		94	%	80 - 120
6740975	NS3	Spiked Blank	Dissolved Organic Carbon	2020/05/23		98	%	80 - 120
6740975	NS3	Method Blank	Dissolved Organic Carbon	2020/05/23	<0.40		mg/L	
6740975	NS3	RPD	Dissolved Organic Carbon	2020/05/23	0.64		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Page 12 of 13

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 778077-03-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/09/08 Report #: R6323141 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: COM4751

Received: 2020/09/01, 09:29

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/09/08	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/09/08	2020/09/08	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/09/02	2020/09/02	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/09/03	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/09/08	2020/09/08	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/09/03	2020/09/04	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 778077-03-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/09/08 Report #: R6323141 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0M4751 Received: 2020/09/01, 09:29

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com

Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

BV Labs ID		NNB424		
Sampling Date		2020/08/31 13:00		
COC Number		778077-03-01		
	UNITS	POND	RDL	QC Batch
Calculated Parameters				
Total Animal/Vegetable Oil and Grease	mg/L	2.2	0.50	6920613
Inorganics				
рН	рН	7.86	N/A	6923239
Phenols-4AAP	mg/L	<0.0010	0.0010	6925355
Total Suspended Solids	mg/L	17	1	6924505
Petroleum Hydrocarbons		-		
Total Oil & Grease	mg/L	2.2	0.50	6930957
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	6930962
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable				

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 21.0°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6923239	NYS	Spiked Blank	рН	2020/09/02		101	%	98 - 103
6923239	NYS	RPD	рН	2020/09/02	0.18		%	N/A
6924505	JS7	QC Standard	Total Suspended Solids	2020/09/04		100	%	85 - 115
6924505	JS7	Method Blank	Total Suspended Solids	2020/09/04	<1		mg/L	
6924505	JS7	RPD	Total Suspended Solids	2020/09/04	0		%	25
6925355	BMO	Matrix Spike	Phenols-4AAP	2020/09/03		106	%	80 - 120
6925355	BMO	Spiked Blank	Phenols-4AAP	2020/09/03		104	%	80 - 120
6925355	BMO	Method Blank	Phenols-4AAP	2020/09/03	<0.0010		mg/L	
6925355	BMO	RPD	Phenols-4AAP	2020/09/03	6.5		%	20
6930957	FA	Spiked Blank	Total Oil & Grease	2020/09/08		95	%	85 - 115
6930957	FA	RPD	Total Oil & Grease	2020/09/08	4.1		%	25
6930957	FA	Method Blank	Total Oil & Grease	2020/09/08	<0.50		mg/L	
6930962	FA	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/09/08		92	%	85 - 115
6930962	FA	RPD	Total Oil & Grease Mineral/Synthetic	2020/09/08	2.7		%	25
6930962	FA	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/09/08	<0.50		mg/L	
1								

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 1407634 Site#: McCarthy Site Location: MCCARTHY Your C.O.C. #: 778077-05-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/09/14 Report #: R6330243 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: CON2321

Received: 2020/09/09, 09:32

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/09/13	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/09/13	2020/09/13	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/09/10	2020/09/14	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/09/14	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/09/13	2020/09/13	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/09/11	2020/09/14	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Your Project #: 1407634 Site#: McCarthy Site Location: MCCARTHY Your C.O.C. #: 778077-05-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/09/14 Report #: R6330243 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0N2321 Received: 2020/09/09, 09:32

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com

Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

RESULTS OF ANALYSES OF WATER

BV Labs ID		NOR957					
Sampling Date		2020/09/08					
		14:00					
COC Number		778077-05-01					
	UNITS	590331 POND	RDL	QC Batch			
Calculated Parameters							
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	0.50	6934904			
Inorganics		•					
рН	рН	7.76	N/A	6937243			
Phenols-4AAP	mg/L	<0.0010	0.0010	6941535			
Total Suspended Solids	mg/L	8	1	6936088			
Petroleum Hydrocarbons							
Total Oil & Grease	mg/L	<0.50	0.50	6941332			
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	6941333			
RDL = Reportable Detection Limit	· · · · · · · · · · · · · · · · · · ·						
QC Batch = Quality Control Batch							
N/A = Not Applicable							

Page 3 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each te	Each temperature is the average of up to three cooler temperatures taken at receipt								
	Package 1	18.0°C							
Sample	Sample NOR957 [590331 POND] : Sampling date and time updated as per container label.								
Result	s relate only to the	items tested.							

Page 4 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
MJ1	QC Standard	Total Suspended Solids	2020/09/14		100	%	85 - 115
MJ1	Method Blank	Total Suspended Solids	2020/09/14	<1		mg/L	
MJ1	RPD	Total Suspended Solids	2020/09/14	0		%	25
SAU	Spiked Blank	рН	2020/09/14		102	%	98 - 103
SAU	RPD	рН	2020/09/14	1.7		%	N/A
KRW	Spiked Blank	Total Oil & Grease	2020/09/13		95	%	85 - 115
KRW	RPD	Total Oil & Grease	2020/09/13	2.1	1		25
KRW	Method Blank	Total Oil & Grease	2020/09/13	<0.50		mg/L	
KRW	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/09/13		97	%	85 - 115
KRW	RPD	Total Oil & Grease Mineral/Synthetic	2020/09/13	4.8		%	25
KRW	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/09/13	<0.50		mg/L	
BMO	Matrix Spike	Phenols-4AAP	2020/09/14		97	%	80 - 120
BMO	Spiked Blank	Phenols-4AAP	2020/09/14		98	%	80 - 120
BMO	Method Blank	Phenols-4AAP	2020/09/14	<0.0010		mg/L	
BMO	RPD	Phenols-4AAP	2020/09/14	NC		%	20
	MJ1 MJ1 SAU SAU KRW KRW KRW KRW KRW KRW KRW BMO BMO BMO	MJ1 QC Standard MJ1 Method Blank MJ1 RPD SAU Spiked Blank SAU RPD KRW Spiked Blank KRW RPD KRW Method Blank KRW RPD KRW Spiked Blank KRW RPD KRW RPD KRW Method Blank BMO Matrix Spike BMO Spiked Blank BMO Method Blank	MJ1QC StandardTotal Suspended SolidsMJ1Method BlankTotal Suspended SolidsMJ1RPDTotal Suspended SolidsSAUSpiked BlankpHSAURPDpHKRWSpiked BlankTotal Oil & GreaseKRWRPDTotal Oil & GreaseKRWSpiked BlankTotal Oil & GreaseKRWRPDTotal Oil & GreaseKRWSpiked BlankTotal Oil & GreaseKRWSpiked BlankTotal Oil & GreaseKRWRPDTotal Oil & Grease Mineral/SyntheticKRWRPDTotal Oil & Grease Mineral/SyntheticKRWMethod BlankTotal Oil & Grease Mineral/SyntheticBMOMatrix SpikePhenols-4AAPBMOSpiked BlankPhenols-4AAPBMOMethod BlankPhenols-4AAP	MJ1QC StandardTotal Suspended Solids2020/09/14MJ1Method BlankTotal Suspended Solids2020/09/14MJ1RPDTotal Suspended Solids2020/09/14SAUSpiked BlankpH2020/09/14SAURPDpH2020/09/14KRWSpiked BlankTotal Oil & Grease2020/09/14KRWRPDTotal Oil & Grease2020/09/13KRWRPDTotal Oil & Grease2020/09/13KRWRPDTotal Oil & Grease2020/09/13KRWRPDTotal Oil & Grease Mineral/Synthetic2020/09/13KRWRPDTotal Oil & Grease Mineral/Synthetic2020/09/13KRWRPDTotal Oil & Grease Mineral/Synthetic2020/09/13KRWMethod BlankTotal Oil & Grease Mineral/Synthetic2020/09/13KRWMethod BlankTotal Oil & Grease Mineral/Synthetic2020/09/13BMOMatrix SpikePhenols-4AAP2020/09/14BMOSpiked BlankPhenols-4AAP2020/09/14BMOMethod BlankPhenols-4AAP2020/09/14	MJ1 MJ1 QC StandardTotal Suspended Solids2020/09/14MJ1 MJ1 Method BlankTotal Suspended Solids2020/09/14MJ1 MJ1 RPDTotal Suspended Solids2020/09/14SAU SAU Spiked BlankpH2020/09/14SAU RPDpH2020/09/14SAU RW RPDpH2020/09/13KRW RPDTotal Oil & Grease2020/09/13KRW RPDTotal Oil & Grease Mineral/Synthetic2020/09/13KRW RPDTotal Oil & Grease Mineral/Synthetic2020/09/13KRW RPDTotal Oil & Grease Mineral/Synthetic2020/09/13KRW Method BlankTotal Oil & Grease Mineral/Synthetic2020/09/13KRW Method BlankTotal Oil & Grease Mineral/Synthetic2020/09/13BMO Matrix SpikePhenols-4AAP2020/09/14BMO Spiked BlankPhenols-4AAP2020/09/14BMO Method BlankPhenols-4AAP2020/09/14	MJ1 MJ1 QC StandardTotal Suspended Solids2020/09/14100MJ1 MJ1 MHod BlankTotal Suspended Solids2020/09/14100MJ1 MJ1 RPDTotal Suspended Solids2020/09/140SAU Spiked BlankpH2020/09/14102SAU SAU RPDpH2020/09/14102SAU KRW RPDpH2020/09/1395KRW KRW Spiked BlankTotal Oil & Grease2020/09/132.1KRW KRW Spiked BlankTotal Oil & Grease2020/09/134.5KRW KPDTotal Oil & Grease Mineral/Synthetic2020/09/1397KRW KRW RPDTotal Oil & Grease Mineral/Synthetic2020/09/134.8KRW Method BlankTotal Oil & Grease Mineral/Synthetic2020/09/13<0.50	MJ1QC StandardTotal Suspended Solids2020/09/14100%MJ1Method BlankTotal Suspended Solids2020/09/14<1

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Service Specialist

Your Project #: 1407634 Site Location: MCCARTHY Your C.O.C. #: 778077-01-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/09/21 Report #: R6339091 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: CON8290

Received: 2020/09/15, 10:30

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/09/18	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/09/18	2020/09/18	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/09/16	2020/09/16	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/09/16	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/09/18	2020/09/18	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/09/17	2020/09/18	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Site Location: MCCARTHY Your C.O.C. #: 778077-01-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/09/21 Report #: R6339091 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0N8290 Received: 2020/09/15, 10:30

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com

Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

RESULTS OF ANALYSES OF WATER

BV Labs ID		NPW750					
Sampling Data		2020/09/14					
Sampling Date		15:30					
COC Number		778077-01-01					
	UNITS	POND	RDL	QC Batch			
Calculated Parameters							
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	0.50	6943962			
Inorganics			-				
рН	рН	7.97	N/A	6944770			
Phenols-4AAP	mg/L	<0.0010	0.0010	6946264			
Total Suspended Solids	mg/L	12	1	6947311			
Petroleum Hydrocarbons			-				
Total Oil & Grease	mg/L	<0.50	0.50	6952234			
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	6952235			
RDL = Reportable Detection Limit	RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch							
N/A = Not Applicable							

Page 3 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt										
	Package 1	14.3°C								
Sample	Sample NPW750 [POND] : Sampling date and time have been updated as per container label.									
Results	Results relate only to the items tested.									

Page 4 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6944770	NYS	Spiked Blank	рН	2020/09/16		102	%	98 - 103
6944770	NYS	RPD	рН	2020/09/16	0.0057		%	N/A
6946264	BMO	Matrix Spike	Phenols-4AAP	2020/09/16		100	%	80 - 120
6946264	BMO	Spiked Blank	Phenols-4AAP	2020/09/16		96	%	80 - 120
6946264	BMO	Method Blank	Phenols-4AAP	2020/09/16	<0.0010		mg/L	
6946264	BMO	RPD	Phenols-4AAP	2020/09/16	5.4		%	20
6947311	MAN	QC Standard	Total Suspended Solids	2020/09/18		95	%	85 - 115
6947311	MAN	Method Blank	Total Suspended Solids	2020/09/18	<1		mg/L	
6947311	MAN	RPD	Total Suspended Solids	2020/09/18	15		%	25
6952234	GSG	Spiked Blank	Total Oil & Grease	2020/09/18		98	%	85 - 115
6952234	GSG	RPD	Total Oil & Grease	2020/09/18	2.3		%	25
6952234	GSG	Method Blank	Total Oil & Grease	2020/09/18	<0.50		mg/L	
6952235	GSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/09/18		97	%	85 - 115
6952235	GSG	RPD	Total Oil & Grease Mineral/Synthetic	2020/09/18	3.1		%	25
6952235	GSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/09/18	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 778077-04-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/09/29 Report #: R6350302 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0O5985

Received: 2020/09/22, 09:20

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/09/26	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/09/26	2020/09/26	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/09/25	2020/09/28	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/09/28	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/09/26	2020/09/26	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/09/26	2020/09/28	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 778077-04-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/09/29 Report #: R6350302 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C005985 Received: 2020/09/22, 09:20

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com

Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

RESULTS OF ANALYSES OF WATER

BV Labs ID		NRP673					
Sampling Date		2020/09/21					
		14:30					
COC Number		778077-04-01					
	UNITS	POND	RDL	QC Batch			
Calculated Parameters							
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	0.50	6962250			
Inorganics							
рН	рН	8.00	N/A	6965636			
Phenols-4AAP	mg/L	<0.0010	0.0010	6968100			
Total Suspended Solids	mg/L	9	1	6967498			
Petroleum Hydrocarbons							
Total Oil & Grease	mg/L	<0.50	0.50	6967011			
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	6967014			
RDL = Reportable Detection Limit	RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch							
N/A = Not Applicable							

Page 3 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 16.0°C

Results relate only to the items tested.

Page 4 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6965636	SAU	Spiked Blank	рН	2020/09/28		102	%	98 - 103
6965636	SAU	RPD	рН	2020/09/28	0.089		%	N/A
6967011	GSG	Spiked Blank	Total Oil & Grease	2020/09/26		97	%	85 - 115
6967011	GSG	RPD	Total Oil & Grease	2020/09/26	2.1		%	25
6967011	GSG	Method Blank	Total Oil & Grease	2020/09/26	<0.50		mg/L	
6967014	GSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/09/26		93	%	85 - 115
6967014	GSG	RPD	Total Oil & Grease Mineral/Synthetic	2020/09/26	/26 4.2		%	25
6967014	GSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/09/26	<0.50		mg/L	
6967498	SDE	QC Standard	Total Suspended Solids	2020/09/28		95	%	85 - 115
6967498	SDE	Method Blank	Total Suspended Solids	2020/09/28	<1		mg/L	
6967498	SDE	RPD	Total Suspended Solids	2020/09/28	18		%	25
6968100	BMO	Matrix Spike	Phenols-4AAP	2020/09/28		97	%	80 - 120
6968100	BMO	Spiked Blank	Phenols-4AAP	2020/09/28		96	%	80 - 120
6968100	BMO	Method Blank	Phenols-4AAP	2020/09/28	<0.0010		mg/L	
6968100	BMO	RPD	Phenols-4AAP	2020/09/28	NC		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 766888-05-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/10/07 Report #: R6361171 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: COP6126

Received: 2020/10/01, 10:27

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/10/07	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/10/07	2020/10/07	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/10/03	2020/10/05	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/10/06	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/10/07	2020/10/07	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/10/03	2020/10/05	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 766888-05-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/10/07 Report #: R6361171 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: COP6126 Received: 2020/10/01, 10:27

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

RESULTS OF ANALYSES OF WATER

BV Labs ID			NTV364				
Sampling Data			2020/09/28				
Sampling Date			14:30				
COC Number			766888-05-01				
	UNITS	Criteria	POND	RDL	QC Batch		
Calculated Parameters							
Total Animal/Vegetable Oil and Grease	mg/L	-	1.2	0.50	6978793		
Inorganics							
рН	рН	6.5:8.5	8.05	N/A	6981546		
Phenols-4AAP	mg/L	0.001	<0.0010	0.0010	6982578		
Total Suspended Solids	mg/L	-	16	1	6981384		
Petroleum Hydrocarbons							
Total Oil & Grease	mg/L	-	1.2	0.50	6987130		
Total Oil & Grease Mineral/Synthetic	mg/L	0.5	<0.50	0.50	6987150		
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							
Criteria: Ontario Provincial Water Quality Objectives							
Ref. to MOEE Water Management docum	nent dat	ed Feb.19	999				
N/A = Not Applicable							

Page 3 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 2.3°C

Results relate only to the items tested.

Page 4 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6981384	SDE	QC Standard	Total Suspended Solids	2020/10/05		96	%	85 - 115
6981384	SDE	Method Blank	Total Suspended Solids	2020/10/05	<1		mg/L	
6981384	SDE	RPD	Total Suspended Solids	2020/10/05	0		%	25
6981546	YPA	Spiked Blank	рН	2020/10/05		102	%	98 - 103
6981546	YPA	RPD	рН	2020/10/05	0.35		%	N/A
6982578	BMO	Matrix Spike	Phenols-4AAP	2020/10/06		102	%	80 - 120
6982578	BMO	Spiked Blank	Phenols-4AAP	2020/10/06		98	%	80 - 120
6982578	BMO	Method Blank	Phenols-4AAP	2020/10/06	<0.0010		mg/L	
6982578	BMO	RPD	Phenols-4AAP	2020/10/06	NC		%	20
6987130	FA	Spiked Blank	Total Oil & Grease	2020/10/07		96	%	85 - 115
6987130	FA	RPD	Total Oil & Grease	2020/10/07	2.6		%	25
6987130	FA	Method Blank	Total Oil & Grease	2020/10/07	<0.50		mg/L	
6987150	FA	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/10/07		92	%	85 - 115
6987150	FA	RPD	Total Oil & Grease Mineral/Synthetic	2020/10/07	2.7		%	25
6987150	FA	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/10/07	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, B.Sc., C.Chem., Scientific Service Specialist

Your Project #: 1407634 Site#: McCarthy Your C.O.C. #: 766888-02-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/10/16 Report #: R6372559 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: COQ6598

Received: 2020/10/10, 10:29

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/10/14	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/10/14	2020/10/14	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/10/13	2020/10/13	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/10/14	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/10/14	2020/10/14	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/10/15	2020/10/16	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Site#: McCarthy Your C.O.C. #: 766888-02-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/10/16 Report #: R6372559 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0Q6598 Received: 2020/10/10, 10:29

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com

Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

RESULTS OF ANALYSES OF WATER

BV Labs ID			NWA885						
Sampling Date			2020/10/08 14:30						
COC Number			766888-02-01						
	UNITS	Criteria	590331 POND	RDL	QC Batch				
Calculated Parameters									
Total Animal/Vegetable Oil and Grease	mg/L	-	<0.50	0.50	6994782				
Inorganics									
рН	рН	6.5:8.5	7.84	N/A	6997305				
Phenols-4AAP	mg/L	0.001	<0.0010	0.0010	6998404				
Total Suspended Solids	mg/L	-	3	1	6998830				
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	-	<0.50	0.50	6999790				
Total Oil & Grease Mineral/Synthetic	mg/L	0.5	<0.50	0.50	6999791				
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Criteria: Ontario Provincial Water Quality	/ Objecti	ives							
Ref. to MOEE Water Management docum	nent dat	ed Feb.19	999						
N/A = Not Applicable									

Page 3 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each temperature is the	e average of up to	three cooler temperatures taken at receipt
Package 1	7.3°C	
	-	—
Results relate only to the	ne items tested.	

Page 4 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6997305	NYS	Spiked Blank	рН	2020/10/13		102	%	98 - 103
6997305	NYS	RPD	рН	2020/10/13	0.37		%	N/A
6998404	BMO	Matrix Spike	Phenols-4AAP	2020/10/14		100	%	80 - 120
6998404	BMO	Spiked Blank	Phenols-4AAP	2020/10/14		100	%	80 - 120
6998404	BMO	Method Blank	Phenols-4AAP	2020/10/14	<0.0010		mg/L	
6998404	BMO	RPD	Phenols-4AAP	2020/10/14	NC		%	20
6998830	MAN	QC Standard	Total Suspended Solids	2020/10/16		97	%	85 - 115
6998830	MAN	Method Blank	Total Suspended Solids	2020/10/16	<1		mg/L	
6998830	MAN	RPD	Total Suspended Solids	2020/10/16	0		%	25
6999790	GSG	Spiked Blank	Total Oil & Grease	2020/10/14		97	%	85 - 115
6999790	GSG	RPD	Total Oil & Grease	2020/10/14	2.1		%	25
6999790	GSG	Method Blank	Total Oil & Grease	2020/10/14	<0.50		mg/L	
6999791	GSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/10/14		93	%	85 - 115
6999791	GSG	RPD	Total Oil & Grease Mineral/Synthetic	2020/10/14	3.7		%	25
6999791	GSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/10/14	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Your Project #: 1407634 Site Location: MCCARTHY Your C.O.C. #: 766888-04-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/10/19 Report #: R6375487 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: COQ9082

Received: 2020/10/14, 10:04

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/10/15	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/10/15	2020/10/15	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/10/16	2020/10/16	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/10/16	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/10/15	2020/10/15	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/10/16	2020/10/17	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Site Location: MCCARTHY Your C.O.C. #: 766888-04-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/10/19 Report #: R6375487 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0Q9082 Received: 2020/10/14, 10:04

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com

Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

RESULTS OF ANALYSES OF WATER

BV Labs ID		NWP918		NWP918					
Sampling Data		2020/10/13		2020/10/13					
Sampling Date		14:00		14:00					
COC Number		766888-04-01		766888-04-01					
	UNITS	POND	RDL	POND Lab-Dup	QC Batch				
Calculated Parameters									
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	0.50	N/A	6998675				
Inorganics									
рН	рН	7.98	N/A	7.98	7003902				
Phenols-4AAP	mg/L	<0.0010	0.0010	N/A	7003578				
Total Suspended Solids	mg/L	5	1	N/A	7002728				
Petroleum Hydrocarbons		-		-					
Total Oil & Grease	mg/L	<0.50	0.50	N/A	7002075				
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	N/A	7002081				
RDL = Reportable Detection Limit		-		-					
QC Batch = Quality Control Batch									
Lab-Dup = Laboratory Initiated Duplicate									
N/A = Not Applicable									

Page 3 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 16.3°C

Results relate only to the items tested.

Page 4 of 6 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7002075	GSG	Spiked Blank	Total Oil & Grease	2020/10/15		99	%	85 - 115
7002075	GSG	RPD	Total Oil & Grease	2020/10/15	2.8		%	25
7002075	GSG	Method Blank	Total Oil & Grease	2020/10/15	<0.50		mg/L	
7002081	GSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/10/15		97	%	85 - 115
7002081	GSG	RPD	Total Oil & Grease Mineral/Synthetic	2020/10/15	3.7		%	25
7002081	GSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/10/15	<0.50		mg/L	
7002728	MJ1	QC Standard	Total Suspended Solids	2020/10/17		97	%	85 - 115
7002728	MJ1	Method Blank	Total Suspended Solids	2020/10/17	<1		mg/L	
7002728	MJ1	RPD	Total Suspended Solids	2020/10/17	0		%	25
7003578	BMO	Matrix Spike	Phenols-4AAP	2020/10/16		101	%	80 - 120
7003578	BMO	Spiked Blank	Phenols-4AAP	2020/10/16		100	%	80 - 120
7003578	BMO	Method Blank	Phenols-4AAP	2020/10/16	<0.0010		mg/L	
7003578	BMO	RPD	Phenols-4AAP	2020/10/16	NC		%	20
7003902	NYS	Spiked Blank	рН	2020/10/16		102	%	98 - 103
7003902	NYS	RPD [NWP918-03]	рН	2020/10/16	0.015		%	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 762593-03-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/10/23 Report #: R6382110 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: COR5630

Received: 2020/10/20, 10:18

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/10/23	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/10/22	2020/10/22	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/10/21	2020/10/23	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/10/22	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/10/22	2020/10/22	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/10/22	2020/10/23	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 762593-03-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/10/23 Report #: R6382110 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: COR5630 Received: 2020/10/20, 10:18

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com

Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

RESULTS OF ANALYSES OF WATER

BV Labs ID			NYA398		NYA398				
Sampling Date			2020/10/19 14:00		2020/10/19 14:00				
COC Number			762593-03-01		762593-03-01				
	UNITS	Criteria	POND	RDL	POND Lab-Dup	QC Batch			
Calculated Parameters									
Total Animal/Vegetable Oil and Grease	mg/L	-	<0.50	0.50	N/A	7009242			
Inorganics									
рН	рН	6.5:8.5	7.91	N/A	7.93	7013336			
Phenols-4AAP	mg/L	0.001	<0.0010	0.0010	N/A	7014024			
Total Suspended Solids	mg/L	-	7	1	N/A	7014307			
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	-	<0.50	0.50	N/A	7015253			
Total Oil & Grease Mineral/Synthetic	mg/L	0.5	<0.50	0.50	N/A	7015254			
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Lab-Dup = Laboratory Initiated Duplicate	Lab-Dup = Laboratory Initiated Duplicate								
Criteria: Ontario Provincial Water Quality Objectives Ref. to MOEE Water Management document dated Feb.1999									
N/A = Not Applicable									

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 12.7°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7013336	SAU	Spiked Blank	рН	2020/10/23	2020/10/23		%	98 - 103
7013336	SAU	RPD [NYA398-03]	рН	2020/10/23	0.27		%	N/A
7014024	BMO	Matrix Spike	Phenols-4AAP	2020/10/22		102	%	80 - 120
7014024	BMO	Spiked Blank	Phenols-4AAP	2020/10/22		103	%	80 - 120
7014024	BMO	Method Blank	Phenols-4AAP	2020/10/22	<0.0010		mg/L	
7014024	BMO	RPD	Phenols-4AAP	Phenols-4AAP 2020/10/22 3.0			%	20
7014307	MAN	QC Standard	Total Suspended Solids	Total Suspended Solids2020/10/2395		95	%	85 - 115
7014307	MAN	Method Blank	Total Suspended Solids	2020/10/23	<1		mg/L	
7014307	MAN	RPD	Total Suspended Solids	2020/10/23	18		%	25
7015253	GSG	Spiked Blank	Total Oil & Grease	2020/10/22		99	%	85 - 115
7015253	GSG	RPD	Total Oil & Grease	2020/10/22	2.6		%	25
7015253	GSG	Method Blank	Total Oil & Grease	2020/10/22	<0.50		mg/L	
7015254	GSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/10/22		98	%	85 - 115
7015254	GSG	RPD	Total Oil & Grease Mineral/Synthetic	2020/10/22	4.7		%	25
7015254	GSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/10/22	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 772254-02-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/11/02 Report #: R6395147 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0S3500

Received: 2020/10/27, 10:12

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/11/02	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/11/02	2020/11/02	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/10/28	2020/10/29	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/10/30	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/11/02	2020/11/02	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/10/29	2020/10/30	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: 772254-02-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/11/02 Report #: R6395147 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0S3500 Received: 2020/10/27, 10:12

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com

Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

RESULTS OF ANALYSES OF WATER

BV Labs ID		NZS025					
Sampling Date		2020/10/26					
Sampling Date		14:00					
COC Number		772254-02-01					
	UNITS	POND	RDL	QC Batch			
Calculated Parameters							
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	0.50	7022070			
Inorganics							
рН	рН	7.92	N/A	7025318			
Phenols-4AAP	mg/L	<0.0010	0.0010	7026651			
Total Suspended Solids	mg/L	2	1	7027067			
Petroleum Hydrocarbons							
Total Oil & Grease	mg/L	<0.50	0.50	7032394			
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	7032398			
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							
N/A = Not Applicable							

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 12.0°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7025318	SAU	Spiked Blank	рН	2020/10/29		102	%	98 - 103
7025318	SAU	RPD	рН	2020/10/29	2.2		%	N/A
7026651	BMO	Matrix Spike	Phenols-4AAP	2020/10/30		101	%	80 - 120
7026651	BMO	Spiked Blank	Phenols-4AAP	2020/10/30		98	%	80 - 120
7026651	BMO	Method Blank	Phenols-4AAP	2020/10/30	<0.0010		mg/L	
7026651	BMO	RPD	Phenols-4AAP	Phenols-4AAP 2020/10/30 NC		%	20	
7027067	SDE	QC Standard	Total Suspended Solids	Total Suspended Solids2020/10/3099		%	85 - 115	
7027067	SDE	Method Blank	Total Suspended Solids	2020/10/30	<1		mg/L	
7027067	SDE	RPD	Total Suspended Solids	2020/10/30	8.1		%	25
7032394	FA	Spiked Blank	Total Oil & Grease	2020/11/02		98	%	85 - 115
7032394	FA	RPD	Total Oil & Grease	2020/11/02	3.9		%	25
7032394	FA	Method Blank	Total Oil & Grease	Total Oil & Grease 2020/11/02 <0.50			mg/L	
7032398	FA	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/11/02		96	%	85 - 115
7032398	FA	RPD	Total Oil & Grease Mineral/Synthetic	2020/11/02	3.2		%	25
7032398	FA	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/11/02	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Your Project #: 1407634 Site Location: McCarthy Your C.O.C. #: 796496-01-02, 796496-01-01

Attention: Dawn Hoyle

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/11/10 Report #: R6405178 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0T0976

Received: 2020/11/03, 09:32

Sample Matrix: Water # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	4	N/A	2020/11/05	CAM SOP-00448	SM 23 2320 B m
Chloride by Automated Colourimetry	4	N/A	2020/11/06	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	4	N/A	2020/11/05	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	4	N/A	2020/11/06	CAM SOP-00446	SM 23 5310 B m
Fluoride	4	2020/11/05	2020/11/05	CAM SOP-00449	SM 23 4500-F C m
Hardness (calculated as CaCO3)	4	N/A	2020/11/09	CAM SOP	SM 2340 B
				00102/00408/00447	
Lab Filtered Metals by ICPMS	4	2020/11/06	2020/11/09	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS	4	N/A	2020/11/06	CAM SOP-00447	EPA 6020B m
Anion and Cation Sum	4	N/A	2020/11/09		
Total Ammonia-N	4	N/A	2020/11/09	CAM SOP-00441	USGS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (2)	4	N/A	2020/11/05	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Total Oil and Grease	4	2020/11/07	2020/11/07	CAM SOP-00326	EPA1664B m,SM5520B m
рН	4	2020/11/05	2020/11/05	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	4	N/A	2020/11/05	CAM SOP-00444	OMOE E3179 m
Sulphate by Automated Colourimetry	4	N/A	2020/11/06	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids	4	2020/11/05	2020/11/07	CAM SOP-00428	SM 23 2540C m
Total Kjeldahl Nitrogen in Water	4	2020/11/05	2020/11/05	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	4	2020/11/05	2020/11/06	CAM SOP-00407	SM 23 4500 P B H m
Total Suspended Solids	3	2020/11/05	2020/11/06	CAM SOP-00428	SM 23 2540D m
Total Suspended Solids	1	2020/11/05	2020/11/09	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Page 1 of 13

Your Project #: 1407634 Site Location: McCarthy Your C.O.C. #: 796496-01-02, 796496-01-01

Attention: Dawn Hoyle

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/11/10 Report #: R6405178 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0T0976 Received: 2020/11/03, 09:32

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com Phone# (905)817-5829

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

BV Labs ID			OBH326		OBH327		OBH328		
Sampling Date			2020/10/29		2020/10/29		2020/10/29		
			03:30		03:15		02:13		
COC Number			796496-01-01		796496-01-01		796496-01-01		
	UNITS	Criteria	Pond	QC Batch	SW1	QC Batch	SW2	RDL	QC Batch
Calculated Parameters									
Anion Sum	me/L	-	8.50	7038060	9.57	7038060	7.83	N/A	7038060
Cation Sum	me/L	-	8.58	7038060	9.91	7038060	8.13	N/A	7038060
Hardness (CaCO3)	mg/L	-	300	7037785	380	7037785	360	1.0	7037785
Inorganics									
Total Ammonia-N	mg/L	-	<0.050	7043136	<0.050	7043139	<0.050	0.050	7043136
Conductivity	mS/cm	-	0.858	7040474	0.931	7040474	0.734	0.001	7040474
Total Dissolved Solids	mg/L	-	510	7040487	545	7040487	410	10	7040487
Fluoride (F-)	mg/L	-	0.40	7040448	0.30	7040448	<0.10	0.10	7040448
Total Kjeldahl Nitrogen (TK	N) mg/L	-	0.34	7040122	0.34	7040122	0.30	0.10	7040122
Dissolved Organic Carbon	mg/L	-	6.5	7041052	8.7	7041052	8.6	0.40	7041052
рН	рН	6.5:8.5	7.68	7040492	7.94	7040492	7.88		7040492
Phenols-4AAP	mg/L	0.001	<0.0010	7039375	<0.0010	7039375	<0.0010	0.0010	7039375
Total Phosphorus	mg/L	0.01	0.012	7040569	0.011	7040569	0.025	0.004	7040569
Total Suspended Solids	mg/L	-	<10	7039796	<10	7039796	12	10	7039796
Dissolved Sulphate (SO4)	mg/L	-	240	7040640	190	7040640	42	1.0	7040640
Alkalinity (Total as CaCO3)	mg/L	-	93	7040489	210	7040489	320	1.0	7040489
Dissolved Chloride (Cl-)	mg/L	-	58	7040618	47	7040618	23	1.0	7040618
Nitrite (N)	mg/L	-	<0.010	7040505	<0.010	7040505	<0.010	0.010	7040505
Nitrate (N)	mg/L	-	0.28	7040505	0.34	7040505	<0.10	0.10	7040505
Nitrate + Nitrite (N)	mg/L	-	0.28	7040505	0.34	7040505	<0.10	0.10	7040505
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	-	<0.50	7044491	<0.50	7044491	<0.50	0.50	7044491
No Fill No	Exceedance	e							
Grey Ex	ceeds 1 crite	eria policy	/level						
Black Ex									
RDL = Reportable Detection	n Limit								
QC Batch = Quality Control Batch									
	Criteria: Ontario Provincial Water Quality Objectives								
Ref. to MOEE Water Management document dated Feb.1999									

N/A = Not Applicable

RESULTS OF ANALYSES OF WATER

BV Labs ID			OBH329					
Compling Date			2020/10/29					
Sampling Date			03:15					
COC Number			796496-01-01					
	UNITS	Criteria	DUP1	RDL	QC Batch			
Calculated Parameters								
Anion Sum	me/L	-	9.53	N/A	7038060			
Cation Sum	me/L	-	9.59	N/A	7038060			
Hardness (CaCO3)	mg/L	-	370	1.0	7037785			
Inorganics								
Total Ammonia-N	mg/L	-	<0.050	0.050	7043136			
Conductivity	mS/cm	-	0.928	0.001	7040474			
Total Dissolved Solids	mg/L	-	530	10	7040487			
Fluoride (F-)	mg/L	-	0.29	0.10	7040448			
Total Kjeldahl Nitrogen (TKN)	mg/L	-	0.36	0.10	7040606			
Dissolved Organic Carbon	mg/L	-	8.6	0.40	7041052			
рН	рН	6.5:8.5	7.84		7040492			
Phenols-4AAP	mg/L	0.001	<0.0010	0.0010	7039375			
Total Phosphorus	mg/L	0.01	0.007	0.004	7040289			
Total Suspended Solids	mg/L	-	<10	10	7039977			
Dissolved Sulphate (SO4)	mg/L	-	190	1.0	7040640			
Alkalinity (Total as CaCO3)	mg/L	-	210	1.0	7040489			
Dissolved Chloride (Cl-)	mg/L	-	46	1.0	7040618			
Nitrite (N)	mg/L	-	<0.010	0.010	7040505			
Nitrate (N)	mg/L	-	0.34	0.10	7040505			
Nitrate + Nitrite (N)	mg/L	-	0.34	0.10	7040505			
Petroleum Hydrocarbons	-	-						
Total Oil & Grease	mg/L	-	<0.50	0.50	7044491			
No Fill No Exceedance	9							
Grey Exceeds 1 crite	ria policy	/level						
Black Exceeds both criteria/levels								
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
Criteria: Ontario Provincial Water Quality Objectives								
	Ref. to MOEE Water Management document dated Feb.1999							
N/A = Not Applicable								

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

BV Labs ID			OBH326	OBH327	OBH328	OBH329			
Sampling Data			2020/10/29	2020/10/29	2020/10/29	2020/10/29			
Sampling Date			03:30	03:15	02:13	03:15			
COC Number			796496-01-01	796496-01-01	796496-01-01	796496-01-01			
	UNITS	Criteria	Pond	SW1	SW2	DUP1	RDL	QC Batch	
Metals									
Total Arsenic (As)	ug/L	100	<1.0	<1.0	<1.0	<1.0	1.0	7042178	
Total Cadmium (Cd)	ug/L	0.2	<0.090	<0.090	<0.090	<0.090	0.090	7042178	
Dissolved Calcium (Ca)	ug/L	-	74000	120000	130000	110000	200	7043170	
Total Calcium (Ca)	ug/L	-	68000	110000	120000	110000	200	7042178	
Total Chromium (Cr)	ug/L	-	<5.0	<5.0	<5.0	<5.0	5.0	7042178	
Total Copper (Cu)	ug/L	5	<0.90	<0.90	1.5	1.4	0.90	7042178	
Total Iron (Fe)	ug/L	300	<100	130	250	130	100	7042178	
Total Lead (Pb)	ug/L	5	<0.50	<0.50	<0.50	<0.50	0.50	7042178	
Dissolved Magnesium (Mg) ug/L	-	27000	22000	9800	22000	50	7043170	
Total Magnesium (Mg)	ug/L	-	26000	22000	9800	22000	50	7042178	
Total Manganese (Mn)	ug/L	-	5.8	30	14	30	2.0	7042178	
Total Nickel (Ni)	ug/L	25	<1.0	1.8	<1.0	1.7	1.0	7042178	
Dissolved Potassium (K)	ug/L	-	7400	5900	1800	5600	200	7043170	
Total Potassium (K)	ug/L	-	7100	5700	1700	5800	200	7042178	
Dissolved Sodium (Na)	ug/L	-	56000	49000	20000	48000	100	7043170	
Total Sodium (Na)	ug/L	-	51000	49000	20000	49000	100	7042178	
Total Zinc (Zn)	ug/L	30	<5.0	<5.0	<5.0	<5.0	5.0	7042178	
No Fill	No Exceedanc	e							
Grey	Exceeds 1 crite	eria polic	y/level						
Black Exceeds both criteria/levels									
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Criteria: Ontario Provincial Water Quality Objectives									
Ref. to MOEE Water Ma	Ref. to MOEE Water Management document dated Feb.1999								

TEST SUMMARY

BV Labs ID:	OBH326
Sample ID:	Pond
Matrix:	Water

Collected:	2020/10/29
Shipped:	
Received:	2020/11/03

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7040489	N/A	2020/11/05	Surinder Rai
Chloride by Automated Colourimetry	KONE	7040618	N/A	2020/11/06	Alina Dobreanu
Conductivity	AT	7040474	N/A	2020/11/05	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7041052	N/A	2020/11/06	Nimarta Singh
Fluoride	ISE	7040448	2020/11/05	2020/11/05	Surinder Rai
Hardness (calculated as CaCO3)		7037785	N/A	2020/11/09	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	7043170	2020/11/06	2020/11/09	Nan Raykha
Total Metals Analysis by ICPMS	ICP/MS	7042178	N/A	2020/11/06	Prempal Bhatti
Anion and Cation Sum	CALC	7038060	N/A	2020/11/09	Automated Statchk
Total Ammonia-N	LACH/NH4	7043136	N/A	2020/11/09	Amanpreet Sappal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7040505	N/A	2020/11/05	Chandra Nandlal
Total Oil and Grease	BAL	7044491	2020/11/07	2020/11/07	Jay Tailor
рН	AT	7040492	2020/11/05	2020/11/05	Surinder Rai
Phenols (4AAP)	TECH/PHEN	7039375	N/A	2020/11/05	Bramdeo Motiram
Sulphate by Automated Colourimetry	KONE	7040640	N/A	2020/11/06	Deonarine Ramnarine
Total Dissolved Solids	BAL	7040487	2020/11/05	2020/11/07	Shaneil Hall
Total Kjeldahl Nitrogen in Water	SKAL	7040122	2020/11/05	2020/11/05	Rajni Tyagi
Total Phosphorus (Colourimetric)	LACH/P	7040569	2020/11/05	2020/11/06	Shivani Shivani
Total Suspended Solids	BAL	7039796	2020/11/05	2020/11/06	Margesh Majmunda

BV Labs ID:	OBH327
Sample ID:	SW1
Matrix:	Water

Collected:	2020/10/29
Shipped:	
Received:	2020/11/03

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7040489	N/A	2020/11/05	Surinder Rai
Chloride by Automated Colourimetry	KONE	7040618	N/A	2020/11/06	Alina Dobreanu
Conductivity	AT	7040474	N/A	2020/11/05	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7041052	N/A	2020/11/06	Nimarta Singh
Fluoride	ISE	7040448	2020/11/05	2020/11/05	Surinder Rai
Hardness (calculated as CaCO3)		7037785	N/A	2020/11/09	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	7043170	2020/11/06	2020/11/09	Nan Raykha
Total Metals Analysis by ICPMS	ICP/MS	7042178	N/A	2020/11/06	Prempal Bhatti
Anion and Cation Sum	CALC	7038060	N/A	2020/11/09	Automated Statchk
Total Ammonia-N	LACH/NH4	7043139	N/A	2020/11/09	Amanpreet Sappal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7040505	N/A	2020/11/05	Chandra Nandlal
Total Oil and Grease	BAL	7044491	2020/11/07	2020/11/07	Jay Tailor
рН	AT	7040492	2020/11/05	2020/11/05	Surinder Rai
Phenols (4AAP)	TECH/PHEN	7039375	N/A	2020/11/05	Bramdeo Motiram
Sulphate by Automated Colourimetry	KONE	7040640	N/A	2020/11/06	Deonarine Ramnarine
Total Dissolved Solids	BAL	7040487	2020/11/05	2020/11/07	Shaneil Hall
Total Kjeldahl Nitrogen in Water	SKAL	7040122	2020/11/05	2020/11/05	Rajni Tyagi
Total Phosphorus (Colourimetric)	LACH/P	7040569	2020/11/05	2020/11/06	Shivani Shivani
Total Suspended Solids	BAL	7039796	2020/11/05	2020/11/06	Margesh Majmunda

Page 6 of 13

TEST SUMMARY

BV Labs ID:	OBH328
Sample ID:	SW2
Matrix:	Water

2020/10/29
2020/11/03

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7040489	N/A	2020/11/05	Surinder Rai
Chloride by Automated Colourimetry	KONE	7040618	N/A	2020/11/06	Alina Dobreanu
Conductivity	AT	7040474	N/A	2020/11/05	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7041052	N/A	2020/11/06	Nimarta Singh
Fluoride	ISE	7040448	2020/11/05	2020/11/05	Surinder Rai
Hardness (calculated as CaCO3)		7037785	N/A	2020/11/09	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	7043170	2020/11/06	2020/11/09	Nan Raykha
Total Metals Analysis by ICPMS	ICP/MS	7042178	N/A	2020/11/06	Prempal Bhatti
Anion and Cation Sum	CALC	7038060	N/A	2020/11/09	Automated Statchk
Total Ammonia-N	LACH/NH4	7043136	N/A	2020/11/09	Amanpreet Sappal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7040505	N/A	2020/11/05	Chandra Nandlal
Total Oil and Grease	BAL	7044491	2020/11/07	2020/11/07	Jay Tailor
рН	AT	7040492	2020/11/05	2020/11/05	Surinder Rai
Phenols (4AAP)	TECH/PHEN	7039375	N/A	2020/11/05	Bramdeo Motiram
Sulphate by Automated Colourimetry	KONE	7040640	N/A	2020/11/06	Deonarine Ramnarine
Total Dissolved Solids	BAL	7040487	2020/11/05	2020/11/07	Shaneil Hall
Total Kjeldahl Nitrogen in Water	SKAL	7040122	2020/11/05	2020/11/05	Rajni Tyagi
Total Phosphorus (Colourimetric)	LACH/P	7040569	2020/11/05	2020/11/06	Shivani Shivani
Total Suspended Solids	BAL	7039796	2020/11/05	2020/11/06	Margesh Majmunda

BV Labs ID:	OBH329
Sample ID:	DUP1
Matrix:	Water

Collected:	2020/10/29
Shipped:	
Received:	2020/11/03

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7040489	N/A	2020/11/05	Surinder Rai
Chloride by Automated Colourimetry	KONE	7040618	N/A	2020/11/06	Alina Dobreanu
Conductivity	AT	7040474	N/A	2020/11/05	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7041052	N/A	2020/11/06	Nimarta Singh
Fluoride	ISE	7040448	2020/11/05	2020/11/05	Surinder Rai
Hardness (calculated as CaCO3)		7037785	N/A	2020/11/09	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	7043170	2020/11/06	2020/11/09	Nan Raykha
Total Metals Analysis by ICPMS	ICP/MS	7042178	N/A	2020/11/06	Prempal Bhatti
Anion and Cation Sum	CALC	7038060	N/A	2020/11/09	Automated Statchk
Total Ammonia-N	LACH/NH4	7043136	N/A	2020/11/09	Amanpreet Sappal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7040505	N/A	2020/11/05	Chandra Nandlal
Total Oil and Grease	BAL	7044491	2020/11/07	2020/11/07	Jay Tailor
рН	AT	7040492	2020/11/05	2020/11/05	Surinder Rai
Phenols (4AAP)	TECH/PHEN	7039375	N/A	2020/11/05	Bramdeo Motiram
Sulphate by Automated Colourimetry	KONE	7040640	N/A	2020/11/06	Deonarine Ramnarine
Total Dissolved Solids	BAL	7040487	2020/11/05	2020/11/07	Shaneil Hall
Total Kjeldahl Nitrogen in Water	SKAL	7040606	2020/11/05	2020/11/05	Rajni Tyagi
Total Phosphorus (Colourimetric)	LACH/P	7040289	2020/11/05	2020/11/06	Shivani Shivani
Total Suspended Solids	BAL	7039977	2020/11/05	2020/11/09	Margesh Majmunda

Page 7 of 13

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	4.0°C
Package 2	4.7°C
Package 3	5.7°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7039375	BMO	Matrix Spike	Phenols-4AAP	2020/11/05		102	%	80 - 120
7039375	BMO	Spiked Blank	Phenols-4AAP	2020/11/05		98	%	80 - 120
7039375	BMO	Method Blank	Phenols-4AAP	2020/11/05	<0.0010		mg/L	
7039375	BMO	RPD	Phenols-4AAP	2020/11/05	NC		%	20
7039796	MAN	QC Standard	Total Suspended Solids	2020/11/06		95	%	85 - 115
7039796	MAN	Method Blank	Total Suspended Solids	2020/11/06	<10		mg/L	
7039796	MAN	RPD	Total Suspended Solids	2020/11/06	0		%	25
7039977	MAN	QC Standard	Total Suspended Solids	2020/11/09		96	%	85 - 115
7039977	MAN	Method Blank	Total Suspended Solids	2020/11/09	<10		mg/L	
7039977	MAN	RPD	Total Suspended Solids	2020/11/09	13		%	25
7040122	RTY	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2020/11/05		100	%	80 - 120
7040122	RTY	QC Standard	Total Kjeldahl Nitrogen (TKN)	2020/11/05		102	%	80 - 120
7040122	RTY	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2020/11/05		97	%	80 - 120
7040122	RTY	Method Blank	Total Kjeldahl Nitrogen (TKN)	2020/11/05	<0.10		mg/L	
7040122	RTY	RPD	Total Kjeldahl Nitrogen (TKN)	2020/11/05	17		%	20
7040289	SSV	Matrix Spike	Total Phosphorus	2020/11/06		96	%	80 - 120
7040289	SSV	QC Standard	Total Phosphorus	2020/11/06		97	%	80 - 120
7040289	SSV	Spiked Blank	Total Phosphorus	2020/11/06		104	%	80 - 120
7040289	SSV	Method Blank	Total Phosphorus	2020/11/06	<0.004	101	mg/L	00 120
7040289	SSV	RPD	Total Phosphorus	2020/11/06	NC		%	20
7040448	SAU	Matrix Spike	Fluoride (F-)	2020/11/05	Ne	91	%	80 - 120
7040448	SAU	Spiked Blank	Fluoride (F-)	2020/11/05		105	%	80 - 120
7040448	SAU	Method Blank	Fluoride (F-)	2020/11/05	<0.10	105	mg/L	00 - 120
7040448	SAU	RPD	Fluoride (F-)	2020/11/05	1.9		111g/ L %	20
7040448	SAU	Spiked Blank	Conductivity	2020/11/05	1.9	100	%	85 - 115
7040474	SAU	Method Blank	Conductivity	2020/11/05	< 0.001	100	mS/cm	89 - 119
7040474	SAU	RPD	Conductivity	2020/11/05	3.1		%	25
7040474		QC Standard	•		5.1	97	%	
7040487 7040487	SHD SHD	-	Total Dissolved Solids Total Dissolved Solids	2020/11/07	<10	97		90 - 110
7040487	SHD	Method Blank RPD		2020/11/07			mg/L %	25
			Total Dissolved Solids	2020/11/07	4.1	0.0		25
7040489	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2020/11/05	.1.0	98	%	85 - 115
7040489	SAU	Method Blank	Alkalinity (Total as CaCO3)	2020/11/05	<1.0		mg/L	20
7040489	SAU	RPD	Alkalinity (Total as CaCO3)	2020/11/05	0.53	101	%	20
7040492	SAU	Spiked Blank	pH	2020/11/05	0.07	101	%	98 - 103
7040492	SAU	RPD	pH	2020/11/05	0.37	101	%	N/A
7040505	C_N	Matrix Spike	Nitrite (N)	2020/11/05		101	%	80 - 120
			Nitrate (N)	2020/11/05		86	%	80 - 120
7040505	C_N	Spiked Blank	Nitrite (N)	2020/11/05		109	%	80 - 120
			Nitrate (N)	2020/11/05		90	%	80 - 120
7040505	C_N	Method Blank	Nitrite (N)	2020/11/05	<0.010		mg/L	
			Nitrate (N)	2020/11/05	<0.10		mg/L	
7040505	C_N	RPD	Nitrite (N)	2020/11/05	NC		%	20
			Nitrate (N)	2020/11/05	0.25		%	20
7040569	SSV	Matrix Spike	Total Phosphorus	2020/11/06		101	%	80 - 120
7040569	SSV	QC Standard	Total Phosphorus	2020/11/06		99	%	80 - 120
7040569	SSV	Spiked Blank	Total Phosphorus	2020/11/06		102	%	80 - 120
7040569	SSV	Method Blank	Total Phosphorus	2020/11/06	<0.004		mg/L	
7040569	SSV	RPD	Total Phosphorus	2020/11/06	NC		%	20
7040606	RTY	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2020/11/06		NC	%	80 - 120
7040606	RTY	QC Standard	Total Kjeldahl Nitrogen (TKN)	2020/11/05		101	%	80 - 120
7040606	RTY	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2020/11/05		101	%	80 - 120

Page 9 of 13

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7040606	RTY	Method Blank	Total Kjeldahl Nitrogen (TKN)	2020/11/05	<0.10		mg/L	
7040606	RTY	RPD	Total Kjeldahl Nitrogen (TKN)	2020/11/06	0.074		%	20
7040618	ADB	Matrix Spike	Dissolved Chloride (Cl-)	2020/11/06		NC	%	80 - 120
7040618	ADB	Spiked Blank	Dissolved Chloride (Cl-)	2020/11/06		102	%	80 - 120
7040618	ADB	Method Blank	Dissolved Chloride (Cl-)	2020/11/06	<1.0		mg/L	
7040618	ADB	RPD	Dissolved Chloride (Cl-)	2020/11/06	1.1		%	20
7040640	DRM	Matrix Spike	Dissolved Sulphate (SO4)	2020/11/06		125	%	75 - 125
7040640	DRM	Spiked Blank	Dissolved Sulphate (SO4)	2020/11/06		100	%	80 - 120
7040640	DRM	Method Blank	Dissolved Sulphate (SO4)	2020/11/06	<1.0		mg/L	
7040640	DRM	RPD	Dissolved Sulphate (SO4)	2020/11/06	NC		%	20
7041052	NS3	Matrix Spike	Dissolved Organic Carbon	2020/11/06		94	%	80 - 120
7041052	NS3	Spiked Blank	Dissolved Organic Carbon	2020/11/06		100	%	80 - 120
7041052	NS3	Method Blank	Dissolved Organic Carbon	2020/11/06	<0.40		mg/L	
7041052	NS3	RPD	Dissolved Organic Carbon	2020/11/06	2.5		%	20
7042178	PBA	Matrix Spike	Total Arsenic (As)	2020/11/06		102	%	80 - 120
			Total Cadmium (Cd)	2020/11/06		102	%	80 - 120
			Total Calcium (Ca)	2020/11/06		93	%	80 - 120
			Total Chromium (Cr)	2020/11/06		100	%	80 - 120
			Total Copper (Cu)	2020/11/06		101	%	80 - 120
			Total Iron (Fe)	2020/11/06		97	%	80 - 120
			Total Lead (Pb)	2020/11/06		96	%	80 - 120
			Total Magnesium (Mg)	2020/11/06		92	%	80 - 120
			Total Manganese (Mn)	2020/11/06		111	%	80 - 120
			Total Nickel (Ni)	2020/11/06		96	%	80 - 120
			Total Potassium (K)	2020/11/06		100	%	80 - 120
			Total Sodium (Na)	2020/11/06		102	%	80 - 120
			Total Zinc (Zn)	2020/11/06		100	%	80 - 120
7042178	PBA	Spiked Blank	Total Arsenic (As)	2020/11/06		102	%	80 - 120
			Total Cadmium (Cd)	2020/11/06		105	%	80 - 120
			Total Calcium (Ca)	2020/11/06		100	%	80 - 120
			Total Chromium (Cr)	2020/11/06		101	%	80 - 120
			Total Copper (Cu)	2020/11/06		105	%	80 - 120
			Total Iron (Fe)	2020/11/06		97	%	80 - 120
			Total Lead (Pb)	2020/11/06		97	%	80 - 120
			Total Magnesium (Mg)	2020/11/06		101	%	80 - 120
			Total Manganese (Mn)	2020/11/06		96	%	80 - 120
			Total Nickel (Ni)	2020/11/06		97	%	80 - 120
			Total Potassium (K)	2020/11/06		99	%	80 - 120
			Total Sodium (Na)	2020/11/06		98	%	80 - 120
			Total Zinc (Zn)	2020/11/06		103	%	80 - 120
7042178	PBA	Method Blank	Total Arsenic (As)	2020/11/09	<1.0		ug/L	
			Total Cadmium (Cd)	2020/11/09	<0.090		ug/L	
			Total Calcium (Ca)	2020/11/09	<200		ug/L	
			Total Chromium (Cr)	2020/11/09	<5.0		ug/L	
			Total Copper (Cu)	2020/11/09	<0.90		ug/L	
			Total Iron (Fe)	2020/11/09	<100		ug/L	
			Total Lead (Pb)	2020/11/09	<0.50		ug/L	
			Total Magnesium (Mg)	2020/11/09	<50		ug/L	
			Total Manganese (Mn)	2020/11/09	<2.0		ug/L	
1			Total Nickel (Ni)	2020/11/09	<1.0		ug/L	
			Total Potassium (K)	2020/11/09	<200		ug/L	

Page 10 of 13

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC		007				2		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Sodium (Na)	2020/11/09	<100		ug/L	
			Total Zinc (Zn)	2020/11/09	<5.0		ug/L	
7042178	PBA	RPD	Total Arsenic (As)	2020/11/06	3.6		%	20
7043136	ASP	Matrix Spike	Total Ammonia-N	2020/11/09		95	%	75 - 125
7043136	ASP	Spiked Blank	Total Ammonia-N	2020/11/09		99	%	80 - 120
7043136	ASP	Method Blank	Total Ammonia-N	2020/11/09	<0.050		mg/L	
7043136	ASP	RPD	Total Ammonia-N	2020/11/09	1.6		%	20
7043139	ASP	Matrix Spike	Total Ammonia-N	2020/11/09		96	%	75 - 125
7043139	ASP	Spiked Blank	Total Ammonia-N	2020/11/09		99	%	80 - 120
7043139	ASP	Method Blank	Total Ammonia-N	2020/11/09	<0.050		mg/L	
7043139	ASP	RPD	Total Ammonia-N	2020/11/09	2.2		%	20
7043170	N_R	Matrix Spike	Dissolved Calcium (Ca)	2020/11/09		NC	%	80 - 120
			Dissolved Magnesium (Mg)	2020/11/09		100	%	80 - 120
			Dissolved Potassium (K)	2020/11/09		101	%	80 - 120
			Dissolved Sodium (Na)	2020/11/09		98	%	80 - 120
7043170	N_R	Spiked Blank	Dissolved Calcium (Ca)	2020/11/09		106	%	80 - 120
			Dissolved Magnesium (Mg)	2020/11/09		102	%	80 - 120
			Dissolved Potassium (K)	2020/11/09		104	%	80 - 120
			Dissolved Sodium (Na)	2020/11/09		101	%	80 - 120
7043170	N_R	Method Blank	Dissolved Calcium (Ca)	2020/11/09	<200		ug/L	
			Dissolved Magnesium (Mg)	2020/11/09	<50		ug/L	
			Dissolved Potassium (K)	2020/11/09	<200		ug/L	
			Dissolved Sodium (Na)	2020/11/09	<100		ug/L	
7043170	NR	RPD	Dissolved Calcium (Ca)	2020/11/09	2.2		%	20
	_		Dissolved Magnesium (Mg)	2020/11/09	0.17		%	20
			Dissolved Potassium (K)	2020/11/09	0.72		%	20
			Dissolved Sodium (Na)	2020/11/09	1.4		%	20
7044491	JT5	Spiked Blank	Total Oil & Grease	2020/11/07		97	%	85 - 115
7044491	JT5	RPD	Total Oil & Grease	2020/11/07	1.8		%	25
7044491	JT5	Method Blank	Total Oil & Grease	2020/11/07	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Exceedance Summary Table – Prov. Water Quality Obj.

Result Exceedances

Sample ID	BV Labs ID	Parameter	Criteria	Result	DL	UNITS	
Pond	OBH326-01	Total Phosphorus	0.01	0.012	0.004	mg/L	
SW1	OBH327-01	Total Phosphorus	0.01	0.011	0.004	mg/L	
SW2	OBH328-01	Total Phosphorus	0.01	0.025	0.004	mg/L	
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to							

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Your Project #: 1407634 Site#: 1407634 Site Location: McCarthy Your C.O.C. #: 796497-04-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/11/16 Report #: R6412460 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0T5731

Received: 2020/11/06, 11:31

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/11/13	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/11/13	2020/11/13	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/11/11	2020/11/11	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/11/11	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/11/13	2020/11/13	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/11/12	2020/11/13	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Your Project #: 1407634 Site#: 1407634 Site Location: McCarthy Your C.O.C. #: 796497-04-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/11/16 Report #: R6412460 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0T5731 Received: 2020/11/06, 11:31

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

RESULTS OF ANALYSES OF WATER

BV Labs ID		OCI072							
Sampling Data		2020/11/05							
Sampling Date		13:00							
COC Number		796497-04-01							
	UNITS	POND	RDL	QC Batch					
Calculated Parameters	Calculated Parameters								
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	0.50	7048462					
Inorganics									
рН	рН	8.05	N/A	7050744					
Phenols-4AAP	mg/L	<0.0010	0.0010	7050024					
Total Suspended Solids	mg/L	13	1	7052704					
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	<0.50	0.50	7055185					
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	7055210					
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
N/A = Not Applicable									

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 18.0°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Batch Init QC Type Parameter Date Analyzed Value Recovery UNITS QC Limits 7050024 BMO Matrix Spike Phenols-4AAP 2020/11/11 101 % 80 - 120 7050024 BMO Spiked Blank Phenols-4AAP 2020/11/11 0.010 mg/L 7050024 BMO Method Blank Phenols-4AAP 2020/11/11 9.0010 mg/L 7050024 BMO RPD Phenols-4AAP 2020/11/11 9.5 % 20 7050024 BMO RPD Phenols-4AAP 2020/11/11 9.5 % 20 7050744 NYS Spiked Blank pH 2020/11/11 0.61 % 89 - 103 7050744 NYS RPD pH 2020/11/13 0.61 % 85 - 115 7052704 SHD QC Standard Total Suspended Solids 2020/11/13 5.1 mg/L 7052704 SHD RPD Total Oil & Grease 2020/11/13 5.1 <th>QA/QC</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	QA/QC								
7050024 BMO Spiked Blank Phenols-4AAP 2020/11/11 101 % 80 - 120 7050024 BMO Method Blank Phenols-4AAP 2020/11/11 <0.0010	Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7050024 BMO Method Blank Phenols-4AAP 2020/11/11 <0.0010 mg/L 7050024 BMO RPD Phenols-4AAP 2020/11/11 9.5 % 20 7050024 BMO RPD Phenols-4AAP 2020/11/11 9.5 % 20 7050744 NYS Spiked Blank pH 2020/11/11 0.61 % 98 - 103 7050744 NYS RPD pH 2020/11/11 0.61 % N/A 7052704 SHD QC Standard Total Suspended Solids 2020/11/13 0.61 mg/L 7052704 SHD Method Blank Total Suspended Solids 2020/11/13 <1	7050024	BMO	Matrix Spike	Phenols-4AAP	Phenols-4AAP 2020/11/11		101	%	80 - 120
7050024 BMO RPD Phenols-4AAP 2020/11/11 9.5 % 20 7050744 NYS Spiked Blank pH 2020/11/11 0.61 % 98 - 103 7050744 NYS RPD pH 2020/11/11 0.61 % 98 - 103 7050744 NYS RPD pH 2020/11/11 0.61 % N/A 7052704 SHD QC Standard Total Suspended Solids 2020/11/13 96 % 85 - 115 7052704 SHD Method Blank Total Suspended Solids 2020/11/13 5.1 mg/L 7052704 SHD RPD Total Suspended Solids 2020/11/13 5.1 % 25 7055185 JT5 Spiked Blank Total Oil & Grease 2020/11/13 1.6 % 25 7055185 JT5 Method Blank Total Oil & Grease 2020/11/13 1.6 % 25 7055185 JT5 Method Blank Total Oil & Grease 2020/11/13 4.7 % 85 - 115 7055210 JT5 Spiked Bla	7050024	BMO	Spiked Blank	Phenols-4AAP	2020/11/11		101	%	80 - 120
7050744 NYS Spiked Blank pH 2020/11/11 102 % 98 - 103 7050744 NYS RPD pH 2020/11/11 0.61 % N/A 7050744 NYS RPD QC Standard Total Suspended Solids 2020/11/13 0.61 % 85 - 115 7052704 SHD QC Standard Total Suspended Solids 2020/11/13 <1	7050024	BMO	Method Blank	Phenols-4AAP	2020/11/11	<0.0010		mg/L	
7050744NYSRPDpH2020/11/110.61%N/A7052704SHDQC StandardTotal Suspended Solids2020/11/1396%85 - 1157052704SHDMethod BlankTotal Suspended Solids2020/11/13<1	7050024	BMO	RPD	Phenols-4AAP	2020/11/11	9.5		%	20
7052704SHDQC StandardTotal Suspended Solids2020/11/1396%85 - 1157052704SHDMethod BlankTotal Suspended Solids2020/11/13<1	7050744	NYS	Spiked Blank	рН	2020/11/11		102	%	98 - 103
7052704SHDMethod BlankTotal Suspended Solids2020/11/13<1mg/L7052704SHDRPDTotal Suspended Solids2020/11/135.1%257055185JT5Spiked BlankTotal Oil & Grease2020/11/135.1%85 - 1157055185JT5RPDTotal Oil & Grease2020/11/131.6%257055185JT5Method BlankTotal Oil & Grease2020/11/131.6%257055185JT5Method BlankTotal Oil & Grease2020/11/13<0.50	7050744	NYS	RPD	рН	2020/11/11	0.61		%	N/A
7052704 SHD RPD Total Suspended Solids 2020/11/13 5.1 % 25 7055185 JT5 Spiked Blank Total Oil & Grease 2020/11/13 5.1 98 % 85 - 115 7055185 JT5 RPD Total Oil & Grease 2020/11/13 1.6 % 25 7055185 JT5 Method Blank Total Oil & Grease 2020/11/13 0.50 mg/L 7055210 JT5 Spiked Blank Total Oil & Grease Mineral/Synthetic 2020/11/13 4.7 % 25 7055210 JT5 RPD Total Oil & Grease Mineral/Synthetic 2020/11/13 4.7 % 25	7052704	SHD	QC Standard	Total Suspended Solids	2020/11/13		96	%	85 - 115
7055185 JT5 Spiked Blank Total Oil & Grease 2020/11/13 98 % 85 - 115 7055185 JT5 RPD Total Oil & Grease 2020/11/13 1.6 % 25 7055185 JT5 Method Blank Total Oil & Grease 2020/11/13 <0.50	7052704	SHD	Method Blank	Total Suspended Solids	2020/11/13	<1		mg/L	
7055185 JT5 RPD Total Oil & Grease 2020/11/13 1.6 % 25 7055185 JT5 Method Blank Total Oil & Grease 2020/11/13 <0.50	7052704	SHD	RPD	Total Suspended Solids	2020/11/13	5.1		%	25
7055185JT5Method BlankTotal Oil & Grease2020/11/13<0.50mg/L7055210JT5Spiked BlankTotal Oil & Grease Mineral/Synthetic2020/11/1395%85 - 1157055210JT5RPDTotal Oil & Grease Mineral/Synthetic2020/11/134.7%25	7055185	JT5	Spiked Blank	Total Oil & Grease	2020/11/13		98	%	85 - 115
7055210 JT5 Spiked Blank Total Oil & Grease Mineral/Synthetic 2020/11/13 95 % 85 - 115 7055210 JT5 RPD Total Oil & Grease Mineral/Synthetic 2020/11/13 4.7 % 25	7055185	JT5	RPD	Total Oil & Grease	2020/11/13	1.6		%	25
7055210 JT5 RPD Total Oil & Grease Mineral/Synthetic 2020/11/13 4.7 % 25	7055185	JT5	Method Blank	Total Oil & Grease	2020/11/13	<0.50		mg/L	
	7055210	JT5	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/11/13		95	%	85 - 115
7055210 JT5 Method Blank Total Oil & Grease Mineral/Synthetic 2020/11/13 <0.50 mg/L	7055210	JT5	RPD	Total Oil & Grease Mineral/Synthetic	2020/11/13	4.7		%	25
	7055210	JT5	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/11/13	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Brad Newman, B.Sc., C.Chem., Scientific Service Specialist

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: c#762593-05-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/11/20 Report #: R6418214 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: COU3864

Received: 2020/11/16, 10:00

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/11/19	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/11/19	2020/11/19	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/11/17	2020/11/18	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/11/18	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/11/19	2020/11/19	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/11/17	2020/11/19	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Your Project #: 1407634 Site#: 1407634 Site Location: MCCARTHY Your C.O.C. #: c#762593-05-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/11/20 Report #: R6418214 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0U3864 Received: 2020/11/16, 10:00

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com

Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

RESULTS OF ANALYSES OF WATER

BV Labs ID		OED774				
Sampling Date		2020/11/12				
		14:30				
COC Number		c#762593-05-01				
	UNITS	POND	RDL	QC Batch		
Calculated Parameters						
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	0.50	7058258		
Inorganics						
рН	рН	8.06	N/A	7060301		
Phenols-4AAP	mg/L	<0.0010	0.0010	7062131		
Total Suspended Solids	mg/L	2	1	7060211		
Petroleum Hydrocarbons	•					
Total Oil & Grease	mg/L	<0.50	0.50	7064840		
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	7064848		
RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch						
N/A = Not Applicable						

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 13.7°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7060211	SHD	QC Standard	Total Suspended Solids	2020/11/19		95	95 %	
7060211	SHD	Method Blank	Total Suspended Solids	2020/11/19	<1		mg/L	
7060211	SHD	RPD	Total Suspended Solids	2020/11/19	11		%	25
7060301	SAU	Spiked Blank	рН	2020/11/18		101	%	98 - 103
7060301	SAU	RPD	рН	2020/11/18	2.4		%	N/A
7062131	BMO	Matrix Spike	Phenols-4AAP	2020/11/18		105	%	80 - 120
7062131	BMO	Spiked Blank	Phenols-4AAP	2020/11/18		103	%	80 - 120
7062131	BMO	Method Blank	Phenols-4AAP	2020/11/18	<0.0010		mg/L	
7062131	BMO	RPD	Phenols-4AAP	2020/11/18	13		%	20
7064840	SA5	Spiked Blank	Total Oil & Grease	2020/11/19		98	%	85 - 115
7064840	SA5	RPD	Total Oil & Grease	2020/11/19	2.8		%	25
7064840	SA5	Method Blank	Total Oil & Grease	2020/11/19	<0.50		mg/L	
7064848	SA5	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/11/19		96	%	85 - 115
7064848	SA5	RPD	Total Oil & Grease Mineral/Synthetic	2020/11/19	1.6		%	25
7064848	SA5	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/11/19	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, B.Sc., C.Chem., Scientific Service Specialist

Your Project #: 1407634 Site#: McCarthy Your C.O.C. #: 799445-01-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/12/23 Report #: R6461758 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0X8025

Received: 2020/12/17, 16:37

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2020/12/23	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2020/12/23	2020/12/23	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2020/12/19	2020/12/21	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2020/12/21	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2020/12/23	2020/12/23	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2020/12/19	2020/12/21	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Your Project #: 1407634 Site#: McCarthy Your C.O.C. #: 799445-01-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2020/12/23 Report #: R6461758 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0X8025 Received: 2020/12/17, 16:37

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com

Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

RESULTS OF ANALYSES OF WATER

BV Labs ID		OLK547	OLK547					
Sampling Date		2020/12/15 11:00	2020/12/15 11:00					
COC Number		799445-01-01	799445-01-01					
	UNITS	POND	POND Lab-Dup	RDL	QC Batch			
Calculated Parameters								
Total Animal/Vegetable Oil and Grease	mg/L	0.90	N/A	0.50	7117769			
Inorganics								
рН	рН	7.77	N/A	N/A	7119201			
Phenols-4AAP	mg/L	<0.0010	N/A	0.0010	7120557			
Total Suspended Solids	mg/L	5	4	1	7119417			
Petroleum Hydrocarbons								
Total Oil & Grease	mg/L	0.90	N/A	0.50	7124369			
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	N/A	0.50	7124373			
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
Lab-Dup = Laboratory Initiated Duplicate								
N/A = Not Applicable								

GENERAL COMMENTS

Each	temperature is the a	average of up to t	hree cooler temperatures taken at receipt
	Package 1	2.0°C	7
			_
Resu	Its relate only to the	e items tested.	

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7119201	SAU	Spiked Blank	рН	2020/12/21		102	%	98 - 103
7119201	SAU	RPD	рН	2020/12/21	0.88		%	N/A
7119417	SDE	QC Standard	Total Suspended Solids	2020/12/21		99	%	85 - 115
7119417	SDE	Method Blank	Total Suspended Solids	2020/12/21	<1		mg/L	
7119417	SDE	RPD [OLK547-02]	Total Suspended Solids	2020/12/21	4.4		%	25
7120557	BMO	Matrix Spike	Phenols-4AAP	2020/12/21		98	%	80 - 120
7120557	BMO	Spiked Blank	Phenols-4AAP	2020/12/21		97	%	80 - 120
7120557	BMO	Method Blank	Phenols-4AAP	2020/12/21	<0.0010		mg/L	
7120557	BMO	RPD	Phenols-4AAP	2020/12/21	4.1		%	20
7124369	JT5	Spiked Blank	Total Oil & Grease	2020/12/23		98	%	85 - 115
7124369	JT5	RPD	Total Oil & Grease	2020/12/23	0.51		%	25
7124369	JT5	Method Blank	Total Oil & Grease	2020/12/23	<0.50		mg/L	
7124373	JT5	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2020/12/23		93	%	85 - 115
7124373	JT5	RPD	Total Oil & Grease Mineral/Synthetic	2020/12/23	2.1		%	25
7124373	JT5	Method Blank	Total Oil & Grease Mineral/Synthetic	2020/12/23	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

golder.com