

REPORT MCCARTHY QUARRY

2022 Environmental Compliance Approval Annual Report

Submitted to:

Chris Hyde

Ministry of the Environment, Conservation and Parks Barrie District Office 1023-54 Cedar Pointe Drive Barrie, Ontario L4N 5R7

Submitted by:

WSP Canada Inc. 121 Commerce Park Drive, Unit L Barrie, Ontario L4N 8X1 +1 705 722 4492

21508089

March 2023

Distribution List

- 1 Copy Ministry of the Environment, Conservation and Parks
- e-Copy Green Infrastructure Partners Inc.
- e-Copy WSP Canada Inc.

Table of Contents

1.0	INTRODUCTION	1
2.0	BACKGROUND	1
3.0	QUARRY DISCHARGE MONITORING	1
	3.1 Quarry discharge Monitoring Requirements	1
4.0	QUARRY DISCHARGE MONITORING RESULTS	2
5.0	MEASURED DISCHARGE FROM QUARRY SUMP	2
6.0	OPERATIONAL PROBLEMS AND CORRECTIVE ACTIONS TAKEN	3
7.0	MAINTENANCE OF SEWAGE WORKS	3
8.0	QUARRY DISCHARGE QUALITY ASSURANCE OR CONTROL MEASURES	3
9.0	SUMMARY	3

TABLES

- Table 1 Condition 6(2) McCarthy Pond Weekly Water Quality Results
- Table 2 Condition 6(2) McCarthy Pond Monthly Water Quality Results
- Table 3 Condition 6(2) McCarthy Pond Water Quality Results
- Table 4 Condition 6(2) SW1 Water Quality Results
- Table 5 Condition 6(2) SW2 Water Quality Results
- Table 6 Measured Water Volume and Rate of Discharge from Quarry Sump

FIGURES

Figure 1 – Location Map

APPENDICES

APPENDIX A ECA No. 7737-BH6QEA

APPENDIX B Permit to Take Water No. 1603-BKTPQH

APPENDIX C Water Quality Results

1.0 INTRODUCTION

WSP Canada Inc. (WSP) was retained by QBJR/Green Infrastructure Partners Inc. (Green) to prepare the annual compliance report for the McCarthy Quarry located in the Township of Ramara, County of Simcoe (Figure 1), as a requirement of Environmental Compliance Approval (ECA) No. 7737-BH6QEA issued on October 22, 2019. A copy of the ECA No. 7737-BH6QEA is provided in Appendix A.

The following report includes a summary of the requirements listed in Section 8(5) of the ECA for the period from January 1, 2022 to December 31, 2022. Included herein are a summary of:

- Interpretation of all monitoring data and a comparison to the effluent limits outlined in the ECA;
- Any operational problems encountered;
- Maintenance work completed on any part of the sewage works; and,
- Effluent discharge quality assurance or control measures undertaken.

2.0 BACKGROUND

The McCarthy Quarry dewatering system consists of the collection of groundwater and surface water at the base of the quarry floor to a settling pond to the south of the active quarry area (Figure 1). Groundwater and precipitation entering the quarry is collected in a sump in the quarry floor. The sump is equipped with a pump with a maximum discharge rate of 35 L/sec which is attached the discharge line that directs the water to a ditch that runs southward through the McCarthy property to the 14,000 m³ settling pond. The water in the settling pond discharges via a Hickenbottom control structure to the roadside ditches along Concession Road 1. The water in the roadside ditch travels eastward along the north side of Concession Road 1 to a municipal drain and eventually discharges to the Talbot River, which in turn discharges to Lake Simcoe.

The dewatering activities from the McCarthy Quarry are currently carried out under the existing Permit to Take Water (PTTW) No. 1603-BKTPQH (Appendix B). The Permit is in place from January 31, 2020 to January 31, 2025. Under the current PTTW Green is permitted to pump water from the quarry sump at a rate of 4,545 L/min.

3.0 QUARRY DISCHARGE MONITORING

3.1 Quarry discharge Monitoring Requirements

Quarry discharge monitoring is required by the ECA at three locations, as shown on Figure 1:

- McCarthy Pond: the outfall of the settling pond;
- SW1: the culvert along Concession Road 1 at the McCarthy property downstream of the McCarthy Pond discharge location; and
- SW2: 260 m north of the intersection of Concession Road 1 and Mara Eldon Boundary Road, representing upstream conditions.

Condition 6(2) Table 2

Weekly quarry discharge monitoring is required at the McCarthy Pond for Total Suspended Solids (TSS), Oil and Grease and Phenols (4AAP). These results are summarized in Table 1 and the monthly averages are

summarized in Table 2. No sample was collected for the weeks when quarry staff reported there was no or very limited discharge at the time of sampling.

The weekly quarry discharge samples (Section 6(2)) were collected by staff at the McCarthy Quarry. The weekly quality samples were sent to Bureau Veritas Laboratories of Mississauga, Ontario for analysis. Laboratory analysis results are included in Appendix C.

Condition 6(2) Table 3

Additional water quality sampling is required under Section 6(2) Table 3 at a semi-annual frequency at all three locations. The parameters required for semi-annual water quality monitoring at all three locations are listed in Table 3 of the ECA.

The semi-annual water quality samples (Section 6(2)) were collected by WSP. The semi-annual water quality samples were sent to Bureau Veritas Laboratories of Mississauga, Ontario for analysis. The laboratory analysis results are included in Appendix C.

Condition 6(4)

Section 6(4) requires measurement, recording and calculation of the discharge rate and volume from the works during the discharge period. The flow rates are recorded and provided to WSP by staff at the McCarthy Quarry. These results are summarized in Table 6.

4.0 QUARRY DISCHARGE MONITORING RESULTS

Condition 6(2) Table 2

The TSS, pH, Oil and Grease and Phenols (4AAP) concentrations were all below the daily concentration limits of the ECA (Table 1).

The calculated monthly average of the TSS, Oil and Grease and Phenols (4AAP) concentrations were all below the monthly concentration limits stipulated in the ECA (Table 2).

Condition 6(2) Table 3

All of the parameters tested for samples collected at the McCarthy Pond location were reported at concentrations below the Provincial Water Quality Objectives (PWQO), with the exception of Total Iron in the Fall sample collection; results are provided in Table 3. As well it was reported there was limited pond discharge at the time of sampling. The elevated Iron is likely attributed to entrained sediment in the sample.

The Fall sample collected also showed elevated levels of Total Dissolved Solids (TDS) as compared to the Spring sample.

All of the parameters tested for samples collected at both the SW1 and SW2 locations were reported at concentrations below the PWQO with the exception of Total Phosphorous at SW1. A Fall sample was not collected at SW2 due to dry conditions in October. A second attempt was made in November, but the location remained dry. SW2 represents an upstream sampling location and the water quality at this location is not impacted by quarry operations. Results for SW1 and SW2 locations are provided in Tables 4 and 5, respectively.

5.0 MEASURED DISCHARGE FROM QUARRY SUMP

A continuous record of flow rates and discharge volumes has been maintained throughout this monitoring period. The pump records are provided by McCarthy Quarry staff. The pump records for January 1, 2022 to

December 31, 2022 are found in Table 6. The discharge rates were below the permitted rate of 4,545 L/min (6,544,800 L/day) throughout the monitoring period. There has been no indication of erosion and/or flooding of the downstream ditches.

6.0 OPERATIONAL PROBLEMS AND CORRECTIVE ACTIONS TAKEN

Green identified on November 17, 2021 that the sump pump required replacement and a rental pump was installed on November 21, 2021. In addition, Green reported that on December 17, 2021 it was identified that the discharge line that runs from the sump to the settling pond was damaged. Green stopped pumping for the remainder of the year and replacement of the discharge line was planned for 2022.

Green finalized set-up of a new sump location in March 2022 and started utilized this new sump location for pumping in April 2022. The initial sump location was creating operational issues as Green was not able to properly dewater the southern portion of the quarry. In addition, the previous set up was very inefficient due to the length of piping required from the sump to the horse-shoe shaped settling pond. The new sump location is shown on the attached Figure 1; Green has also adjusted the discharge piping that runs from the pump to the horse-shoe shaped settling pond. No changes were made to the discharge pond.

Green has indicated that no other operational problems were encountered with the dewatering system during the monitoring period of January to December 2022. Green also indicted that no spills occurred during the January to December 2022 monitoring period.

7.0 MAINTENANCE OF SEWAGE WORKS

Green started set up of a new sump in the southeastern corner of the sump in December 2021, and that was finished installation in March 2022. Green has also adjusted the discharge piping that runs from the pump to the horse-shoe shaped settling pond.

8.0 QUARRY DISCHARGE QUALITY ASSURANCE OR CONTROL MEASURES

Green indicated that no major quarry discharge quality assurance or control measures were put in place during this monitoring period.

9.0 SUMMARY

- ECA Condition 6(2) Table 2:
 - All of the weekly quarry discharge monitoring samples from the McCarthy Pond were below the permitted daily concentration limits; and
 - All of the monthly quarry discharge concentrations for the McCarthy Pond were below the permitted monthly concentration limits.
- Condition 6(2) Table 3:
 - At the McCarthy Pond, all parameters were below the PWQO, with the exception of Total Iron in the Fall sample which is attributed to limited pond discharge at the time of sampling. The elevated Iron is likely attributed to entrained sediment in the sample.

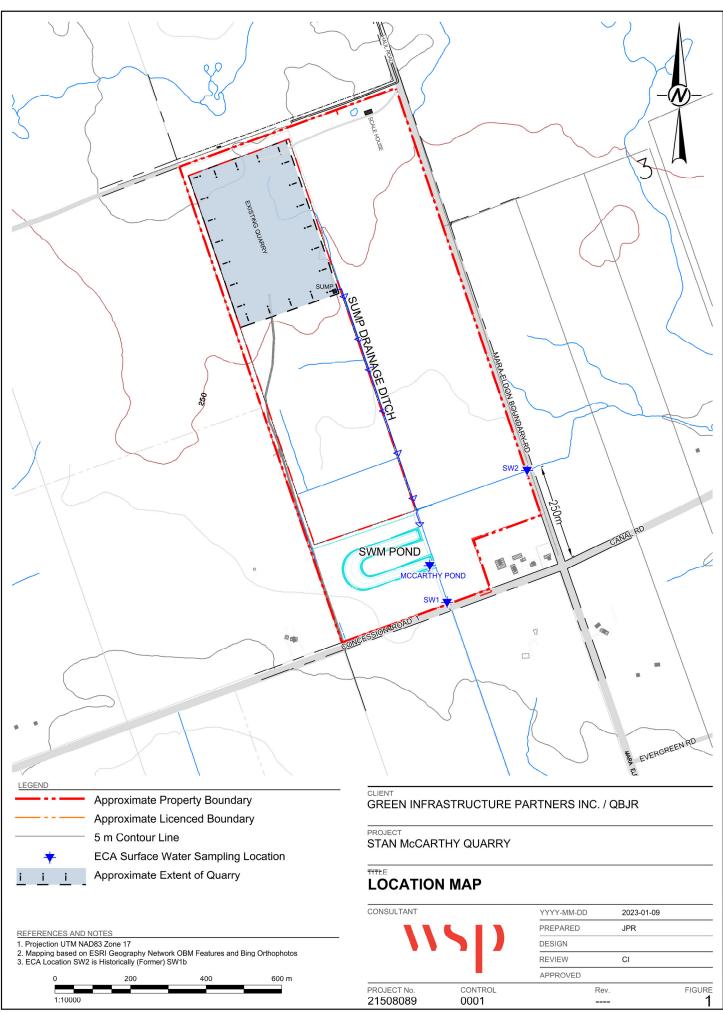
- At SW1, all parameters were below the PWQO, with the exception of Total Phosphorous in the Fall sample.
- At SW2, all parameters were below the PWQO. However, a Fall sample was not collected due to the stream bed being dry during the October and November visits.
- Condition 6(4):
 - A continuous record of flow rates has been maintained throughout the monitoring period and all water takings were below the permitted rate of 4,545 L/min (6,544,800 L/day).

Signature Page

WSP Canada Inc.

)

Colin Imrie, G.I.T. *Geo-Environmental Consultant*


CSI/SM/lb

lea m. Fall

Sean McFarland, Ph.D., P.Geo. Senior Principal/Fellow, Senior Hydrogeologist

https://golderassociates.sharepoint.com/sites/157344/project files/6 deliverables/eca annual report 2022/21508089-r-rev0-2022 eca annual report 28mar2023.docx

Figure

Tables

Table 1: Condition 6(2) McCarthy Pond Weekly Water Quality Results

	Unit	RDL	PWQ0 ¹	Daily Limit ²		McCarthy Quarry							McCarth	y Quarry				
Sample ID						Pond									Pond			
Date					04-Apr-22	11-Apr-22	18-Apr-22	25-Apr-22	02-May-22	09-May-22	24-May-22	30-May-22	06-Jun-22	13-Jun-22	20-Jun-22	08-Aug-22	27-Oct-22	16-Jan-23
pН	pН	n/a		6.0-9.5	8.10	8.09	8.25	8.23	8.22	8.43	8.94	8.85	8.45	8.43	8.15	7.37	8.05	7.42
Total Suspended Solids	mg/L	1		30	2	2	2	2	3	2	4	15	4	5	2	3	5	1
Total Oil and Grease	mg/L	0.5	Note 3	30	<0.5	<0.5	0.9	0.9	< 0.5	<0.5	1.8	1.3	<0.5	< 0.5	0.6	< 0.5	1.5	0.7
Phenols (4AAP)	mg/L	< 0.0010		0.04	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.0018	0.001	<0.001	<0.001	<0.001	<0.001	0.0011

Notes:

Provincial Water Quality Objectives (PWQO); shaded cells denote PWQO exceedance; some PWQOs are dependent on other water quality parameters hence the range in guideline values, refer to PWQO notes.
 Daily Concentration Limit; bolded values denote exceedances in the Environmental Compliance Approval daily concentration limits.

3. The PWQO for Oil and Grease indicates that oil or petrochemicals should not be present in concentrations that: can be detected as a visible film, sheen or discolouration on the surface, can be detected by odour, can cause tainting of edible organisms, can form detectable deposits on shorelines and bottom sediments.

4. Results that are preceeded by "<" denote concentrations that are below the laboratory Reportable Detection Limit (RDL).

Table 2: Condition 6(2) McCarthy Pond Monthly Water Quality Results

	Unit	RDL	PWQO ¹	Monthly Concentration Limit ²												
Sample ID																
					January	February	March	April	May	June	July	August	September	October	November	December
Date					2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022
Total Suspended Solids	mg/L	1		15	-	-	-	2.0	6.0	3.7	-	3	-	5	-	-
Total Oil and Grease	mg/L	0.5	Note 3	15	-	-	-	0.7	1.025	0.5	-	<0.5	-	1.5	-	-
Phenols (4AAP)	mg/L	<0.0010		0.02	-	-	-	<0.001	0.001	0.001	-	< 0.001	-	<0.001	-	-
Notes:																

 Provincial Water Quality Objectives (PWQO); shaded cells denote PWQO exceedance; some PWQOs are dependent on other water quality parameters hence the range in guideline values, refer to PWQO notes.
 Monthyl Concentration Limit; bolded values denote exceedances in the Environmental Compliance Approval monthly concentration limits.

3. The PWQO for Oil and Grease indicates that oil or petrochemicals should not be present in concentrations that: can be detected as a visible film, sheen

or discolouration on the surface, can be detected by odour, can cause tainting of edible organisms, can form detectable deposits on shorelines and bottom codimont.

sediments. 4. Results that are preceeded by "<" denote concentrations that are below the laboratory Reportable Detection Limit (RDL).

Table 3: Condition 6(2) McCarthy Pond Water Quality Results

	Unit	Reportable Detection Limit (RDL)	PWQO ¹	Interim PWQO ²	ECA Effluent Limits	McCarth	y Quarry
Sample ID						Pond	Pond
ate						13-May-22	28-Oct-22
Field Measured Parameters							
Conductivity	mS/cm					1054	1583
pH	pH	n/a	6.5-8.5		6.0-9.5	8.61	7.74
Temperature	°C	n/a				26.9	8.9
Calculated Parameters Hardness (CaCO3)	mg/L	1.0				360	470
Inorganics	IIIg/L	1.0					410
Total Ammonia-N	mg/L	0.050				<0.050	0.17
Conductivity	umho/cm	1.0				1,400.00	1,600.00
Total Dissolved Solids	mg/L	10				735	1080
Fluoride (F-)	mg/L	0.10				0.55	0.59
Total Kjeldahl Nitrogen (TKN)	mg/L	0.10 0.20			-	0.42	0.65 7.4
Dissolved Organic Carbon pH	mg/L pH	0.20 N/A	6.5-8.5		6.0-9.5	4.8 8.37	8.01
Phenols-4AAP	mg/L	0.0010	0.001		0.04	<0.0010	<0.0010
Total Phosphorus	mg/L	0.002	0.001	0.03 ^{5b}	0.01	0.008	0.019
Total Suspended Solids	mg/L	10			30	<10	<10
Dissolved Sulphate (SO4)	mg/L	1				300	330
Alkalinity (Total as CaCO3)	mg/L	1.0				59	110 270
Dissolved Chloride (Cl) Nitrite (N)	mg/L	1			-	190 0.063	<0.010
Nitrate (N)	mg/L mg/L	0.010				0.063	<0.010
Petroleum Hydrocarbons		0.10				0.00	
Total Oil & Grease	mg/L	0.50	Note 3		30	<0.50	0.60
Metals							
Total Arsenic (As)	ug/L	1	100	5		<1.0	<1.0
Total Cadmium (Cd)	ug/L	0.1	0.2	0.1-0.5 ^{5d}		<0.09	<0.09 99
Dissolved Calcium (Ca) Total Calcium (Ca)	mg/L ug/L	0.05 200				76 79000	1000000
Total Chromium (Cr)	ug/L	200	1-89 ^{5e}			<5.0	<5.0
Total Copper (Cu)	ug/L	1	5	1-5 ^{5f}		<0.9	<0.9
Total Iron (Fe)	ug/L	100	300			130	320
Total Lead (Pb)	ug/L	0.5	5-25 ⁵⁹	1-5 ^{5h}		<0.50	<0.50
Dissolved Magnesium (Mg)	mg/L	0.05			-	42	54 54000
Total Magnesium (Mg)	ug/L	50			-	44000	54000
Total Manganese (Mn) Total Nickel (Ni)	ug/L ug/L	2	25			13 <1.0	1.7
Dissolved Potassium (K)	mg/L	1	20			13.0	20.0
Total Potassium (K)	ug/L	200				12000	19000
Dissolved Sodium (Na)	mg/L	0.5				140	170
Total Sodium (Na) Total Zinc (Zn)	ug/L ug/L	100	30	20		140000 <5.0	170000
some PWQOs are dependent on oth values, refer to PWQO notes.	Objectives (Inter-	erim PWQO); sh	aded cells an	d italics	time. - Accordingly, t	ific evidence is insufficient to dev he following phosphorus concent lelines which should be suppleme	rations should be considered
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected can be detected by odour, can caus deposits on shorelines and bottom s	eline values, re ndicates that of d as a visible fi e tainting of ec ediments.	efer to PQWO no I or petrochemic Im, sheen or dis lible organisms,	otes. als should no colouration or can form dete	t be present in the surface, ectable	 (a) To avoid nu phosphorus con (b) A high level a total phosphorus should apply to 	isance concentrations of algae in neentrations for the ice-free perior of protection against aesthetic d rrus concentration for the ice-free all lakes naturally below this valu lant growth in rivers and streams	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. The ue;
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected can be detected by odour, can causi deposits on shorelines and bottom s 4. Results that are preceeded by "< Reportable Detection Limit (RDL).	eline values, re ndicates that oi d as a visible fi e tainting of ec ediments. " denote conce	efer to PQWO no I or petrochemic Im, sheen or dis- lible organisms, entrations that an	otes. als should no colouration or can form dete	t be present in the surface, ectable	 (a) To avoid nu phosphorus con (b) A high level a total phosphorus should apply to (c) Excessive p 	isance concentrations of algae in ncentrations for the ice-free perior of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this value	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. The ue;
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected can be detected by odour, can caus deposits on shorelines and bottom s 4. Results that are preceeded by "< Reportable Detection Limit (RDL).	eline values, re ndicates that oi d as a visible fi e tainting of ec ediments. " denote conce 5a. Aluminum	efer to PQWO no I or petrochemic Im, sheen or dis lible organisms, entrations that au (Interim):	otes. als should no colouration or can form dete re below the la	t be present in a the surface, actable aboratory	 (a) To avoid nu phosphorus con (b) A high level a total phosphorus should apply to (c) Excessive p 	isance concentrations of algae in neentrations for the ice-free perio of protection against aesthetic d rrus concentration for the ice-free all lakes naturally below this valu lant growth in rivers and streams	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. The ue;
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected can be detected by odour, can causide deposits on shorelines and bottoms " 4. Results that are preceeded by "- Reportable Detection Limit (RDL). 5. At pH 4.5 to 5.5 the Interim PWQO	eline values, re ndicates that oi d as a visible fi e tainting of ec ediments. " denote conce 5a. Aluminum	efer to PQWO no I or petrochemic Im, sheen or dis lible organisms, entrations that au (Interim):	otes. als should no colouration or can form dete re below the la	t be present in a the surface, actable aboratory	 (a) To avoid nu phosphorus con (b) A high level a total phospho should apply to (c) Excessive p phosphorus con 	isance concentrations of algae in neentrations for the ice-free perio of protection against aesthetic d rrus concentration for the ice-free all lakes naturally below this valu lant growth in rivers and streams	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. Ti e; should be eliminated at a to
denote Interim PWQO exceedance; parameters hence the range in guild 3. The PWQO for Oil and Grease in concentrations that: can be detected can be detected by odour, can caus deposits on shorelines and bottom s 4. Results that are preceeded by " Reportable Detection Limit (RDL). 2 At pH 4.5 to 5.5 the Interim PWQO measured in clay-free samples.	eline values, re- ndicates that oi d as a visible fi e tainting of ec- sediments. " denote conce <u>5a. Aluminum</u> is 15 ug/L bas	efer to PQWO no I or petrochemic Im, sheen or dis lible organisms, entrations that an (Interim): sed on inorganic	ntes. als should no colouration or can form dete re below the la monomeric a	t be present in the surface, cctable aboratory	 (a) To avoid nu phosphorus con (b) A high level a total phospho should apply to (c) Excessive p phosphorus con 	isance concentrations of algae in coentrations for the ice-free perio of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this val lant growth in rivers and streams neentration below 30 ug/L.	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. Tr Je; should be eliminated at a to , use 11 ug/L
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected can be detected by odour, can caus deposits on shorelines and bottom s 4. Results that are preceeded by " Reportable Detection Limit (RDL). 25 At pH 4.5 to 5.5 the Interim PWQO neasured in clay-free samples.	eline values, re- ndicates that oi d as a visible fi e tainting of ec- sediments. " denote conce <u>5a. Aluminum</u> is 15 ug/L bas	efer to PQWO no I or petrochemic Im, sheen or dis lible organisms, entrations that an (Interim): sed on inorganic	ntes. als should no colouration or can form dete re below the la monomeric a	t be present in the surface, cctable aboratory	 (a) To avoid nu phosphorus con (b) A high level a total phosphorus conshould apply to (c) Excessive p phosphorus construction 5c. Beryllium : 	isance concentrations of algae in coentrations for the ice-free perio of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this valu lant growth in rivers and streams ncentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3)	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. Tr le; should be eliminated at a to , use 11 ug/L , use 111 ug/L
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected can be detected by odour, can causi deposits on shorelines and bottom s 4. Results that are preceeded by "< Reportable Detection Limit (RDL). - At pH 4.5 to 5.5 the Interim PWQO measured in clay-free samples. - At pH >5.5 to 6.5, no condition sho	eline values, re rdicates that oi d as a visible fi e tainting of ec- ediments. " denote conce <u>5a. Aluminum</u> 0 is 15 ug/L bas- vuld be permitti	offer to PQWO no I or petrochemic Im, sheen or dis lible organisms, entrations that an (Interim): sed on inorganic ed which would i	tes. als should no colouration or can form dete re below the la monomeric a ncrease the a	t be present in the surface, sectable aboratory luminum icid soluble	 (a) To avoid nu phosphorus con (b) A high level a total phospho should apply to (c) Excessive p phosphorus con 	isance concentrations of algae in centrations for the ice-free perio of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this vali lant growth in rivers and streams incentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness 0-100 mg/L (CaCO	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. Tr e; should be eliminated at a to , use 11 ug/L , use 1110 ug/L 3), then use 0.1 ug/L
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected an be detected by odour, can caus deposits on shorelines and bottom s 4. Results that are preceeded by "	eline values, re dicates that oi d as a visible fi e tainting of ec ecdiments. " denote conce <u>5a. Aluminum</u> is 15 ug/L bas buld be permitti clay-free sam	ofer to PQWO not I or petrochemic Im, sheen or dis- lible organisms, antrations that an (Interim): sed on inorganic ad which would i ples to more tha	als should no colouration or can form dete e below the la monomeric a ncrease the a n 10% above	t be present in the surface, ectable aboratory luminum icid soluble natural	 (a) To avoid nu phosphorus cor (b) A high level a total phosphc should apply to (c) Excessive p phosphorus cor 5c. Beryllium: 5d. Cadmium: 	isance concentrations of algae in coentrations for the ice-free perio of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this valu lant growth in rivers and streams ncentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3)	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. Tr e; should be eliminated at a to , use 11 ug/L , use 1110 ug/L 3), then use 0.1 ug/L
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected can be detected by odour, can caus deposits on shorelines and bottom st 4. Results that are preceeded by "- Reportable Detection Limit (RDL). At pH 4.5 to 5.5 the Interim PWQO measured in clay-free samples. At pH -5.5 to 6.5, no condition sho norganic aluminum concentration in packground concentrations for wate	eline values, re dicates that oi d as a visible fi e tainting of ec ediments. " denote conce ba. Aluminum b is 15 ug/L ba: nuld be permitti o clay-free sam rs representati	ofer to PQWO not I or petrochemic Im, sheen or dis- lible organisms, antrations that an (Interim): sed on inorganic ad which would i ples to more tha	als should no colouration or can form dete e below the la monomeric a ncrease the a n 10% above	t be present in the surface, ectable aboratory luminum icid soluble natural	 (a) To avoid nu phosphorus con (b) A high level a total phosphor should apply to (c) Excessive p phosphorus con 5c. Beryllium: 5d. Cadmium: (Interim) 	isance concentrations of algae in neentrations for the ice-free perio of protection against aesthetic d irus concentration for the ice-free all lakes naturally below this vali lant growth in rivers and streams neentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3)	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. Ti e; should be eliminated at a to use 111 ug/L use 1100 ug/L 3), then use 0.1 ug/L i), then use 0.5 ug/L
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected can be detected by odour, can cause deposits on shorelines and bottom s 4. Results that are preceeded by "< Reportable Detection Limit (RDL). At pH 4.5 to 5.5 the Interim PWQC measured in clay-free samples. At pH >5.5 to 6.5, no condition sho norganic aluminum concentration in packground concentrations for wate hat are unaffected by man-made in	eline values, re dicates that oi dicates that oi d as a visible fi e tainting of ec- eediments. " denote conce of a deno	ofer to PQWO not I or petrochemic link, sheen or dis lible organisms, entrations that an (Interim): sed on inorganic ed which would i ples to more tha ve of that geolog	tes. als should no colouration or can form dete re below the la monomeric a ncrease the a n 10% above pical area of th	t be present in the surface, cctable aboratory luminum icid soluble natural ne Province	 (a) To avoid nu phosphorus con (b) A high level a total phosphor should apply to (c) Excessive p phosphorus con 5c. Beryllium: 5d. Cadmium: (Interim) 	isance concentrations of algae in coentrations for the ice-free perio of protection against aesthetic di rus concentration for the ice-free all lakes naturally below this vali lant growth in rivers and streams ncentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3)	d should not exceed 20 ug/L tetrioration will be provided period of 10 ug/L or less. Ti le; should be eliminated at a to use 111 ug/L , use 1100 ug/L 3), then use 0.1 ug/L), then use 0.5 ug/L (Cr VI)
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected an be detected by odour, can caus deposits on shorelines and bottom s 4. Results that are preceeded by "	eline values, re dicates that oi dicates that oi d as a visible fi e tainting of ec- eediments. " denote conce of a deno	ofer to PQWO not I or petrochemic link, sheen or dis lible organisms, entrations that an (Interim): sed on inorganic ed which would i ples to more tha ve of that geolog	tes. als should no colouration or can form dete re below the la monomeric a ncrease the a n 10% above pical area of th	t be present in the surface, cctable aboratory luminum icid soluble natural ne Province	 (a) To avoid nu phosphorus cou (b) A high level a total phosphor should apply to (c) Excessive p phosphorus cou 5c. Beryllium: 5d. Cadmium: (Intentm) 5e. Chromium 	isance concentrations of algae in neentrations for the ice-free perio of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this vali lant growth in rivers and streams neentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3 If Hardness >100 mg/L (CaCO3 3 t ug/L for hexavalent chromium 8.9 ug/L for trivalent chromium	Id should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. Tri Je; should be eliminated at a to , use 111 ug/L , use 1100 ug/L 3), then use 0.1 ug/L), then use 0.1 ug/L (Cr VI) (Cr III)
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected can be detected by odour, can caus deposits on shorelines and bottom st 4. Results that are preceeded by "	eline values, re dicates that oi dicates that oi a sa visible fi e tainting of ec- ediments. " denote conce <u>5a. Aluminum</u> b is 15 ug/L bas old be permitt puts. QO is 75 ug/L b	afer to PQWO not I or petrochemic lin, sheen or dis lible organisms, entrations that au (Interim): seed on inorganic ad which would i ples to more tha ve of that geolog pased on total all	tes. als should no colouration or can form dete re below the la monomeric a ncrease the a n 10% above gical area of th uminum meas	t be present in the surface, ectable aboratory luminum aboratory cid soluble natural e Province ured in clay-	 (a) To avoid nu phosphorus con (b) A high level a total phosphor should apply to (c) Excessive p phosphorus con 5c. Beryllium: 5d. Cadmium: (Interim) 5e. Chromium 5f. Copper: 	isance concentrations of algae in neentrations for the ice-free perio of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this val- lant growth in rivers and streams neentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO If Hardness >100 mg/L (CaCO I ug/L for hexavalent chromium If Hardness as CaCO3 (mg/L) is	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. Tri le; should be eliminated at a to , use 11 ug/L , use 1100 ug/L 3), then use 0.1 ug/L), then use 0.5 ug/L (Cr VI) (Cr VI) s 0 - 20, then use 1 ug/L
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected can be detected by odour, can cause deposits on shorelines and bottom s 4. Results that are preceeded by "< Reportable Detection Limit (RDL). At pH 4.5 to 5.5 the Interim PWQO measured in clay-free samples. At pH -5.5 to 6.5, no condition sho norganic aluminum concentration in packground concentrations for wate hat are unaffected by man-made in At pH -6.5 to 9.0, the Interim PWQ ree samples. If natural background aluminum co	eline values, re dicates that oi dicates that oi dicates that oi d as a visible fi e tainting of ec- eediments. " denote conce of a denote	afer to PQWO not I or petrochemic In, sheen or dis lible organisms, entrations that an (Interim): sed on inorganic ed which would i ples to more tha ve of that geolog pased on total all or water bodies u	tes. als should no colouration or can form dete re below the la monomeric a n crease the a n 10% above pical area of th uminum meas naffected by n	t be present in the surface, actable aboratory luminum acid soluble natural ne Province ured in clay- nanmade	 (a) To avoid nu phosphorus cou (b) A high level a total phosphor should apply to (c) Excessive p phosphorus cou 5c. Beryllium: 5d. Cadmium: (Intentm) 5e. Chromium 	isance concentrations of algae in neentrations for the ice-free perio of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this vali lant growth in rivers and streams neentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3 If Hardness >100 mg/L (CaCO3 3 t ug/L for hexavalent chromium 8.9 ug/L for trivalent chromium	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. Tri le; should be eliminated at a to , use 11 ug/L , use 1100 ug/L 3), then use 0.1 ug/L), then use 0.5 ug/L (Cr VI) (Cr VI) s 0 - 20, then use 1 ug/L
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected can be detected by odour, can caus deposits on shorelines and bottom s 4. Results that are preceeded by '	eline values, re dicates that oi d as a visible fi e tainting of ec- ediments. " denote conce <u>sa. Aluminum</u> b is 15 ug/L base uuld be permitte a clay-free sam rs representati puts. QO is 75 ug/L b ncentrations ir al Interim PWC	efer to PQWO not I or petrochemic Im, sheen or dis- lible organisms, antrations that au (Interim): sed on inorganic ed which would i ples to more that ye of that geolog wased on total all water bodies un O (above), no c	tes. als should no colouration or can form dete re below the la monomeric a ncrease the a n 10% above gical area of th uminum meas haffected by n ondition is per	t be present in the surface, cctable aboratory luminum ucid soluble natural ne Province ured in clay- manmade mitted that	 (a) To avoid nu phosphorus cou (b) A high level a total phosphc should apply to (c) Excessive p phosphorus cou 5c. Beryllium: 5d. Cadmium: (Interim) 5f. Copper: (Interim) 	isance concentrations of algae in coentrations for the ice-free perio of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this valu- lant growth in rivers and streams ncentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3 : 1 ug/L for hexavalent chromium &9. ug/L for trivalent chromium If Hardness as CaCO3 (mg/L) is If Hardness as CaCO3 (mg/L) is	d should not exceed 20 ug/L eterioration will be provided l period of 10 ug/L or less. Tri e; s should be eliminated at a to , use 11 ug/L , use 1100 ug/L 3), then use 0.1 ug/L), then use 0.5 ug/L (Cr VI) (Cr VI) (Cr III) s -20, then use 1 ug/L s >20, then use 5 ug/L
- At pH 4.5 to 5.5 the Interim PWQC measured in clay-free samples. - At pH 5.5 to 6.5, no condition sho inorganic aluminum concentration in background concentrations for wate that are unaffected by man-made inp. - At pH 56.5 to 9.0, the Interim PWC free samples. - If natural background aluminum co inputs are greater than the numerica would increase the aluminum conce	eline values, re dicates that oi d as a visible fi e tainting of ec- ediments. " denote conce <u>sa. Aluminum</u> b is 15 ug/L base uuld be permitte a clay-free sam rs representati puts. QO is 75 ug/L b ncentrations ir al Interim PWC	efer to PQWO not I or petrochemic Im, sheen or dis- lible organisms, antrations that au (Interim): sed on inorganic ed which would i ples to more that ye of that geolog wased on total all water bodies un O (above), no c	tes. als should no colouration or can form dete re below the la monomeric a ncrease the a n 10% above gical area of th uminum meas haffected by n ondition is per	t be present in the surface, cctable aboratory luminum ucid soluble natural ne Province ured in clay- manmade mitted that	 (a) To avoid nu phosphorus con (b) A high level a total phosphor should apply to (c) Excessive p phosphorus con 5c. Beryllium: 5d. Cadmium: (Interim) 5e. Chromium 5f. Copper: 	isance concentrations of algae in neentrations for the ice-free perio of protection against aesthetic d irus concentration for the ice-free all lakes naturally below this vali lant growth in rivers and streams neentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness as CaCO3 (mg/L) is If Hardness as CaCO3 (mg/L) is If Hardness as CaCO3 (mg/L) is	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. Tri- e; should be eliminated at a to use 111 ug/L use 1100 ug/L 3), then use 0.1 ug/L 3), then use 0.1 ug/L 4), then use 0.5 ug/L (Cr VI) (Cr III) 5 o - 20, then use 1 ug/L 5 > 20, then use 5 ug/L < 20, use 5 ug/L
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected can be detected by odour, can caus deposits on shorelines and bottoms " A. Results that are preceeded by "- Reportable Detection Limit (RDL). - At pH 4.5 to 5.5 the Interim PWQC0 measured in clay-free samples. - At pH 4.5 to 6.5, no condition sho inorganic aluminum concentration in background concentrations for wate that are unaffected by man-made inp. - At pH 6.5 to 9.0, the Interim PWC free samples. - If natural background aluminum co inputs are greater than the numeric	eline values, re dicates that oi d as a visible fi e tainting of ec- ediments. " denote conce <u>sa. Aluminum</u> b is 15 ug/L base uuld be permitte a clay-free sam rs representati puts. QO is 75 ug/L b ncentrations ir al Interim PWC	efer to PQWO not I or petrochemic Im, sheen or dis- lible organisms, antrations that au (Interim): sed on inorganic ed which would i ples to more that ye of that geolog wased on total all water bodies un O (above), no c	tes. als should no colouration or can form dete re below the la monomeric a ncrease the a n 10% above gical area of th uminum meas haffected by n ondition is per	t be present in the surface, cctable aboratory luminum ucid soluble natural ne Province ured in clay- manmade mitted that	 (a) To avoid nu phosphorus cou (b) A high level a total phosphc should apply to (c) Excessive p phosphorus cou 5c. Beryllium: 5d. Cadmium: (Interim) 5f. Copper: (Interim) 	isance concentrations of algae in noentrations for the ice-free perio of protection against aesthetic d irus concentration for the ice-free all lakes naturally below this vali lant growth in rivers and streams neentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) I Hardness >100 mg/L (CaCO3) I Hardness as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. Tri je; should be eliminated at a to , use 1110 ug/L , use 1100 ug/L 3), then use 0.1 ug/L (Cr III) (Cr III) (Cr III) 5 0 - 20, then use 1 ug/L s >20, then use 5 ug/L 20 to 40, use 10 ug/L
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected can be detected by odour, can causi- deposits on shorelines and bottom st 4. Results that are preceeded by "	eline values, re dicates that oi d as a visible fi e tainting of ec- ediments. " denote conce <u>sa. Aluminum</u> b is 15 ug/L base uuld be permitte a clay-free sam rs representati puts. QO is 75 ug/L b ncentrations ir al Interim PWC	efer to PQWO not I or petrochemic Im, sheen or dis- lible organisms, antrations that au (Interim): sed on inorganic ed which would i ples to more that ye of that geolog wased on total all water bodies un O (above), no c	tes. als should no colouration or can form dete re below the la monomeric a ncrease the a n 10% above gical area of th uminum meas haffected by n ondition is per	t be present in the surface, cctable aboratory luminum ucid soluble natural ne Province ured in clay- manmade mitted that	 (a) To avoid nu phosphorus cou (b) A high level a total phosphc should apply to (c) Excessive p phosphorus cou 5c. Beryllium: 5d. Cadmium: (Interim) 5f. Copper: (Interim) 	isance concentrations of algae in neentrations for the ice-free perio of protection against aesthetic di rus concentration for the ice-free all lakes naturally below this vali- lant growth in rivers and streams neentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness as CaCO3 (mg/L) is If Hardness as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is	d should not exceed 20 ug/L eterioration will be provided i period of 10 ug/L or less. The re; should be eliminated at a to , use 111 ug/L , use 1100 ug/L 3), then use 0.1 ug/L 3), then use 0.1 ug/L (Cr III) s 0 - 20, then use 1 ug/L < 20, then use 5 ug/L < 20, then use 5 ug/L 20 to 40, use 10 ug/L 40 to 80, use 20 ug/L
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected can be detected by odour, can causi- deposits on shorelines and bottom st 4. Results that are preceeded by "	eline values, re dicates that oi d as a visible fi e tainting of ec- ediments. " denote conce <u>sa. Aluminum</u> b is 15 ug/L base uuld be permitte a clay-free sam rs representati puts. QO is 75 ug/L b ncentrations ir al Interim PWC	efer to PQWO not I or petrochemic Im, sheen or dis- lible organisms, antrations that au (Interim): sed on inorganic ed which would i ples to more that ye of that geolog wased on total all water bodies un O (above), no c	tes. als should no colouration or can form dete re below the la monomeric a ncrease the a n 10% above gical area of th uminum meas haffected by n ondition is per	t be present in the surface, cctable aboratory luminum ucid soluble natural ne Province ured in clay- manmade mitted that	 (a) To avoid nu phosphorus cou (b) A high level a total phosphor should apply to (c) Excessive p phosphorus cou 5c. Beryllium: 5d. Cadmium: (Interim) 5e. Chromium 5f. Copper: (Interim) 5g. Lead: 	isance concentrations of algae in noentrations for the ice-free perio of protection against aesthetic d irus concentration for the ice-free all lakes naturally below this vali lant growth in rivers and streams neentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) I Hardness >100 mg/L (CaCO3) I Hardness as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. Tri le; should be eliminated at a to , use 111 ug/L , use 1100 ug/L 3), then use 0.1 ug/L 3), then use 0.1 ug/L (Cr VI) (Cr III) s 0 - 20, then use 1 ug/L < 20, then use 5 ug/L < 20, then use 5 ug/L 20 to 40, use 10 ug/L 40 to 80, use 20 ug/L
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected can be detected by odour, can causi- deposits on shorelines and bottom st 4. Results that are preceeded by "	eline values, re dicates that oi d as a visible fi e tainting of ec- ediments. " denote conce <u>sa. Aluminum</u> b is 15 ug/L base uuld be permitte a clay-free sam rs representati puts. QO is 75 ug/L b ncentrations ir al Interim PWC	efer to PQWO not I or petrochemic Im, sheen or dis- lible organisms, antrations that au (Interim): sed on inorganic ed which would i ples to more that ye of that geolog wased on total all water bodies un O (above), no c	tes. als should no colouration or can form dete re below the la monomeric a ncrease the a n 10% above gical area of th uminum meas haffected by n ondition is per	t be present in the surface, cctable aboratory luminum ucid soluble natural ne Province ured in clay- manmade mitted that	 (a) To avoid nu phosphorus cou (b) A high level a total phosphc should apply to (c) Excessive p phosphorus cou 5c. Beryllium: 5d. Cadmium: (Interim) 5f. Copper: (Interim) 	isance concentrations of algae in neentrations for the ice-free perio of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this val lant growth in rivers and streams neentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness as CaCO3 (mg/L) is If Hardness as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. Tri le; s should be eliminated at a to , use 11 ug/L , use 1100 ug/L 3), then use 0.1 ug/L 3), then use 0.1 ug/L 3), then use 0.5 ug/L (Cr VI) (Cr VI) (Cr VI) s 0 - 20, then use 1 ug/L s >20, then use 5 ug/L 20 to 40, use 10 ug/L 40 to 80, use 20 ug/L > 80, use 25 ug/L
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected can be detected by odour, can causi- deposits on shorelines and bottom st 4. Results that are preceeded by "	eline values, re dicates that oi d as a visible fi e tainting of ec- ediments. " denote conce <u>sa. Aluminum</u> b is 15 ug/L base uuld be permitte a clay-free sam rs representati puts. QO is 75 ug/L b ncentrations ir al Interim PWC	efer to PQWO not I or petrochemic Im, sheen or dis- lible organisms, antrations that au (Interim): sed on inorganic ed which would i ples to more that ye of that geolog wased on total all water bodies un O (above), no c	tes. als should no colouration or can form dete re below the la monomeric a ncrease the a n 10% above gical area of th uminum meas haffected by n ondition is per	t be present in the surface, cctable aboratory luminum ucid soluble natural ne Province ured in clay- manmade mitted that	 (a) To avoid nu phosphorus cou (b) A high level a total phosphor should apply to (c) Excessive p phosphorus cou 5c. Beryllium: 5d. Cadmium: (Interim) 5e. Chromium 5f. Copper: (Interim) 5g. Lead: 	isance concentrations of algae in neentrations for the ice-free perio of protection against aesthetic d irus concentration for the ice-free all lakes naturally below this vali lant growth in rivers and streams incentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness >100 mg/L (CaCO3) If Hardness as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. Tri e; s should be eliminated at a to , use 11 ug/L , use 1100 ug/L 3), then use 0.1 ug/L 3), then use 0.1 ug/L 3), then use 0.5 ug/L (Cr VI) (Cr VI) (Cr VI) (Cr VI) (Cr III) 5 o - 20, then use 1 ug/L 20 to 40, use 10 ug/L 40 to 80, use 20 ug/L 5 < 30, then use 1 ug/L
denote Interim PWQO exceedance; parameters hence the range in guid 3. The PWQO for Oil and Grease in concentrations that: can be detected an be detected by odour, can causi- deposits on shorelines and bottom st 4. Results that are preceeded by "	eline values, re dicates that oi d as a visible fi e tainting of ec- ediments. " denote conce <u>sa. Aluminum</u> b is 15 ug/L base uuld be permitte a clay-free sam rs representati puts. QO is 75 ug/L b ncentrations ir al Interim PWC	efer to PQWO not I or petrochemic Im, sheen or dis- lible organisms, antrations that au (Interim): sed on inorganic ed which would i ples to more that ye of that geolog wased on total all water bodies un O (above), no c	tes. als should no colouration or can form dete re below the la monomeric a ncrease the a n 10% above gical area of th uminum meas haffected by n ondition is per	t be present in the surface, cctable aboratory luminum ucid soluble natural ne Province ured in clay- manmade mitted that	 (a) To avoid nu phosphorus con (b) A high level a total phosphorus chi chi chi chi chi chi chi chi chi chi	isance concentrations of algae in neentrations for the ice-free perio of protection against aesthetic d rus concentration for the ice-free all lakes naturally below this val- lant growth in rivers and streams neentration below 30 ug/L. If Hardness <75 mg/L (CaCO3) If Hardness >75 mg/L (CaCO3) If Hardness >100 mg/L (CaCO If Hardness >100 mg/L (CaCO If Hardness as CaCO3 (mg/L) is If Hardness as CaCO3 (mg/L) is If Hardness as CaCO3 (mg/L) is If Alkalinity as CaCO3 (mg/L) is	d should not exceed 20 ug/L eterioration will be provided period of 10 ug/L or less. T ie; is should be eliminated at a to use 1100 ug/L a), then use 0.1 ug/L b), then use 0.1 ug/L c), then use 0.5 ug/L (Cr III) 6 - 20, then use 1 ug/L 5 - 20, then use 5 ug/L < 20, use 5 ug/L 20 to 40, use 10 ug/L 40 to 80, use 20 ug/L > 80, use 25 ug/L 5 < 30, then use 1 ug/L 5 of 0.80, then use 1 ug/L 5 of 0.80, then use 1 ug/L

Table 4: Condition 6(2) SW1 Water Quality Results

	Unit	Reportable Detection Limit (RDL)	PWQO ¹	Interim PWQO ²	ECA Effluent Limits	McCartl	ny Quarry
Sample ID		(102)				SW1	SW1
Date						13-May-22	28-Oct-22
Field Measured Parameters							
Conductivity	mS/cm					1055	1836
pH	pH	<u>n/a</u>	6.5-8.5		6.0-9.5	7.98	7.87 7.6
Temperature Calculated Parameters	°C	n/a				27.6	7.0
Anion Sum	me/L	N/A				13.5	18.8
Cation Sum	me/L	N/A				14.1	20
Hardness (CaCO3)	mg/L	1.0				410	600
Inorganics Total Ammonia-N	mg/L	0.050				0.1	0.15
Conductivity	umho/cm	1.0				1,400.000	1,800.000
Total Dissolved Solids	mg/L	10				745	1060.0
Fluoride (F-)	mg/L	0.10			-	0.53	0.50
Total Kjeldahl Nitrogen (TKN) Dissolved Organic Carbon	mg/L mg/L	0.10				0.56 5.4	0.56 6.2
pH	pH	N/A	6.5-8.5		6.0-9.5	8.13	7.91
Phenols-4AAP	mg/L	0.0010			0.04	<0.0010	<0.0010
Total Phosphorus	mg/L	0.002		0.03 ^{5b}	20	0.015	0.021
Total Suspended Solids Dissolved Sulphate (SO4)	mg/L mg/L	10			30	10 270	12 370
Alkalinity (Total as CaCO3)	mg/L	1.0				140	150
Dissolved Chloride (Cl)	mg/L	1				180	290
Nitrite (N)	mg/L	0.010				0.080	0.020
Nitrate (N)	mg/L	0.10				1.09	0.52
Petroleum Hydrocarbons Total Oil & Grease	mg/L	0.50	Note 3		30	<0.50	1.3
Metals		0.00	11010-0		30	~0.00	1.0
Total Arsenic (As)	ug/L	1	100	5		<1.0	<1.0
Total Cadmium (Cd)	ug/L	0.1	0.2	0.1-0.5 ^{5d}		<0.09	<0.09
Dissolved Calcium (Ca)	mg/L	0.05				100 100000	150 160000
Total Calcium (Ca) Total Chromium (Cr)	ug/L ug/L	200 5	1-89 ^{5e}			<5.0	<5.0
Total Copper (Cu)	ug/L	1	5	1-5 ^{5f}		<0.90	1.3
Total Iron (Fe)	ug/L	100	300			230	300
Total Lead (Pb)	ug/L	0.5	5-25 ⁵⁹	1-5 ^{5h}		<0.50	<0.50
Dissolved Magnesium (Mg) Total Magnesium (Mg)	mg/L	0.05				39 42000	53 52000
Total Magnesium (Mg)	ug/L ug/L	50 2				37	65
Total Nickel (Ni)	ug/L	1	25			1.8	1.6
Dissolved Potassium (K)	mg/L	1				12.0	17.0
Total Potassium (K)	ug/L	200				11000	17000
Dissolved Sodium (Na) Total Sodium (Na)	mg/L	0.5				130 130000	170 170000
Total Zinc (Zn)	ug/L ug/L	5	30	20		<5.0	5.2
1. Provincial Water Quality Objectiv		haded cells den			5b. Phosphoru		
							dovelop a firm Objective at
some PWQOs are dependent on ot	her water qualit	v parameters he	ence the rand		 Current scient 	ific evidence is insufficient to	develop a firm objective at
some PWQOs are dependent on ot	ner water qualit	y parameters he	ence the rang	e in guideline	 Current scient this time. 	ific evidence is insufficient to	develop a linit objective at
values, refer to PWQO notes.			-	-	this time. - Accordingly, t	ne following phosphorus cond	entrations should be
values, refer to PWQO notes. 2. Interim Provincial Water Quality	Objectives (Inte	rim PWQO); sł	naded cells ar	d italics	this time. - Accordingly, t		entrations should be
values, refer to PWQO notes. 2. Interim Provincial Water Quality denote Interim PWQO exceedance	Objectives (Inte some PWQOs	rim PWQO); s <i>h</i> s are dependent	naded cells ar	d italics	this time. - Accordingly, t	ne following phosphorus conc general guidelines which shou	entrations should be
values, refer to PWQO notes. 2. Interim Provincial Water Quality denote Interim PWQO exceedance parameters hence the range in guid	Objectives (Inte some PWQOs eline values, re	rim PWQO); <i>sh</i> s are dependent fer to PQWO no	naded cells ar on other wat otes.	<i>italics</i> er quality	this time. - Accordingly, the considered as a specific studies (a) To avoid nu	ne following phosphorus cono general guidelines which shou : isance concentrations of alga	entrations should be Ild be supplemented by site- e in lakes, average total
values, refer to PWQO notes. 2. Interim Provincial Water Quality denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in	Objectives (Inte some PWQOs eline values, re ndicates that oi	rim PWQO); sh are dependent fer to PQWO no or petrochemic	naded cells ar on other wat otes. als should no	d <i>italics</i> er quality t be present	this time. - Accordingly, the considered as a specific studies (a) To avoid nu	ne following phosphorus conc general guidelines which shou :	entrations should be Ild be supplemented by site- e in lakes, average total
values, refer to PWQO notes. 2. Interim Provincial Water Quality denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease ii in concentrations that: can be detec	Objectives (Inte some PWQOs eline values, re ndicates that oi ted as a visible	rim PWQO); sh are dependent fer to PQWO no or petrochemic film, sheen or c	naded cells ar on other wat otes. als should no discolouration	d <i>italics</i> er quality t be present on the	this time. - Accordingly, the considered as a specific studies (a) To avoid nu	ne following phosphorus cono general guidelines which shou : isance concentrations of alga	entrations should be Ild be supplemented by site- e in lakes, average total
values, refer to PWQO notes. 2. Interim Provincial Water Quality i denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detec surface, can be detected by odour,	Dbjectives (Inte some PWQOs eline values, re ndicates that oil ted as a visible can cause taint	rim PWQO); sh are dependent fer to PQWO no or petrochemic film, sheen or c ing of edible org	naded cells ar on other wat otes. als should no discolouration	d <i>italics</i> er quality t be present on the	this time. - Accordingly, the considered as a specific studies (a) To avoid nu phosphorus con- ug/L; (b) A high level	ne following phosphorus conc general guidelines which shou : isance concentrations of alga ccentrations for the ice-free p of protection against aesthet	entrations should be ald be supplemented by site- e in lakes, average total eriod should not exceed 20 ic deterioration will be
values, refer to PWQO notes. 2. Interim Provincial Water Quality denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detect surface, can be detected by odour, detectable deposits on shorelines a	Dbjectives (Inte some PWQOs eline values, re ndicates that oi ted as a visible can cause taint nd bottom sedii	rim PWQO); sh s are dependent fer to PQWO no or petrochemic film, sheen or c ing of edible org nents.	aded cells ar on other wat otes. als should no discolouration ganisms, can	d <i>italics</i> er quality t be present on the form	this time. - Accordingly, tl considered as g specific studies (a) To avoid nu phosphorus cou g/L; (b) A high level provided by a ta	ne following phosphorus conc general guidelines which shou isance concentrations of alga ccentrations for the ice-free p of protection against aesthet otal phosphorus concentration	entrations should be ald be supplemented by site- e in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10
values, refer to PWQO notes. 2. Interim Provincial Water Quality denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detect surface, can be detected by odour, detectable deposits on shorelines a 4. Results that are preceeded by "	Dbjectives (Inte some PWQOs eline values, re ndicates that oi ted as a visible can cause taint nd bottom sedii	rim PWQO); sh s are dependent fer to PQWO no or petrochemic film, sheen or c ing of edible org nents.	aded cells ar on other wat otes. als should no discolouration ganisms, can	d <i>italics</i> er quality t be present on the form	 this time. Accordingly, tl considered as (specific studies (a) To avoid nu phosphorus con ug/L; (b) A high level provided by a tu ug/L or less. Th 	ne following phosphorus conc general guidelines which shou : sance concentrations of alga ncentrations for the ice-free p of protection against aesthet stal phosphorus concentration is should apply to all lakes na	entrations should be ald be supplemented by site- e in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 turally below this value;
values, refer to PWQO notes. 2. Interim Provincial Water Quality denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detect surface, can be detected by odour, detectable deposits on shorelines a 4. Results that are preceeded by "	Dbjectives (Inte some PWQOs eline values, re ndicates that oi ted as a visible can cause taint nd bottom sedii	rim PWQO); sh s are dependent fer to PQWO no or petrochemic film, sheen or c ing of edible org nents.	aded cells ar on other wat otes. als should no discolouration ganisms, can	d <i>italics</i> er quality t be present on the form	this time. - Accordingly, ti considered as g specific studies (a) To avoid nu phosphorus con ug/L; (b) A high level provided by a ta ug/L or less. Th (c) Excessive p	ne following phosphorus cond general guidelines which shou isance concentrations of alga ncentrations for the ice-free p of protection against aesthet stal phosphorus concentration is should apply to all lakes na lant growth in rivers and stre-	entrations should be ald be supplemented by site- e in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 turally below this value; ams should be eliminated at
values, refer to PWQO notes. 2. Interim Provincial Water Quality i denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detect surface, can be detected by odour, detectable deposits on shorelines and 4. Results that are preceded by "- Reportable Detection Limit (RDL).	Dbjectives (Inter- some PWQQ): eline values, re- ndicates that oil ted as a visible can cause taint nd bottom sedii " denote conce	arim PWQO); sh are dependent fer to PQWO no or petrochemic film, sheen or c ing of edible or nents. Intrations that a	aded cells ar on other wat otes. als should no discolouration ganisms, can	d <i>italics</i> er quality t be present on the form	this time. - Accordingly, ti considered as g specific studies (a) To avoid nu phosphorus con ug/L; (b) A high level provided by a ta ug/L or less. Th (c) Excessive p	ne following phosphorus conc general guidelines which shou : sance concentrations of alga ncentrations for the ice-free p of protection against aesthet stal phosphorus concentration is should apply to all lakes na	entrations should be ald be supplemented by site- e in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 turally below this value; ams should be eliminated at
values, refer to PWQO notes. 2. Interim Provincial Water Quality denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detec surface, can be detected by odour, detectable deposits on shorelines a 4. Results that are preceeded by " Reportable Detection Limit (RDL).	Dbjectives (Inter- some PWQO: eline values, re- ndicates that oi ted as a visible can cause taint nd bottom sedii " denote conce 5a. Aluminum (rim PWQO); sf a are dependent fer to PQWO no or petrochemic film, sheen or co ing of edible orgonents. Intrations that a Interim):	aaded cells ar on other wat otes. als should no discolouration janisms, can re below the l	ed italics er quality t be present on the form aboratory	this time. - Accordingly, tt considered as (specific studies (a) To avoid nu phosphorus cor ug/L; (b) A high level provided by a tr ug/L or less. Th (c) Excessive pr total phosphoru	ne following phosphorus conc general guidelines which shou isance concentrations of alga ccentrations for the ice-free p of protection against aesthet otal phosphorus concentration is should apply to all lakes ne lant growth in rivers and stree s concentration below 30 ug/	entrations should be ald be supplemented by site- e in lakes, average total eriod should not exceed 20 ic deterioration will be in for the ice-free period of 10 turally below this value; ams should be eliminated at L.
values, refer to PWQO notes. 2. Interim Provincial Water Quality denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detect surface, can be detected by odour, detectable deposits on shorelines a 4. Results that are preceeded by " Reportable Detection Limit (RDL). 2. - At pH 4.5 to 5.5 the Interim PWQC	Dbjectives (Inter- some PWQO: eline values, re- ndicates that oi ted as a visible can cause taint nd bottom sedii " denote conce 5a. Aluminum (rim PWQO); sf a are dependent fer to PQWO no or petrochemic film, sheen or co ing of edible orgonents. Intrations that a Interim):	aaded cells ar on other wat otes. als should no discolouration janisms, can re below the l	ed italics er quality t be present on the form aboratory	this time. - Accordingly, tt considered as (specific studies (a) To avoid nu phosphorus cor ug/L; (b) A high level provided by a tr ug/L or less. Th (c) Excessive pr total phosphoru	ne following phosphorus conc general guidelines which shou isance concentrations of alga ncentrations for the ice-free p of protection against aesthet otal phosphorus concentratio is should apply to all lakes na lant growth in rivers and stree s concentration below 30 ug If Hardness <75 mg/L (CaCd	entrations should be ald be supplemented by site- e in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 turrally below this value; ams should be eliminated at L. D3), use 11 ug/L
values, refer to PWQO notes. 2. Interim Provincial Water Quality denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detect surface, can be detected by odour, detectable deposits on shorelines a 4. Results that are preceeded by "- Reportable Detection Limit (RDL). 4. - At pH 4.5 to 5.5 the Interim PWQC measured in clay-free samples.	Dbjectives (Inte some PWQO: eline values, re ndicates that oil ted as a visible can cause taint d bottom sedi " denote conce 5a. Aluminum (i is 15 ug/L bas	rim PWQO); <i>si</i> are dependent fer to PQWO nr or petrochemic ing of edible or c ing of edible or c nents. Intrations that a Interim): ed on inorganic	maded cells ar to on other wat bes. als should no discolouration ganisms, can re below the l	Id italics er quality t be present on the form aboratory	this time. - Accordingly, th considered as (specific studies (a) To avoid nu phosphorus con ug/L; (b) A high level provided by a tr ug/L or less. Th (c) Excessive p total phosphoru Sc. Beryllium:	ne following phosphorus conc general guidelines which shou isance concentrations of alga ccentrations for the ice-free p of protection against aesthet otal phosphorus concentration is should apply to all lakes ne lant growth in rivers and stree s concentration below 30 ug/	entrations should be and be supplemented by site- e in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 turrally below this value; ams should be eliminated at L. D3), use 11 ug/L
values, refer to PWQO notes. 2. Interim Provincial Water Quality i denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detec surface, can be detected by odour, detectable deposits on shorelines a 4. Results that are preceeded by "- Reportable Detection Limit (RDL). 4. - At pH 4.5 to 5.5 the Interim PWQC measured in clay-free samples. - At pH >5.5 to 6.5, no condition shore	Dbjectives (Inte some PWQO: eline values, re dicates that oi ted as a visible can cause taint nd bottom sedir nd bottom sedir sa. Aluminum (is 15 ug/L bas uuld be permitte	rim PWQO); <i>si</i> are dependent fer to PQWO no or petrochemic film, sheen or oc ing of edible org nents. Intrations that a Interim): ed on inorganic d which would i	added cells ar to on other wat otes. als should no discolouration ganisms, can re below the l monomeric a ncrease the a	d italics er quality t be present on the form aboratory lluminum .cid soluble	this time. - Accordingly, tt considered as (specific studies (a) To avoid nu phosphorus col ug/L; (b) A high level provided by a tr ug/L or less. Th (c) Excessive p total phosphoru 5c. Beryllium: 5d. Cadmium:	ne following phosphorus conc general guidelines which shou isance concentrations of alga ncentrations for the ice-free p of protection against aesthet otal phosphorus concentratio is should apply to all lakes na lant growth in rivers and stree s concentration below 30 ug If Hardness <75 mg/L (CaCd	entrations should be ald be supplemented by site- e in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 turally below this value; ams should be eliminated at L. D3), use 11 ug/L D3), use 11 ug/L
values, refer to PWQO notes. 2. Interim Provincial Water Quality denote Interim PWOO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detec surface, can be detected by odour, detectable deposits on shorelines a 4. Results that are preceeded by " Reportable Detection Limit (RDL). 4. At pH 4.5 to 5.5 the Interim PWQC measured in clay-free samples. - At pH 4.5 to 6.5, no condition shi inorganic aluminum concentration in	Dbjectives (Inte some PWQO: eline values, re dicates that oi ted as a visible can cause taint nd bottom sedii " denote conce 5a. Aluminum (b is 15 ug/L bas uld be permitte clay-free sam	rim PWQO); <i>si</i> are dependent fer to PQWO no or petrochemic film, sheen or c ing of edible orc ments. Intrations that a Interim): ed on inorganic d which would i bles to more tha	aaded cells ar c on other wat btes. als should no discolouration panisms, can re below the l monomeric a ncrease the a n 10% above	d italics er quality t be present on the form aboratory luminum cid soluble natural	this time. - Accordingly, th considered as (specific studies (a) To avoid nu phosphorus con ug/L; (b) A high level provided by a tr ug/L or less. Th (c) Excessive p total phosphoru Sc. Beryllium:	ne following phosphorus conc general guidelines which shou isance concentrations of alga ncentrations for the ice-free p of protection against aesthet stal phosphorus concentration is should apply to all lakes na lant growth in rivers and stre s concentration below 30 ug/ If Hardness <75 mg/L (CaCt If Hardness 0-100 mg/L (Ca	entrations should be and be supplemented by site- e in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 turally below this value; ams should be eliminated at L. D3), use 11 ug/L D3), use 11 ug/L CO3), then use 0.1 ug/L
values, refer to PWQO notes. 2. Interim Provincial Water Quality denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detect surface, can be detected by odour, detectable deposits on shorelines a 4. Results that are preceeded by "- Reportable Detection Limit (RDL). - At pH 4.5 to 5.5 the Interim PWQC measured in clay-free samples. - At pH >5.5 to 6.5, no condition shor inorganic aluminum concentration in background concentrations for wate	Dbjectives (Inte some PWQO: eline values, re ndicates that oi ted as a visible can cause taint nd bottom sedii " denote conce <u>5a. Aluminum (</u> is 15 ug/L bas uld be permitte clay-free sam rs representati	rim PWQO); <i>si</i> are dependent fer to PQWO no or petrochemic film, sheen or c ing of edible orc ments. Intrations that a Interim): ed on inorganic d which would i bles to more tha	aaded cells ar c on other wat btes. als should no discolouration panisms, can re below the l monomeric a ncrease the a n 10% above	d italics er quality t be present on the form aboratory luminum cid soluble natural	this time. - Accordingly, tt considered as (specific studies (a) To avoid nu phosphorus con ug/L; (b) A high level provided by a tr ug/L or less. Th (c) Excessive p total phosphoru 5c. Beryllium: 5d. Cadmium: (Interim)	ne following phosphorus conc general guidelines which shou isance concentrations of alga ncentrations for the ice-free p of protection against aesthet tal phosphorus concentration is should apply to all lakes na lant growth in rivers and stre s concentration below 30 ug/ If Hardness <75 mg/L (CaC If Hardness >75 mg/L (CaC If Hardness >100 mg/L (Ca	entrations should be ald be supplemented by site- e in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 trurally below this value; ams should be eliminated at L. D3), use 11 ug/L D3), use 11 ug/L CO3), then use 0.1 ug/L CO3), then use 0.1 ug/L
values, refer to PWQO notes. 2. Interim Provincial Water Quality i denote Interim PWOO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detec surface, can be detected by odour, detectable deposits on shorelines and 4. Results that are preceeded by "- Reportable Detection Limit (RDL). 4. At pH 4.5 to 5.5 the Interim PWQO measured in clay-free samples. - At pH >5.5 to 6.5, no condition shor inorganic aluminum concentration in background concentrations for wate that are unaffected by man-made in	Dbjectives (Inte some PWQO: eline values, re dicates that oi ted as a visible can cause taint ad bottom sedir " denote conce <u>ba</u> . Aluminum (is 15 ug/L bas vuld be permitte clay-free samp rs representati- puts.	rim PWQO); s/ are dependent fer to PQWO no or petrochemic film, sheen or co ing of edible org nents. Intrations that a Interim): ed on inorganic d which would i loles to more tha ye of that geolog	maded cells ar c on other wat bes. als should no discolouration panisms, can re below the l monomeric a ncrease the a n 10% above gical area of t	d italics er quality t be present on the form aboratory iluminum cid soluble natural he Province	this time. - Accordingly, tt considered as (specific studies (a) To avoid nu phosphorus con ug/L; (b) A high level provided by a tr ug/L or less. Th (c) Excessive p total phosphoru 5c. Beryllium: 5d. Cadmium: (Interim)	ne following phosphorus conc general guidelines which shou isance concentrations of alga ccentrations for the ice-free p of protection against aesthet stal phosphorus concentration is should apply to all lakes na ant growth in rivers and stre- s concentration below 30 ug/ If Hardness <75 mg/L (CaC/ If Hardness >100 mg/L (Ca If Hardness >100 mg/L (CaC/ If Hardness >100 mg/L (CaC/ If Jardness >100 mg/L (CaC/ If Jardnes)	entrations should be ald be supplemented by site- e in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 tuturally below this value; ams should be eliminated at L. 203), use 11 ug/L 203), use 1100 ug/L CO3), then use 0.1 ug/L 203), then use 0.5 ug/L ium (Cr VI)
values, refer to PWQO notes. 2. Interim Provincial Water Quality i denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detec surface, can be detected by odour, detectable deposits on shorelines and 4. Results that are preceeded by " Reportable Detection Limit (RDL). - At pH 4.5 to 5.5 the Interim PWQC measured in clay-free samples. - At pH 4.5 to 6.5, no condition sho inorganic aluminum concentration in background concentrations for wate that are unaffected by man-made in - At pH -6.5 to 9.0, the Interim PWQC	Dbjectives (Inte some PWQO: eline values, re dicates that oi ted as a visible can cause taint ad bottom sedir " denote conce <u>ba</u> . Aluminum (is 15 ug/L bas vuld be permitte clay-free samp rs representati- puts.	rim PWQO); s/ are dependent fer to PQWO no or petrochemic film, sheen or co ing of edible org nents. Intrations that a Interim): ed on inorganic d which would i loles to more tha ye of that geolog	maded cells ar c on other wat bes. als should no discolouration panisms, can re below the l monomeric a ncrease the a n 10% above gical area of t	d italics er quality t be present on the form aboratory iluminum cid soluble natural he Province	this time. - Accordingly, the considered as specific studies (a) To avoid nu phosphorus cou ug/L; (b) A high level provided by a the ug/L or less. Th (c) Excessive p total phosphoru 5c. Beryllium: (Interim) 5e. Chromium	the following phosphorus conc general guidelines which shot isance concentrations of alga ncentrations for the ice-free p of protection against aesthet otal phosphorus concentration is should apply to all lakes na lant growth in rivers and stre- s concentration below 30 ug/ If Hardness <75 mg/L (CaC/ If Hardness >75 mg/L (CaC/ If Hardness >100 mg/L (CaC If Hardness >100 mg/L (CaC 1 ug/L for hexavalent chrom 8.9 ug/L for trivalent chromit	entrations should be lid be supplemented by site- e in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 turally below this value; ams should be eliminated at L. D3), use 11 ug/L D3), use 11 ug/L CO3), then use 0.1 ug/L CO3), then use 0.5 ug/L jum (Cr VI) am (Cr III)
values, refer to PWQO notes. 2. Interim Provincial Water Quality denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detec surface, can be detected by odour, detectable deposits on shorelines a 4. Results that are preceeded by " Reportable Detection Limit (RDL). 2. 4. tpH 4.5 to 5.5 the Interim PWQC measured in clay-free samples. - At pH 4.5 to 5.5 no condition sho inorganic aluminum concentration in background concentrations for wate that are unaffected by man-made in - At pH 56.5 to 9.0, the Interim PWC	Dbjectives (Inte some PWQO: eline values, re ndicates that oi ted as a visible can cause taint nd bottom sedii " denote conce 5a. Aluminum (h is 15 ug/L bas vuld be permitte clay-free sam rs representati puts. IO is 75 ug/L b	rim PWQO); <i>si</i> are dependent fer to PQWO no or petrochemic film, sheen or c ing of edible org ments. Intrations that a Interim): ed on inorganic d which would i bles to more tha ye of that geolog ased on total alu	aaded cells ar c on other wat bes. als should no discolouration janisms, can re below the I monomeric a ncrease the a n 10% above gical area of t	d italics er quality t be present on the form aboratory iluminum cid soluble natural he Province ured in clay-	this time. - Accordingly, th considered as (specific studies (a) To avoid nu phosphorus cou ug/L; (b) A high level provided by a tu ug/L or less. Th (c) Excessive p total phosphoru 5c. Beryllium: 5d. Cadmium: (Interim) 55. Chormium 57. Copper:	the following phosphorus conc general guidelines which shot isance concentrations of alge accentrations for the ice-free p of protection against aesthet otal phosphorus concentratio is should apply to all lakes ne lant growth in rivers and stree s concentration below 30 ug/ If Hardness <75 mg/L (CaCI If Hardness >75 mg/L (CaCI If Hardness >100 mg/L (Ca I ug/L for hexavalent chrom 8.9 ug/L for trivalent chromii If Hardness as CaCO3 (mg/	entrations should be uld be supplemented by site- e in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 turally below this value; ams should be eliminated at L. D3), use 11 ug/L D3), use 11 ug/L C03), then use 0.1 ug/L C03), then use 0.5 ug/L ium (Cr VI) m (Cr III) L) is 0 - 20, then use 1 ug/L
values, refer to PWQO notes. 2. Interim Provincial Water Quality i denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detec surface, can be detected by odour, detectable deposits on shorelines and 4. Results that are preceded by "- Reportable Detection Limit (RDL). 4. At pH 4.5 to 5.5 the Interim PWQC measured in clay-free samples. - At pH >5.5 to 6.5, no condition shor inorganic aluminum concentration in background concentrations for wate that are unaffected by man-made in - At pH >6.5 to 9.0, the Interim PWC free samples.	Dbjectives (Inte some PWQO: eline values, re dicates that oi ed as a visible can cause tainf ad bottom sedii " denote conce " denote conce fa. Aluminum (is 15 ug/L bas vuld be permitte clay-free samp puts. NO is 75 ug/L b ncentrations in	rim PWQO); s/ a are dependent fer to PQWO no or petrochemic ding of edible org nents. Intrations that a <u>Interim</u>): ed on inorganic d which would i bles to more tha ve of that geolog ased on total alt water bodies u	aded cells ar con other wat otes. als should no discolouration panisms, can re below the l monomeric a ncrease the a n 10% above gical area of t uminum meas naffected by r	d italics er quality t be present on the form aboratory luminum cid soluble natural he Province ured in clay- nanmade	this time. - Accordingly, the considered as specific studies (a) To avoid nu phosphorus cou ug/L; (b) A high level provided by a the ug/L or less. Th (c) Excessive p total phosphoru 5c. Beryllium: (Interim) 5e. Chromium	the following phosphorus conc general guidelines which shot isance concentrations of alga ncentrations for the ice-free p of protection against aesthet otal phosphorus concentration is should apply to all lakes na lant growth in rivers and stre- s concentration below 30 ug/ If Hardness <75 mg/L (CaC/ If Hardness >75 mg/L (CaC/ If Hardness >100 mg/L (CaC If Hardness >100 mg/L (CaC 1 ug/L for hexavalent chrom 8.9 ug/L for trivalent chromit	entrations should be uld be supplemented by site- e in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 turally below this value; ams should be eliminated at L. D3), use 11 ug/L D3), use 11 ug/L C03), then use 0.1 ug/L C03), then use 0.5 ug/L ium (Cr VI) m (Cr III) L) is 0 - 20, then use 1 ug/L
values, refer to PWQO notes. 2. Interim Provincial Water Quality i denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detec surface, can be detected by odour, detectable deposits on shorelines a 4. Results that are preceeded by "- Reportable Detection Limit (RDL). - At pH 4.5 to 5.5 the Interim PWQC measured in clay-free samples. - At pH -5.5 to 6.5, no condition sho inorganic aluminum concentration in background concentrations for wate that are unaffected by man-made in - At pH >6.5 to 9.0, the Interim PWQC free samples. - If natural background aluminum co- inputs are greater than the numerica	Dijectives (Inte some PWQO: eline values, re dicates that oi ted as a visible can cause taint ad bottom sedii " denote conce 5a. Aluminum (i is 15 ug/L bas uld be permitte clay-free sam rs representati puts. O is 75 ug/L b ncentrations in al Interim PWQ	rim PWQO); sh are dependent fer to PQWO no or petrochemic film, sheen or oc ing of edible org- nents. Intrations that a Interim): ed on inorganic d which would i ples to more that geolog ased on total all water bodies un D (above), no c	maded cells ar c on other wat bes. als should no discolouration panisms, can re below the I monomeric a ncrease the a n 10% above gical area of t uminum meas haffected by r ondition is pe	d italics er quality t be present on the form aboratory iluminum icid soluble natural he Province ured in clay- nanmade rmitted that	this time. - Accordingly, th considered as (specific studies (a) To avoid nu phosphorus cou ug/L; (b) A high level provided by a tu ug/L or less. Th (c) Excessive p total phosphoru 5c. Beryllium: 5d. Cadmium: (Interim) 55. Chormium 57. Copper:	the following phosphorus conc general guidelines which shou isance concentrations of alge ncentrations for the ice-free p of protection against aesthet bal phosphorus concentration is should apply to all lakes ne lant growth in rivers and stre- s concentration below 30 ug/ If Hardness <75 mg/L (CaCI If Hardness >75 mg/L (CaCI If Hardness >100 mg/L (Ca I flardness >100 mg/L (Ca I ug/L for hexavalent chromin If Hardness as CaCO3 (mg/ If Hardness as CaCO3 (mg/	entrations should be ald be supplemented by site- e in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 turally below this value; ams should be eliminated at L. D3), use 11 ug/L D3), use 11 ug/L C03), then use 0.1 ug/L C03), then use 0.1 ug/L ium (Cr VI) m (Cr III) L) is 0 - 20, then use 1 ug/L L) is >20, then use 1 ug/L
values, refer to PWQO notes. 2. Interim Provincial Water Quality denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detec surface, can be detected by odour, detectable deposits on shorelines and 4. Results that are preceeded by " Reportable Detection Limit (RDL). 4. At pH 4.5 to 5.5 the Interim PWQC measured in clay-free samples. - At pH 4.5 to 6.5, no condition she inorganic aluminum concentration in background concentrations for water that are unaffected by man-made in - At pH -6.5 to 9.0, the Interim PWC free samples. - I natural background aluminum co inputs are greater than the numerica would increase the aluminum concent	Dijectives (Inte some PWQO: eline values, re dicates that oi ted as a visible can cause taint ad bottom sedii " denote conce 5a. Aluminum (i is 15 ug/L bas uld be permitte clay-free sam rs representati puts. O is 75 ug/L b ncentrations in al Interim PWQ	rim PWQO); sh are dependent fer to PQWO no or petrochemic film, sheen or oc ing of edible org- nents. Intrations that a Interim): ed on inorganic d which would i ples to more that geolog ased on total all water bodies un D (above), no c	maded cells ar c on other wat bes. als should no discolouration panisms, can re below the I monomeric a ncrease the a n 10% above gical area of t uminum meas haffected by r ondition is pe	d italics er quality t be present on the form aboratory iluminum icid soluble natural he Province ured in clay- nanmade rmitted that	this time. - Accordingly, th considered as (a specific studies (a) To avoid nu phosphorus cou ug/L; (b) A high level provided by a tu ug/L or less. Th (c) Excessive p total phosphoru 5c. Beryllium: 5d. Cadmium: (Interim) 5f. Copper: (Interim)	the following phosphorus conc general guidelines which shou isance concentrations of alga ncentrations for the ice-free p of protection against aesthet stal phosphorus concentration is should apply to all lakes na lant growth in rivers and stre- s concentration below 30 ug/ If Hardness <75 mg/L (CaCI If Hardness >75 mg/L (CaCI If Hardness >75 mg/L (CaCI If Hardness >100 mg/L (Ca If Hardness >100 mg/L (Ca If Jug/L for trivalent chromit 8.9 ug/L for trivalent chromit If Hardness as CaCO3 (mg/L If Hardness as CaCO3 (mg/L	entrations should be ild be supplemented by site- ie in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 turally below this value; ams should be eliminated at L. D3), use 11 ug/L D3), use 11 ug/L D3), use 1100 ug/L CO3), then use 0.1 ug/L D3), then use 0.5 ug/L ium (Cr VI) im (Cr III) L) is 0 - 20, then use 1 ug/L L) is >20, then use 5 ug/L) is < 20, use 5 ug/L
values, refer to PWQO notes. 2. Interim Provincial Water Quality i denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detec surface, can be detected by odour, detectable deposits on shorelines and 4. Results that are preceded by "- Reportable Detection Limit (RDL). 4. A tpH 4.5 to 5.5 the Interim PWQC measured in clay-free samples. - At pH 4.5 to 5.5 to 6.5, no condition shor inorganic aluminum concentration in background concentrations for wate that are unaffected by man-made in - At pH >6.5 to 9.0, the Interim PWC free samples.	Dijectives (Inte some PWQO: eline values, re dicates that oi ted as a visible can cause taint ad bottom sedii " denote conce 5a. Aluminum (i is 15 ug/L bas uld be permitte clay-free sam rs representati puts. O is 75 ug/L b ncentrations in al Interim PWQ	rim PWQO); sh are dependent fer to PQWO no or petrochemic film, sheen or oc ing of edible org- nents. Intrations that a Interim): ed on inorganic d which would i ples to more that geolog ased on total all water bodies un D (above), no c	maded cells ar c on other wat bes. als should no discolouration panisms, can re below the I monomeric a ncrease the a n 10% above gical area of t uminum meas haffected by r ondition is pe	d italics er quality t be present on the form aboratory iluminum icid soluble natural he Province ured in clay- nanmade rmitted that	this time. - Accordingly, th considered as (a specific studies (a) To avoid nu phosphorus cou ug/L; (b) A high level provided by a tu ug/L or less. Th (c) Excessive p total phosphoru 5c. Beryllium: 5d. Cadmium: (Interim) 5f. Copper: (Interim)	ne following phosphorus conc general guidelines which shou isance concentrations of alga ncentrations for the ice-free p of protection against aesthet tal phosphorus concentration is should apply to all lakes na lant growth in rivers and stre s concentration below 30 ug/ If Hardness <75 mg/L (CaC If Hardness >75 mg/L (CaC If Hardness >100 mg/L (Ca If Hardness >100 mg/L (Ca I ug/L for hexavalent chrom 8.9 ug/L for trivalent chrom If Hardness as CaCO3 (mg/L If Alkalinity as CaCO3 (mg/L	entrations should be ild be supplemented by site- ie in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 trurally below this value; ams should be eliminated at L. D3), use 11 ug/L D3), use 1100 ug/L CO3), then use 0.1 ug/L CO3), then use 0.1 ug/L CO3), then use 0.5 ug/L ium (Cr VI) Im (Cr III) L) is 20, then use 1 ug/L) is 20 to 40, use 10 ug/L
values, refer to PWQO notes. 2. Interim Provincial Water Quality denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detec surface, can be detected by odour, detectable deposits on shorelines and 4. Results that are preceeded by " Reportable Detection Limit (RDL). 4. At pH 4.5 to 5.5 the Interim PWQC measured in clay-free samples. - At pH 4.5 to 6.5, no condition she inorganic aluminum concentration in background concentrations for water that are unaffected by man-made in - At pH -6.5 to 9.0, the Interim PWC free samples. - I natural background aluminum co inputs are greater than the numerica would increase the aluminum concent	Dijectives (Inte some PWQO: eline values, re dicates that oi ted as a visible can cause taint ad bottom sedii " denote conce 5a. Aluminum (i is 15 ug/L bas uld be permitte clay-free sam rs representati puts. O is 75 ug/L b ncentrations in al Interim PWQ	rim PWQO); sh are dependent fer to PQWO no or petrochemic film, sheen or oc ing of edible org- nents. Intrations that a Interim): ed on inorganic d which would i ples to more that geolog ased on total all water bodies un D (above), no c	maded cells ar c on other wat bes. als should no discolouration panisms, can re below the I monomeric a ncrease the a n 10% above gical area of t uminum meas haffected by r ondition is pe	d italics er quality t be present on the form aboratory iluminum icid soluble natural he Province ured in clay- nanmade rmitted that	this time. - Accordingly, th considered as (a specific studies (a) To avoid nu phosphorus cou ug/L; (b) A high level provided by a tu ug/L or less. Th (c) Excessive p total phosphoru 5c. Beryllium: 5d. Cadmium: (Interim) 5f. Copper: (Interim)	the following phosphorus conc general guidelines which shot isance concentrations of alga ncentrations for the ice-free p of protection against aesthet shall daply to all lakes na lant growth in rivers and stre- s concentration below 30 ug/ If Hardness >75 mg/L (CaCt If Hardness >75 mg/L (CaCt If Hardness >75 mg/L (CaCt If Hardness >100 mg/L (CaC If Hardness as CaCO3 (mg/L If Hardness as CaCO3 (mg/L If Alkalinity as CaCO3 (mg/L If Alkalinity as CaCO3 (mg/L	entrations should be jild be supplemented by site- e in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 turally below this value; ams should be eliminated at L. D3), use 11 ug/L D3), use 1100 ug/L CO3), then use 0.1 ug/L CO3), then use 0.1 ug/L CO3), then use 0.5 ug/L jim (Cr VI) um (Cr III) L) is 0 - 20, then use 1 ug/L L) is >20, use 1 ug/L jis < 20, use 1 ug/L jis < 20, use 1 ug/L jis < 20, use 1 ug/L
values, refer to PWQO notes. 2. Interim Provincial Water Quality denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detec surface, can be detected by odour, detectable deposits on shorelines a 4. Results that are preceeded by " Reportable Detection Limit (RDL). 4. At pH 4.5 to 5.5 the Interim PWQC measured in clay-free samples. - At pH 4.5 to 6.5, no condition she inorganic aluminum concentration in background concentrations for wate that are unaffected by man-made in - At pH 3.5 to 9.0, the Interim PWC free samples. - If natural background aluminum co inputs are greater than the numerica would increase the aluminum concent	Dijectives (Inte some PWQO: eline values, re dicates that oi ted as a visible can cause taint ad bottom sedii " denote conce 5a. Aluminum (i is 15 ug/L bas uld be permitte clay-free sam rs representati puts. O is 75 ug/L b ncentrations in al Interim PWQ	rim PWQO); sh are dependent fer to PQWO no or petrochemic film, sheen or oc ing of edible org- nents. Intrations that a Interim): ed on inorganic d which would i ples to more that geolog ased on total all water bodies un D (above), no c	maded cells ar c on other wat bes. als should no discolouration panisms, can re below the I monomeric a ncrease the a n 10% above gical area of t uminum meas haffected by r ondition is pe	d italics er quality t be present on the form aboratory iluminum icid soluble natural he Province ured in clay- nanmade rmitted that	this time. - Accordingly, the considered as (specific studies (a) To avoid nu phosphorus cou ug/L; (b) A high level provided by a the ug/L or less. Th (c) Excessive p total phosphoru 5c. Beryllium: 5d. Cadmium: (Interim) 5g. Lead:	the following phosphorus conc general guidelines which shot isance concentrations of alga ncentrations for the ice-free p of protection against aesthet otal phosphorus concentration is should apply to all lakes na lant growth in rivers and stree s concentration below 30 ug/ If Hardness <75 mg/L (CaCI If Hardness >75 mg/L (CaCI If Hardness >75 mg/L (CaCI If Hardness >100 mg/L (Ca If Hardness >100 mg/L (Ca If Hardness as CaCO3 (mg/L If Hardness as CaCO3 (mg/L If Alkalinity as CaCO3 (mg/L If Alkalinity as CaCO3 (mg/L If Alkalinity as CaCO3 (mg/L If Alkalinity as CaCO3 (mg/L	entrations should be uld be supplemented by site- ie in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 turrally below this value; ams should be eliminated at L. D3), use 11 ug/L D3), use 1100 ug/L CO3), then use 0.1 ug/L CO3), then use 0.1 ug/L CO3), then use 0.5 ug/L ium (Cr III) L) is 0 - 20, then use 1 ug/L L) is >20, then use 5 ug/L) is 20 to 40, use 10 ug/L) is 20 to 40, use 10 ug/L) is 0 to 80, use 20 ug/L) is > 80, use 25 ug/L
values, refer to PWQO notes. 2. Interim Provincial Water Quality denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detec surface, can be detected by odour, detectable deposits on shorelines and 4. Results that are preceeded by " Reportable Detection Limit (RDL). 4. At pH 4.5 to 5.5 the Interim PWQC measured in clay-free samples. - At pH 4.5 to 6.5, no condition she inorganic aluminum concentration in background concentrations for water that are unaffected by man-made in - At pH -6.5 to 9.0, the Interim PWC free samples. - I natural background aluminum co inputs are greater than the numerica would increase the aluminum concent	Dijectives (Inte some PWQO: eline values, re dicates that oi ted as a visible can cause taint ad bottom sedii " denote conce 5a. Aluminum (i is 15 ug/L bas uld be permitte clay-free sam rs representati puts. O is 75 ug/L b ncentrations in al Interim PWQ	rim PWQO); sh are dependent fer to PQWO no or petrochemic film, sheen or oc ing of edible org- nents. Intrations that a Interim): ed on inorganic d which would i ples to more that geolog ased on total all water bodies un D (above), no c	maded cells ar c on other wat bes. als should no discolouration panisms, can re below the I monomeric a ncrease the a n 10% above gical area of t uminum meas haffected by r ondition is pe	d italics er quality t be present on the form aboratory iluminum icid soluble natural he Province ured in clay- nanmade rmitted that	this time. - Accordingly, the considered as (a specific studies (a) To avoid nu phosphorus cou ug/L; (b) A high level provided by a tu ug/L or less. Th (c) Excessive pr total phosphoru 5c. Beryllium: 5d. Cadmium: (Interim) 5f. Copper: (Interim) 5g. Lead: 5h. Lead:	the following phosphorus conc general guidelines which shot isance concentrations of alga ncentrations for the ice-free p of protection against aesthet shall daply to all lakes na lant growth in rivers and stre- s concentration below 30 ug/ If Hardness >75 mg/L (CaCt If Hardness >75 mg/L (CaCt If Hardness >75 mg/L (CaCt If Hardness >100 mg/L (CaC If Hardness as CaCO3 (mg/L If Hardness as CaCO3 (mg/L If Alkalinity as CaCO3 (mg/L If Alkalinity as CaCO3 (mg/L	entrations should be uld be supplemented by site- ie in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 turrally below this value; ams should be eliminated at L. D3), use 11 ug/L D3), use 1100 ug/L CO3), then use 0.1 ug/L CO3), then use 0.1 ug/L CO3), then use 0.5 ug/L ium (Cr III) L) is 0 - 20, then use 1 ug/L L) is >20, then use 5 ug/L) is 20 to 40, use 10 ug/L) is 20 to 40, use 10 ug/L) is 0 to 80, use 20 ug/L) is > 80, use 25 ug/L
values, refer to PWQO notes. 2. Interim Provincial Water Quality denote Interim PWQO exceedance parameters hence the range in guid 3. The PWQO for Oil and Grease in in concentrations that: can be detec surface, can be detected by odour, detectable deposits on shorelines a 4. Results that are preceeded by " Reportable Detection Limit (RDL). 4. At pH 4.5 to 5.5 the Interim PWQC measured in clay-free samples. - At pH 4.5 to 6.5, no condition she inorganic aluminum concentration in background concentrations for wate that are unaffected by man-made in - At pH 3.5 to 9.0, the Interim PWC free samples. - If natural background aluminum co inputs are greater than the numerica would increase the aluminum concent	Dijectives (Inte some PWQO: eline values, re dicates that oi ted as a visible can cause taint ad bottom sedii " denote conce 5a. Aluminum (i is 15 ug/L bas uld be permitte clay-free sam rs representati puts. O is 75 ug/L b ncentrations in al Interim PWQ	rim PWQO); sh are dependent fer to PQWO no or petrochemic film, sheen or oc ing of edible org- nents. Intrations that a Interim): ed on inorganic d which would i ples to more that geolog ased on total all water bodies un D (above), no c	maded cells ar c on other wat bes. als should no discolouration panisms, can re below the I monomeric a ncrease the a n 10% above gical area of t uminum meas haffected by r ondition is pe	d italics er quality t be present on the form aboratory iluminum icid soluble natural he Province ured in clay- nanmade rmitted that	this time. - Accordingly, the considered as (specific studies (a) To avoid nu phosphorus cou ug/L; (b) A high level provided by a the ug/L or less. Th (c) Excessive p total phosphoru 5c. Beryllium: 5d. Cadmium: (Interim) 5g. Lead:	the following phosphorus conc general guidelines which shot isance concentrations of alga ncentrations for the ice-free p of protection against aesthet otal phosphorus concentration is should apply to all lakes na lant growth in rivers and stree s concentration below 30 ug/ If Hardness <75 mg/L (CaCI If Hardness >75 mg/L (CaCI If Hardness >75 mg/L (CaCI If Hardness >100 mg/L (Ca If Hardness >100 mg/L (Ca If Hardness as CaCO3 (mg/L If Hardness as CaCO3 (mg/L If Alkalinity as CaCO3 (mg/L If Alkalinity as CaCO3 (mg/L If Alkalinity as CaCO3 (mg/L If Alkalinity as CaCO3 (mg/L	entrations should be and be supplemented by site- te in lakes, average total eriod should not exceed 20 ic deterioration will be n for the ice-free period of 10 turally below this value; ams should be eliminated at L. D3), use 11 ug/L D3), use 10 ug/L) is < 20, then use 1 ug/L D is < 30, use 25 ug/L D is < 30, then use 1 ug/L L) is < 30, then use 1 ug/L

Table 5: Condition 6(2) SW2 Water Quality Results

	Unit	Reportable Detection Limit (RDL)	PWQO ¹	Interim PWQO ²	ECA Effluent Limits	McCart	hy Quarry	
Sample ID	<u> </u>	(SW2	SW2	
Date						13-May-22	-	
Field Measured Parameters								
Conductivity	mS/cm					707	-	
pH	pH	n/a	6.5-8.5		6.0-9.5	7.69	-	
Temperature	°C	n/a				22.4	-	
Calculated Parameters Anion Sum	me/L	N/A				8.75	-	
Cation Sum	me/L	N/A				9.15	-	
Hardness (CaCO3)	mg/L	1.0				430	-	
Inorganics		0.050				-0.050	-	
Total Ammonia-N Conductivity	mg/L umho/cm	0.050				<0.050 800.000		
Total Dissolved Solids	mg/L	10				405	-	
Fluoride (F-)	mg/L	0.10				<0.10	-	
Total Kjeldahl Nitrogen (TKN)	mg/L	0.10				0.66	-	
Dissolved Organic Carbon	mg/L	0.20				8.3	-	
pH	pH	N/A	6.5-8.5 0.001		6.0-9.5 0.04	7.88	-	
Phenols-4AAP Total Phosphorus	mg/L mg/L	0.0010 0.002	0.001	0.03 ^{5b}	0.04	<0.0010 0.017	-	
Total Suspended Solids	mg/L	10		0.03	30	<10	-	
Dissolved Sulphate (SO4)	mg/L	1				100	-	
Alkalinity (Total as CaCO3)	mg/L	1.0				310	-	
Dissolved Chloride (Cl)	mg/L	1				16	-	
Nitrite (N)	mg/L	0.010				<0.010	-	
Nitrate (N) Petroleum Hydrocarbons	mg/L	0.10				<0.10	-	
Total Oil & Grease	mg/L	0.50	Note 3		30	<0.50	-	
Metals							-	
Total Arsenic (As)	ug/L	1	100	5		<1.0	-	
Total Cadmium (Cd)	ug/L	0.1	0.2	0.1-0.5 ^{5d}		<0.09	-	
Dissolved Calcium (Ca)	mg/L	0.05				140	-	
Total Calcium (Ca) Total Chromium (Cr)	ug/L	200 5	1-89 ^{5e}			130000 <5.0		
Total Copper (Cu)	ug/L ug/L	1	5	1-5 ^{5f}		<0.9	-	
Total Iron (Fe)	ug/L	100	300	1-5		<100	-	
Total Lead (Pb)	ug/L	0.5	5-25 ^{5g}	1-5 ^{5h}		2.2	-	
Dissolved Magnesium (Mg)	mg/L	0.05				19.0	-	
Total Magnesium (Mg)	ug/L	50				21000	-	
Total Manganese (Mn) Total Nickel (Ni)	ug/L	2	25		-	<1.0		
Dissolved Potassium (K)	ug/L mg/L	1	20			1.0	-	
Total Potassium (K)	ug/L	200				880	-	
Dissolved Sodium (Na)	mg/L	0.5				13.0	-	
Total Sodium (Na)	ug/L	100	20	00		14000	-	
Total Zinc (Zn) up/L 5c 30 20 Total Zinc (Zn) up/L 5c 30 20								
					5h. Lead: (Interim)	If Alkalinity as CaCO3 (mg, If Hardness as CaCO3 (mg If Hardness as CaCO3 (mg	/L) is 40 to 80, use 20 ug/L /L) is > 80, use 25 ug/L g/L) is < 30, then use 1 ug/L g/L) is 30 to 80, then use 3 ug g/L) is > 80, then use 5 ug/L	

					T Discharge from		
Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Rate of Taking (L/sec)	Rate of Taking (L/min)
	ECA	Permitted	Rate		6,544,800	76	4,545
1-Jan-22		PUMP	0	0	-	-	-
2-Jan-22		PUMP	0	0	-	-	-
3-Jan-22		PUMP	0	0	-	-	-
4-Jan-22		PUMP	0	0	-	-	-
5-Jan-22		PUMP	0	0	-	-	-
6-Jan-22	NO P	PUMP	0	0	-	-	-
7-Jan-22	NO P	PUMP	0	0	-	-	-
8-Jan-22	NO F	UMP	0	0	-	-	-
9-Jan-22	NO P	PUMP	0	0	-	-	-
10-Jan-22	NO P	PUMP	0	0	-	-	-
11-Jan-22	NO P	PUMP	0	0	-	-	-
12-Jan-22	NO P	PUMP	0	0	-	-	-
13-Jan-22	NO P	PUMP	0	0	-	-	-
14-Jan-22	NO F	PUMP	0	0	-	-	-
15-Jan-22	NO P	PUMP	0	0	-	-	-
16-Jan-22	NO P	PUMP	0	0	-	-	-
17-Jan-22	NO P	PUMP	0	0	-	-	-
18-Jan-22	NO P	PUMP	0	0	-	-	-
19-Jan-22	NO P	PUMP	0	0	-	-	-
20-Jan-22	NO P	PUMP	0	0	-	-	-
21-Jan-22	NO P	PUMP	0	0	-	-	-
22-Jan-22	NO P	PUMP	0	0	-	-	-
23-Jan-22	NO P	PUMP	0	0	-	-	-
24-Jan-22	NO P	PUMP	0	0	-	-	-
25-Jan-22	NO P	PUMP	0	0	-	-	-
26-Jan-22	NO P	PUMP	0	0	-	-	-
27-Jan-22	NO P	PUMP	0	0	-	-	-
28-Jan-22		PUMP	0	0	-	-	-
29-Jan-22		PUMP	0	0	-	-	-
30-Jan-22		PUMP	0	0	-	-	-
31-Jan-22		PUMP	0	0	-	-	-
1-Feb-22		PUMP	0	0	-	-	-
2-Feb-22		PUMP	0	0	-	-	-
3-Feb-22		PUMP	0	0	-	-	-
4-Feb-22		PUMP	0	0	-	-	-
5-Feb-22		PUMP	0	0	-	-	-
6-Feb-22		PUMP	0	0	-	-	-
7-Feb-22		PUMP	0	0	-	-	-
8-Feb-22		PUMP	0	0	-	-	-
9-Feb-22		PUMP	0	0	-	-	-
10-Feb-22			0	0	-	-	-
11-Feb-22			0	0	-	-	-
12-Feb-22	NO P	PUMP	0	0	-	-	-

Table 6: Measured Water Volume and Rate of Discharge from Quarry Sump

		Incasarea			T Discharge from		
Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Rate of Taking	Rate of Taking
						(L/sec)	(L/min)
	ECA	Permitted	Rate		6,544,800	76	4,545
13-Feb-22	NO P	PUMP	0	0	-	-	-
14-Feb-22	NO P	PUMP	0	0	-	-	-
15-Feb-22	NO P	PUMP	0	0	-	-	-
16-Feb-22		PUMP	0	0	-	-	-
17-Feb-22		PUMP	0	0	-	-	-
18-Feb-22		PUMP	0	0	-	-	-
19-Feb-22		PUMP	0	0	-	-	-
20-Feb-22		PUMP	0	0	-	-	-
21-Feb-22		PUMP	0	0	-	-	-
22-Feb-22		PUMP	0	0	-	-	-
23-Feb-22		PUMP	0	0	-	-	-
24-Feb-22		PUMP	0	0	-	-	-
25-Feb-22		PUMP	0	0	-	-	-
26-Feb-22		PUMP	0	0	-	-	-
27-Feb-22		PUMP	0	0	-	-	-
28-Feb-22		PUMP	0	0	-	-	-
1-Mar-22		PUMP	0	0	-	-	-
2-Mar-22		PUMP	0	0	-	-	-
3-Mar-22		PUMP	0	0	-	-	-
4-Mar-22		PUMP	0	0	-	-	-
5-Mar-22		PUMP	0	0	-	-	-
6-Mar-22		PUMP	0	0	-	-	-
7-Mar-22		PUMP	0	0	-	-	-
8-Mar-22		PUMP	0	0	-	-	-
9-Mar-22		PUMP	0	0	-	-	-
10-Mar-22		PUMP	0	0	-	-	-
11-Mar-22		PUMP	0	0	-	-	-
12-Mar-22		PUMP	0	0	-	-	-
13-Mar-22		PUMP	0	0	-	-	-
14-Mar-22			0	0	-	-	-
15-Mar-22			0	0	-	-	-
16-Mar-22			0	0	-	-	-
17-Mar-22			0	0	-	-	-
18-Mar-22			0	0	-	-	-
19-Mar-22			0	0	-	-	-
20-Mar-22			0	0	-	-	-
21-Mar-22			0	0	-	-	-
22-Mar-22			0	0	-	-	-
23-Mar-22			0	0	-	-	-
24-Mar-22			0	0	-	-	-
25-Mar-22			0	0	-	-	-
26-Mar-22			0	0	-	-	-
27-Mar-22	NO P	PUMP	0	0	-	-	-

Table 6: Measured Water Volume and Rate of Discharge from Quarry Sump

					T Discharge from	•	•
Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Rate of Taking (L/sec)	Rate of Taking (L/min)
	ECA I	Permitted F	Rate		6,544,800	76	4,545
28-Mar-22	NO P	UMP	0	0	-	-	-
29-Mar-22	NO P	UMP	0	0	-	-	-
30-Mar-22	NO P	UMP	0	0	-	-	-
31-Mar-22	NO P	UMP	0	0	-	-	-
1-Apr-22	NO P	UMP	0	0	-	-	-
2-Apr-22	NO P	UMP	0	0	-	-	-
3-Apr-22	NO P	UMP	0	0	-	-	-
4-Apr-22	7:00	4:00	32400	540	648,000	20	1,200
5-Apr-22	7:00	4:00	32400	540	648,000	20	1,200
6-Apr-22	7:00	4:00	32400	540	648,000	20	1,200
7-Apr-22	7:00	4:00	32400	540	648,000	20	1,200
8-Apr-22	7:00	4:00	32400	540	648,000	20	1,200
9-Apr-22	NO P		0	0	-	-	-
10-Apr-22	NO P		0	0	-	-	-
11-Apr-22	6:30	5:30	39600	660	792,000	20	1,200
12-Apr-22	6:30	5:30	39600	660	792,000	20	1,200
13-Apr-22	6:30	5:30	39600	660	792,000	20	1,200
14-Apr-22	6:30	5:30	39600	660	792,000	20	1,200
15-Apr-22	NO P		0	0	-	-	-
16-Apr-22	NO P		0	0	-	-	-
17-Apr-22	NO P		0	0	-	-	-
18-Apr-22	6:30	5:30	39600	660	792,000	20	1,200
19-Apr-22	6:30	5:30	39600	660	792,000	20	1,200
20-Apr-22	6:30	5:30	39600	660	792,000	20	1,200
21-Apr-22	6:30	5:30	39600	660	792,000	20	1,200
22-Apr-22	6:30	5:30		660	792,000	20	1,200
23-Apr-22	NO P		0	0	-	-	-
24-Apr-22	NO P		0	0	-	-	-
25-Apr-22	6:30	5:30	39600	660	792,000	20	1,200
26-Apr-22 27-Apr-22	6:30 6:30	5:30 5:30	39600 39600	660 660	792,000	20 20	1,200
27-Apr-22 28-Apr-22	6:30	5:30	39600	660	792,000 792,000	20	1,200 1,200
29-Apr-22	6:30	5:30	39600	660	792,000	20	1,200
30-Apr-22	0.30 NO P		0	000	-	- 20	-
1-May-22	NO P		0	0		-	
2-May-22	NO P		0	0	-	-	_
3-May-22	NO P		0	0	_	-	-
4-May-22	10:00	5:00	25200	420	504,000	20	1,200
5-May-22	12:00	5:00	18000	300	360,000	20	1,200
6-May-22	7:00	5:00	36000	600	720,000	20	1,200
7-May-22	NO P		0	0	-	-	-
8-May-22	NO P		0	0	-	-	-
9-May-22	7:00	5:00	36000	600	720,000	20	1,200

Table 6: Measured Water Volume and Rate of Discharge from Quarry Sump

		IVICUSUICU			r Discharge from	. ,	·	
Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Rate of Taking	Rate of Taking	
		-				(L/sec)	(L/min)	
	ECA F	Permitted F	Rate		6,544,800	76	4,545	
10-May-22	7:00	5:00	36000	600	720,000	20	1,200	
11-May-22	NO P	UMP	0	0	-	-	-	
12-May-22	NO P	UMP	0	0	-	-	-	
13-May-22	NO P	UMP	0	0	-	-	-	
14-May-22	NO P	UMP	0	0	-	-	-	
15-May-22	NO P	UMP	0	0	-	-	-	
16-May-22	NO P	UMP	0	0	-	-	-	
17-May-22	NO P	UMP	0	0	-	-	-	
18-May-22	8:00	5:00	32400	540	648,000	20	1,200	
19-May-22	NO P	UMP	0	0	-	-	-	
20-May-22	8:00	5:00	32400	540	648,000	20	1,200	
21-May-22	NO P	UMP	0	0	-	-	-	
22-May-22	NO P	UMP	0	0	-	-	-	
23-May-22	NO P	UMP	0	0	-	-	-	
24-May-22	NO P	UMP	0	0	-	-	-	
25-May-22	NO P	UMP	0	0	-	-	-	
26-May-22	12:00	5:00	18000	300	360,000	20	1,200	
27-May-22	7:00	5:00	36000	600	720,000	20	1,200	
28-May-22	NO P	UMP	0	0	-	-	-	
29-May-22	NO P	UMP	0	0	-	-	-	
30-May-22	NO P	UMP	0	0	-	-	-	
31-May-22	7:00	5:00	36000	600	720,000	20	1,200	
1-Jun-22	NO P	UMP	0	0	-	-	-	
2-Jun-22	NO P	UMP	0	0	-	-	-	
3-Jun-22	7:00	5:00	36000	600	720,000	20	1,200	
4-Jun-22	NO P	UMP	0	0	-	-	-	
5-Jun-22	NO P	UMP	0	0	-	-	-	
6-Jun-22	NO P	UMP	0	0	-	-	-	
7-Jun-22	NO P	UMP	0	0	-	-	-	
8-Jun-22	7:00	5:00	36000	600	720,000	20	1,200	
9-Jun-22	7:00	5:00	36000	600	720,000	20	1,200	
10-Jun-22	NO P	UMP	0	0	-	-	-	
11-Jun-22	NO P	UMP	0	0	-	-	-	
12-Jun-22	2:00	6:00	14400	240	288,000	20	1,200	
13-Jun-22	7:00	5:00	36000	600	720,000	20	1,200	
14-Jun-22	7:00	5:00	36000	600	720,000	20	1,200	
15-Jun-22	7:00	5:00	36000	600	720,000	20	1,200	
16-Jun-22	NO P	UMP	0	0	-	-	-	
17-Jun-22	NO P	UMP	0	0	-	-	-	

Table 6: Measured Water Volume and Rate of Discharge from Quarry Sump

					i Discharge from	Rate of	Rate of
Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Taking (L/sec)	Taking (L/min)
	ECA	Permitted F	Rate		6,544,800	76	4,545
18-Jun-22	NO P	UMP	0	0	-	-	-
19-Jun-22	NO P	UMP	0	0	-	-	-
20-Jun-22	7:00	5:00	36000	600	-	-	-
21-Jun-22	NO P	PUMP	0	0	-	-	-
22-Jun-22	NO P	UMP	0	0	-	-	-
23-Jun-22	7:00	5:00	36000	600	720,000	20	1,200
24-Jun-22	NO P	UMP	0	0	-	-	-
25-Jun-22	NO P	UMP	0	0	-	-	-
26-Jun-22	NO P	UMP	0	0	-	-	-
27-Jun-22	7:00	5:00	36000	600	720,000	20	1,200
28-Jun-22		PUMP	0	0	-	-	-
29-Jun-22		PUMP	0	0	-	-	-
30-Jun-22		UMP	0	0	-	-	-
1-Jul-22		UMP	0	0	-	-	-
2-Jul-22		UMP	0	0	-	-	-
3-Jul-22		UMP	0	0	-	-	-
4-Jul-22	7:00		36000	600	720,000	20	1,200
5-Jul-22		UMP	0	0	-	-	-
6-Jul-22		UMP	0	0	-	-	-
7-Jul-22		UMP	0	0	-	-	-
8-Jul-22		UMP	0	0	-	-	-
9-Jul-22		UMP	0	0	-	-	-
10-Jul-22		UMP	0	0	-	-	-
11-Jul-22	7:00		7200	120	144,000	20	1,200
12-Jul-22		UMP	0	0	-	-	-
13-Jul-22		UMP	0	0	-	-	-
14-Jul-22		UMP	0	0	-	-	-
15-Jul-22		UMP	0	0	-	-	-
16-Jul-22		UMP	0	0	-	-	-
17-Jul-22		UMP	0	0	-	-	-
18-Jul-22	7AM	8:00 AM	3600	60	72,000	20	1,200
19-Jul-22			0	0	-	-	-
20-Jul-22			0	0	-	-	-
21-Jul-22 22-Jul-22		PUMP	0	0	-	-	-
22-Jul-22 23-Jul-22			0	0	-	-	-
23-Jul-22 24-Jul-22			0	0	-	-	-
24-Jul-22 25-Jul-22	7AM	9:00 AM	7200	120	-	- 20	-
25-Jul-22 26-Jul-22		9:00 AM	0	0	144,000	20	1,200
20-Jul-22 27-Jul-22		PUMP	0	0	-	-	-
27-Jul-22 28-Jul-22		UMP	0	0	-	-	-
28-Jul-22 29-Jul-22		UMP	0	0	-	-	-
30-Jul-22		PUMP	0	0	-	-	-
J0-Jul-22	NO P		U	U	-	-	-

Table 6: Measured Water Volume and Rate of Discharge from Quarry Sump

DateStartStopTotal Sec.Total Min.Total LitresTaking (L/Sec)Taking (L/Sec) <th< th=""><th></th><th></th><th>Wiedbured</th><th></th><th></th><th>I Discharge from</th><th></th><th>•</th></th<>			Wiedbured			I Discharge from		•
31-Jul-22 NO PUMP 0 0 - - - 1-Aug-22 NO PUMP 0 0 - - - 2-Aug-22 NO PUMP 0 0 - - - 3-Aug-22 NO PUMP 0 0 - - - 4-Aug-22 NO PUMP 0 0 - - - 6-Aug-22 NO PUMP 0 0 - - - 7-Aug-22 NO PUMP 0 0 - - - 8-Aug-22 NO PUMP 0 0 - - - 10-Aug-22 NO PUMP 0 0 - - - 11-Aug-22 NO PUMP 0 0 - - - 13-Aug-22 NO PUMP 0 0 - - - 14-Aug-22 NO PUMP 0 0 - - - - 14-Aug-22	Date	Start	Stop	Total Sec.	Total Min.	Total Litres	•	-
1-Aug-22 NO PUMP 0 0 - - - 2-Aug-22 NO PUMP 0 0 - - - 3-Aug-22 NO PUMP 0 0 - - - 3-Aug-22 NO PUMP 0 0 - - - 5-Aug-22 NO PUMP 0 0 - - - 6-Aug-22 NO PUMP 0 0 - - - 7-Aug-22 NO PUMP 0 0 - - - 10-Aug-22 NO PUMP 0 0 - - - 11-Aug-22 NO PUMP 0 0 - - - 11-Aug-22 NO PUMP 0 0 - - - 15-Aug-22 NO PUMP 0 0 - - - 15-Aug-22 NO PUMP 0 0 - - - 16-Aug-22 NO PUMP <th></th> <th>ECA P</th> <th>Permitted F</th> <th>Rate</th> <th></th> <th>6,544,800</th> <th>76</th> <th>4,545</th>		ECA P	Permitted F	Rate		6,544,800	76	4,545
2-Aug-22 NO PUMP 0 0 - . . 3-Aug-22 NO PUMP 0 0 - . . 4-Aug-22 NO PUMP 0 0 - . . 5-Aug-22 NO PUMP 0 0 - . . 6-Aug-22 NO PUMP 0 0 - . . 7-Aug-22 NO PUMP 0 0 - . . 8-Aug-22 Tam 5pm 36000 600 720,000 20 1,200 9-Aug-22 NO PUMP 0 0 - . . . 11-Aug-22 NO PUMP 0 0 - . . . 13-Aug-22 NO PUMP 0 0 - . . . 14-Aug-22 NO PUMP 0 0 - . . . 14-Aug-22 NO PUMP 0 0 . <td>31-Jul-22</td> <td>NO PL</td> <td>JMP</td> <td>0</td> <td>0</td> <td>-</td> <td>-</td> <td>-</td>	31-Jul-22	NO PL	JMP	0	0	-	-	-
3-Aug-22 NO PUMP 0 0 - - - 4-Aug-22 NO PUMP 0 0 - - - 5-Aug-22 NO PUMP 0 0 - - - 6-Aug-22 NO PUMP 0 0 - - - 7-Aug-22 NO PUMP 0 0 - - - 10-Aug-22 NO PUMP 0 0 - - - 10-Aug-22 NO PUMP 0 0 - - - 11-Aug-22 NO PUMP 0 0 - - - 13-Aug-22 NO PUMP 0 0 - - - 14-Aug-22 NO PUMP 0 0 - - - 14-Aug-22 NO PUMP 0 0 - - - 15-Aug-22 NO PUMP 0 0 - - - 16-Aug-22 NO PUMP </td <td>1-Aug-22</td> <td>NO PI</td> <td>JMP</td> <td>0</td> <td>0</td> <td>-</td> <td>-</td> <td>-</td>	1-Aug-22	NO PI	JMP	0	0	-	-	-
4-Aug-22 NO PUMP 0 0 - - - 6-Aug-22 NO PUMP 0 0 - - - 6-Aug-22 NO PUMP 0 0 - - - 7-Aug-22 NO PUMP 0 0 - - - 8-Aug-22 Tam 5pm 36000 600 720,000 20 1,200 9-Aug-22 NO PUMP 0 0 - - - - 10-Aug-22 NO PUMP 0 0 - - - - 11-Aug-22 NO PUMP 0 0 - - - - 13-Aug-22 NO PUMP 0 0 - - - - 15-Aug-22 NO PUMP 0 0 - - - - 15-Aug-22 NO PUMP 0 0 - - - - 16-Aug-22 NO PUMP 0 0 - - - - 19-Aug-22 NO PUMP <	2-Aug-22	NO PI	JMP	0	0	-	-	-
5-Aug-22 NO PUMP 0 0 - - - 6-Aug-22 NO PUMP 0 0 - - - 7-Aug-22 NO PUMP 0 0 - - - 8-Aug-22 NO PUMP 0 0 - - - 10-Aug-22 NO PUMP 0 0 - - - 11-Aug-22 NO PUMP 0 0 - - - 12-Aug-22 NO PUMP 0 0 - - - 13-Aug-22 NO PUMP 0 0 - - - 14-Aug-22 NO PUMP 0 0 - - - 15-Aug-22 NO PUMP 0 0 - - - 16-Aug-22 NO PUMP 0 0 - - - 16-Aug-22 NO PUMP 0 0 - - - 12-Aug-22 NO PUMP<	3-Aug-22	NO PI	JMP	0	0	-	-	-
6-Aug-22 NO PUMP 0 0 - - - 7-Aug-22 NO PUMP 0 0 - - - 8-Aug-22 7am 5pm 36000 600 720,000 20 1,200 9-Aug-22 NO PUMP 0 0 - - - 10-Aug-22 NO PUMP 0 0 - - - 11-Aug-22 NO PUMP 0 0 - - - 13-Aug-22 NO PUMP 0 0 - - - 14-Aug-22 NO PUMP 0 0 - - - 15-Aug-22 NO PUMP 0 0 - - - 18-Aug-22 NO PUMP 0 0 - - - 19-Aug-22 NO PUMP 0 0 - - - 19-Aug-22 NO PUMP 0 0 - - - 22-Aug-22<	4-Aug-22	NO PI	JMP	0	0	-	-	-
7-Aug-22 NO PUMP 0 0 - - - 8-Aug-22 7am 5pm 36000 600 720,000 20 1,200 9-Aug-22 NO PUMP 0 0 - - - 10-Aug-22 NO PUMP 0 0 - - - 11-Aug-22 NO PUMP 0 0 - - - 13-Aug-22 NO PUMP 0 0 - - - 13-Aug-22 NO PUMP 0 0 - - - 15-Aug-22 NO PUMP 0 0 - - - 15-Aug-22 NO PUMP 0 0 - - - 15-Aug-22 NO PUMP 0 0 - - - 18-Aug-22 NO PUMP 0 0 - - - 21-Aug-22 NO PUMP 0 0 - - -	5-Aug-22	NO PU	JMP	0	0	-	-	-
8-Aug-22 Tam 5pm 36000 600 720,000 20 1,200 9-Aug-22 NO PUMP 0 0 - - - 10-Aug-22 NO PUMP 0 0 - - - 11-Aug-22 NO PUMP 0 0 - - - 12-Aug-22 NO PUMP 0 0 - - - 13-Aug-22 NO PUMP 0 0 - - - 14-Aug-22 NO PUMP 0 0 - - - 16-Aug-22 NO PUMP 0 0 - - - 16-Aug-22 NO PUMP 0 0 - - - 17-Aug-22 NO PUMP 0 0 - - - 19-Aug-22 NO PUMP 0 0 - - - 21-Aug-22 NO PUMP 0 0 - - - <td< td=""><td>6-Aug-22</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td></td<>	6-Aug-22					-	-	-
9-Aug-22 NO PUMP 0 0 - - - 10-Aug-22 NO PUMP 0 0 - - - 11-Aug-22 NO PUMP 0 0 - - - 12-Aug-22 NO PUMP 0 0 - - - 13-Aug-22 NO PUMP 0 0 - - - 14-Aug-22 NO PUMP 0 0 - - - 15-Aug-22 NO PUMP 0 0 - - - 16-Aug-22 NO PUMP 0 0 - - - 17-Aug-22 NO PUMP 0 0 - - - 19-Aug-22 NO PUMP 0 0 - - - - 20-Aug-22 NO PUMP 0 0 - - - - 21-Aug-22 NO PUMP 0 0 - - - - </td <td>7-Aug-22</td> <td>NO PI</td> <td>JMP</td> <td>0</td> <td>0</td> <td>-</td> <td>-</td> <td>-</td>	7-Aug-22	NO PI	JMP	0	0	-	-	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	_				600	720,000	20	1,200
11-Aug-22 NO PUMP 0 0 12-Aug-22 NO PUMP 0 0 13-Aug-22 NO PUMP 0 0 14-Aug-22 NO PUMP 0 0 15-Aug-22 NO PUMP 0 0 15-Aug-22 NO PUMP 0 0 16-Aug-22 NO PUMP 0 0 17-Aug-22 NO PUMP 0 0 19-Aug-22 NO PUMP 0 0 20-Aug-22 NO PUMP 0 0 21-Aug-22 NO PUMP 0 0 22-Aug-22 NO PUMP 0 0 23-Aug-22 NO PUMP 0 0 26-Aug-22 NO PUMP 0 0	_					-	-	-
12-Aug-22 NO PUMP 0 0 - - - 13-Aug-22 NO PUMP 0 0 - - - 14-Aug-22 NO PUMP 0 0 - - - 14-Aug-22 NO PUMP 0 0 - - - 15-Aug-22 NO PUMP 0 0 - - - 16-Aug-22 NO PUMP 0 0 - - - 17-Aug-22 NO PUMP 0 0 - - - 19-Aug-22 NO PUMP 0 0 - - - 20-Aug-22 NO PUMP 0 0 - - - 21-Aug-22 NO PUMP 0 0 - - - 22-Aug-22 NO PUMP 0 0 - - - 25-Aug-22 NO PUMP 0 0 - - - 25-Aug-22 NO P						-	-	-
13-Aug-22 NO PUMP 0 0 - - - 14-Aug-22 NO PUMP 0 0 - - - 15-Aug-22 NO PUMP 0 0 - - - 15-Aug-22 NO PUMP 0 0 - - - 16-Aug-22 NO PUMP 0 0 - - - 17-Aug-22 NO PUMP 0 0 - - - 19-Aug-22 NO PUMP 0 0 - - - 20-Aug-22 NO PUMP 0 0 - - - 21-Aug-22 NO PUMP 0 0 - - - 21-Aug-22 NO PUMP 0 0 - - - 22-Aug-22 NO PUMP 0 0 - - - 25-Aug-22 NO PUMP 0 0 - - - 25-Aug-22 NO P						-	-	-
14-Aug-22 NO PUMP 0 0 - - - 15-Aug-22 NO PUMP 0 0 - - - 16-Aug-22 NO PUMP 0 0 - - - 17-Aug-22 7AM 5PM 36000 600 720,000 20 1,200 18-Aug-22 NO PUMP 0 0 - - - 19-Aug-22 NO PUMP 0 0 - - - 20-Aug-22 NO PUMP 0 0 - - - - 21-Aug-22 NO PUMP 0 0 - - - - 22-Aug-22 NO PUMP 0 0 - - - - 23-Aug-22 NO PUMP 0 0 - - - - 24-Aug-22 NO PUMP 0 0 - - - - 25-Aug-22 NO PUMP 0 <						-		-
15-Aug-22 NO PUMP 0 0 - - - 16-Aug-22 NO PUMP 0 0 - - - 17-Aug-22 7AM 5PM 36000 600 720,000 20 1,200 18-Aug-22 NO PUMP 0 0 - - - 19-Aug-22 NO PUMP 0 0 - - - 20-Aug-22 NO PUMP 0 0 - - - 21-Aug-22 NO PUMP 0 0 - - - 22-Aug-22 NO PUMP 0 0 - - - 23-Aug-22 NO PUMP 0 0 - - - 23-Aug-22 NO PUMP 0 0 - - - 24-Aug-22 NO PUMP 0 0 - - - 25-Aug-22 NO PUMP 0 0 - - - <	_					-	-	-
16-Aug-22 NO PUMP 0 0 - - - 17-Aug-22 7AM 5PM 36000 600 720,000 20 1,200 18-Aug-22 NO PUMP 0 0 - - - 19-Aug-22 NO PUMP 0 0 - - - 20-Aug-22 NO PUMP 0 0 - - - 21-Aug-22 NO PUMP 0 0 - - - 21-Aug-22 NO PUMP 0 0 - - - 22-Aug-22 NO PUMP 0 0 - - - 23-Aug-22 NO PUMP 0 0 - - - 25-Aug-22 NO PUMP 0 0 - - - 26-Aug-22 NO PUMP 0 0 - - - 27-Aug-22 NO PUMP 0 0 - - - <						-	-	-
17-Aug-22 7AM SPM 36000 600 720,000 20 1,200 18-Aug-22 NO PUMP 0 0 - - - 19-Aug-22 NO PUMP 0 0 - - - 20-Aug-22 NO PUMP 0 0 - - - 21-Aug-22 NO PUMP 0 0 - - - 21-Aug-22 NO PUMP 0 0 - - - 23-Aug-22 NO PUMP 0 0 - - - 23-Aug-22 NO PUMP 0 0 - - - 25-Aug-22 NO PUMP 0 0 - - - 26-Aug-22 NO PUMP 0 0 - - - 26-Aug-22 NO PUMP 0 0 - - - 27-Aug-22 NO PUMP 0 0 - - - <						-	-	-
18-Aug-22 NO PUMP 0 0 - - - 19-Aug-22 NO PUMP 0 0 - - - 20-Aug-22 NO PUMP 0 0 - - - 21-Aug-22 NO PUMP 0 0 - - - 22-Aug-22 NO PUMP 0 0 - - - 23-Aug-22 NO PUMP 0 0 - - - 23-Aug-22 NO PUMP 0 0 - - - 25-Aug-22 NO PUMP 0 0 - - - 26-Aug-22 NO PUMP 0 0 - - - 26-Aug-22 NO PUMP 0 0 - - - 27-Aug-22 NO PUMP 0 0 - - - 28-Aug-22 NO PUMP 0 0 - - - 31-Aug-22 NO P						-	-	-
19-Aug-22 NO PUMP 0 0 - - - 20-Aug-22 NO PUMP 0 0 - - - 21-Aug-22 NO PUMP 0 0 - - - 22-Aug-22 NO PUMP 0 0 - - - 23-Aug-22 NO PUMP 0 0 - - - 23-Aug-22 NO PUMP 0 0 - - - 23-Aug-22 NO PUMP 0 0 - - - 25-Aug-22 NO PUMP 0 0 - - - 26-Aug-22 NO PUMP 0 0 - - - 27-Aug-22 NO PUMP 0 0 - - - 28-Aug-22 NO PUMP 0 0 - - - 30-Aug-22 NO PUMP 0 0 - - - 31-Sep-22 NO P		I				720,000	20	1,200
20-Aug-22 NO PUMP 0 0 - - - 21-Aug-22 NO PUMP 0 0 - - - 22-Aug-22 NO PUMP 0 0 - - - 23-Aug-22 NO PUMP 0 0 - - - 23-Aug-22 NO PUMP 0 0 - - - 23-Aug-22 NO PUMP 0 0 - - - 25-Aug-22 NO PUMP 0 0 - - - 26-Aug-22 NO PUMP 0 0 - - - 26-Aug-22 NO PUMP 0 0 - - - 28-Aug-22 NO PUMP 0 0 - - - 30-Aug-22 NO PUMP 0 0 - - - 31-Aug-22 NO PUMP 0 0 - - - 1-Sep-22 NO PU						-	-	-
21-Aug-22 NO PUMP 0 0 - - - 22-Aug-22 NO PUMP 0 0 - - - 23-Aug-22 7AM 5PM 36000 600 720,000 20 1,200 24-Aug-22 NO PUMP 0 0 - - - 25-Aug-22 NO PUMP 0 0 - - - 26-Aug-22 NO PUMP 0 0 - - - 26-Aug-22 NO PUMP 0 0 - - - 27-Aug-22 NO PUMP 0 0 - - - 28-Aug-22 NO PUMP 0 0 - - - 30-Aug-22 NO PUMP 0 0 - - - 31-Aug-22 NO PUMP 0 0 - - - 1-Sep-22 NO PUMP 0 0 - - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>								-
22-Aug-22 NO PUMP 0 0 - - - 23-Aug-22 7AM 5PM 36000 600 720,000 20 1,200 24-Aug-22 NO PUMP 0 0 - - - 25-Aug-22 NO PUMP 0 0 - - - 26-Aug-22 NO PUMP 0 0 - - - 26-Aug-22 NO PUMP 0 0 - - - 27-Aug-22 NO PUMP 0 0 - - - 28-Aug-22 NO PUMP 0 0 - - - 29-Aug-22 NO PUMP 0 0 - - - 30-Aug-22 NO PUMP 0 0 - - - 31-Aug-22 NO PUMP 0 0 - - - 3-Sep-22 NO PUMP 0 0 - - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td></t<>						-		-
23-Aug-22 7AM 5PM 36000 600 720,000 20 1,200 24-Aug-22 NO PUMP 0 0 - - - 25-Aug-22 NO PUMP 0 0 - - - 26-Aug-22 NO PUMP 0 0 - - - 26-Aug-22 NO PUMP 0 0 - - - 27-Aug-22 NO PUMP 0 0 - - - 28-Aug-22 NO PUMP 0 0 - - - 29-Aug-22 NO PUMP 0 0 - - - 30-Aug-22 NO PUMP 0 0 - - - 31-Aug-22 NO PUMP 0 0 - - - 3-Sep-22 NO PUMP 0 0 - - - 3-Sep-22 NO PUMP 0 0 - - - <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td></td<>						-	-	-
24-Aug-22 NO PUMP 0 0 - - - 25-Aug-22 NO PUMP 0 0 - - - 26-Aug-22 NO PUMP 0 0 - - - 27-Aug-22 NO PUMP 0 0 - - - 28-Aug-22 NO PUMP 0 0 - - - 29-Aug-22 NO PUMP 0 0 - - - 30-Aug-22 NO PUMP 0 0 - - - 30-Aug-22 NO PUMP 0 0 - - - 31-Aug-22 NO PUMP 0 0 - - - 1-Sep-22 NO PUMP 0 0 - - - 3-Sep-22 NO PUMP 0 0 - - - 4-Sep-22 NO PUMP 0 0 - - - 6-Sep-22 NO PUMP<		1				-	-	-
25-Aug-22 NO PUMP 0 0 - - - 26-Aug-22 NO PUMP 0 0 - - - 27-Aug-22 NO PUMP 0 0 - - - 28-Aug-22 NO PUMP 0 0 - - - 29-Aug-22 NO PUMP 0 0 - - - 29-Aug-22 NO PUMP 0 0 - - - 30-Aug-22 NO PUMP 0 0 - - - 30-Aug-22 NO PUMP 0 0 - - - 31-Aug-22 NO PUMP 0 0 - - - 31-Sep-22 NO PUMP 0 0 - - - 3-Sep-22 NO PUMP 0 0 - - - 4-Sep-22 NO PUMP 0 0 - - - 6-Sep-22 NO PUMP		<u> </u>				720,000	20	1,200
26-Aug-22 NO PUMP 0 0 - - - 27-Aug-22 NO PUMP 0 0 - - - 28-Aug-22 NO PUMP 0 0 - - - 29-Aug-22 NO PUMP 0 0 - - - 29-Aug-22 NO PUMP 0 0 - - - 30-Aug-22 NO PUMP 0 0 - - - 30-Aug-22 NO PUMP 0 0 - - - 31-Aug-22 NO PUMP 0 0 - - - 1-Sep-22 NO PUMP 0 0 - - - 3-Sep-22 NO PUMP 0 0 - - - 4-Sep-22 NO PUMP 0 0 - - - 5-Sep-22 NO PUMP 0 0 - - - 6-Sep-22 NO PUMP </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td>						-	-	-
27-Aug-22 NO PUMP 0 0 - - - 28-Aug-22 NO PUMP 0 0 - - - 29-Aug-22 NO PUMP 0 0 - - - 30-Aug-22 NO PUMP 0 0 - - - 30-Aug-22 NO PUMP 0 0 - - - 31-Aug-22 NO PUMP 0 0 - - - 1-Sep-22 NO PUMP 0 0 - - - 1-Sep-22 NO PUMP 0 0 - - - 3-Sep-22 NO PUMP 0 0 - - - 4-Sep-22 NO PUMP 0 0 - - - 5-Sep-22 NO PUMP 0 0 - - - 6-Sep-22 NO PUMP 0 0 - - - 7:Sep-22 NO PUMP <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td>						-	-	-
28-Aug-22 NO PUMP 0 0 - - - 29-Aug-22 NO PUMP 0 0 - - - 30-Aug-22 NO PUMP 0 0 - - - 31-Aug-22 NO PUMP 0 0 - - - 1-Sep-22 NO PUMP 0 0 - - - 1-Sep-22 NO PUMP 0 0 - - - 2-Sep-22 NO PUMP 0 0 - - - 3-Sep-22 NO PUMP 0 0 - - - 4-Sep-22 NO PUMP 0 0 - - - 4-Sep-22 NO PUMP 0 0 - - - 5-Sep-22 NO PUMP 0 0 - - - 6-Sep-22 NO PUMP 0 0 - - - 7:Sep-22 NO PUMP	_					-		-
29-Aug-22 NO PUMP 0 0 - - - 30-Aug-22 NO PUMP 0 0 - - - 31-Aug-22 NO PUMP 0 0 - - - 31-Aug-22 NO PUMP 0 0 - - - 1-Sep-22 NO PUMP 0 0 - - - 2-Sep-22 NO PUMP 0 0 - - - 3-Sep-22 NO PUMP 0 0 - - - 4-Sep-22 NO PUMP 0 0 - - - 4-Sep-22 NO PUMP 0 0 - - - 5-Sep-22 NO PUMP 0 0 - - - 6-Sep-22 NO PUMP 0 0 - - - 7-Sep-22 7:00 AM 10:00 AM 10800 180 216,000 20 1,200	_					-	-	-
30-Aug-22 NO PUMP 0 0 - - - 31-Aug-22 NO PUMP 0 0 - - - 1-Sep-22 NO PUMP 0 0 - - - 1-Sep-22 NO PUMP 0 0 - - - 2-Sep-22 NO PUMP 0 0 - - - 3-Sep-22 NO PUMP 0 0 - - - 3-Sep-22 NO PUMP 0 0 - - - 4-Sep-22 NO PUMP 0 0 - - - 5-Sep-22 NO PUMP 0 0 - - - 6-Sep-22 NO PUMP 0 0 - - - 7-Sep-22 7:00 AM 10:00 AM 10800 180 216,000 20 1,200 8-Sep-22 NO PUMP -3 -0.05 - - -	_					-		
31-Aug-22 NO PUMP 0 0 - - - 1-Sep-22 NO PUMP 0 0 - - - 2-Sep-22 NO PUMP 0 0 - - - 3-Sep-22 NO PUMP 0 0 - - - 3-Sep-22 NO PUMP 0 0 - - - 4-Sep-22 NO PUMP 0 0 - - - 5-Sep-22 NO PUMP 0 0 - - - 5-Sep-22 NO PUMP 0 0 - - - 6-Sep-22 NO PUMP 0 0 - - - 7-Sep-22 7:00 AM 10800 180 216,000 20 1,200 8-Sep-22 NO PUMP -3 -0.05 - - - 9-Sep-22 NO PUMP -2 -0.033333 - - - 10-Sep-22 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>							_	
1-Sep-22 NO PUMP 0 0 - - - 2-Sep-22 NO PUMP 0 0 - - - 3-Sep-22 NO PUMP 0 0 - - - 4-Sep-22 NO PUMP 0 0 - - - 4-Sep-22 NO PUMP 0 0 - - - 5-Sep-22 NO PUMP 0 0 - - - 6-Sep-22 NO PUMP 0 0 - - - 6-Sep-22 NO PUMP 0 0 - - - 7-Sep-22 7:00 AM 10:00 AM 10800 180 216,000 20 1,200 8-Sep-22 NO PUMP -3 -0.05 - - - 9-Sep-22 NO PUMP -2 -0.033333 - - - 10-Sep-22 NO PUMP -1 -0.016667 - - - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td>							-	-
2-Sep-22 NO PUMP 0 0 - - - 3-Sep-22 NO PUMP 0 0 - - - 4-Sep-22 NO PUMP 0 0 - - - 5-Sep-22 NO PUMP 0 0 - - - 5-Sep-22 NO PUMP 0 0 - - - 6-Sep-22 NO PUMP 0 0 - - - 6-Sep-22 NO PUMP 0 0 - - - 7-Sep-22 7:00 AM 10:00 AM 10800 180 216,000 20 1,200 8-Sep-22 NO PUMP -3 -0.05 - - - 9-Sep-22 NO PUMP -2 -0.033333 - - - 10-Sep-22 NO PUMP -1 -0.016667 - - -						-		-
3-Sep-22 NO PUMP 0 0 - - - 4-Sep-22 NO PUMP 0 0 - - - 5-Sep-22 NO PUMP 0 0 - - - 6-Sep-22 NO PUMP 0 0 - - - 6-Sep-22 NO PUMP 0 0 - - - 7-Sep-22 NO PUMP 0 0 - - - 7-Sep-22 NO PUMP 0 0 - - - 7-Sep-22 7:00 AM 10:00 AM 10800 180 216,000 20 1,200 8-Sep-22 NO PUMP -3 -0.05 - - - 9-Sep-22 NO PUMP -2 -0.033333 - - - 10-Sep-22 NO PUMP -1 -0.016667 - - -						-		-
4-Sep-22 NO PUMP 0 0 - - - 5-Sep-22 NO PUMP 0 0 - - - - 6-Sep-22 NO PUMP 0 0 - - - - 7-Sep-22 NO PUMP 0 0 - - - - 7-Sep-22 7:00 AM 10:00 AM 10800 180 216,000 20 1,200 8-Sep-22 NO PUMP -3 -0.05 - - - 9-Sep-22 NO PUMP -2 -0.033333 - - - 10-Sep-22 NO PUMP -1 -0.016667 - - -	· ·					_		-
5-Sep-22 NO PUMP 0 0 - - - 6-Sep-22 NO PUMP 0 0 - - - - 7-Sep-22 NO PUMP 0 0 - - - - 7-Sep-22 7:00 AM 10:00 AM 10800 180 216,000 20 1,200 8-Sep-22 NO PUMP -3 -0.05 - - - 9-Sep-22 NO PUMP -2 -0.033333 - - - 10-Sep-22 NO PUMP -1 -0.016667 - - -	-					-	-	-
6-Sep-22 NO PUMP 0 0 - - - 7-Sep-22 7:00 AM 10:00 AM 10800 180 216,000 20 1,200 8-Sep-22 NO PUMP -3 -0.05 - - - 9-Sep-22 NO PUMP -2 -0.033333 - - - 10-Sep-22 NO PUMP -1 -0.016667 - - -	-					-	-	-
7-Sep-22 7:00 AM 10:00 AM 10800 180 216,000 20 1,200 8-Sep-22 NO PUMP -3 -0.05 - - - 9-Sep-22 NO PUMP -2 -0.033333 - - - 10-Sep-22 NO PUMP -1 -0.016667 - - -	-					-	-	-
8-Sep-22 NO PUMP -3 -0.05 - - - 9-Sep-22 NO PUMP -2 -0.033333 - - - - 10-Sep-22 NO PUMP -1 -0.016667 - - -	-					216,000	20	1,200
9-Sep-22 NO PUMP -2 -0.033333 - - - - 10-Sep-22 NO PUMP -1 -0.016667 - - - -	-					-		-
10-Sep-22 NO PUMP -1 -0.016667				-2		-	-	-
		NO PU	JMP	-1		-	-	-
	11-Sep-22	NO PI	JMP	0	0	-	-	-

Table 6: Measured Water Volume and Rate of Discharge from Quarry Sump

						,	•
Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Rate of Taking (L/sec)	Rate of Taking (L/min)
	ECA Permitted I		Rate		6,544,800	76	4,545
12-Sep-22	NO PUMP		0	0	-	-	-
13-Sep-22	NO PUMP		0	0	-	-	-
14-Sep-22	NO P	PUMP	0	0	-	-	-
15-Sep-22		PUMP	0	0	-	-	-
16-Sep-22		PUMP	0	0	-	-	-
17-Sep-22		PUMP	0	0	-	-	-
18-Sep-22		PUMP	0	0	-	-	-
19-Sep-22		PUMP	0	0	-	-	-
20-Sep-22	7AM	9AM	7200	120	144,000	20	1,200
21-Sep-22			0	0	-	-	-
22-Sep-22	7AM	10:30AM	12600	210	252,000	20	1,200
23-Sep-22			0	0	-	-	-
24-Sep-22		PUMP PUMP	0	0	-	-	-
25-Sep-22 26-Sep-22			0	0	-	-	-
20-Sep-22 27-Sep-22	NO PUMP NO PUMP		0	0	-	-	-
27-Sep-22 28-Sep-22	7AM	9AM	7200	120	- 144,000	20	- 1,200
29-Sep-22			0	0	-	- 20	1,200
30-Sep-22	NO PUMP NO PUMP		0	0		-	
1-Oct-22	NO PUMP		0	0	-	-	-
2-Oct-22	NO PUMP		0	0	_	_	_
3-Oct-22	NO PUMP		0	0	_	-	-
4-Oct-22	NO PUMP		0	0	-	-	-
5-Oct-22	NO PUMP		0	0	-	_	-
6-Oct-22	NO F	VMP	0	0	-	-	-
7-Oct-22	NO PUMP		0	0	-	-	-
8-Oct-22	NO F	PUMP	0	0	-	-	-
9-Oct-22	NO PUMP		0	0	-	-	-
10-Oct-22	NO P	PUMP	0	0	-	-	-
11-Oct-22	NO PUMP		0	0	-	-	-
12-Oct-22	NO PUMP		0	0	-	-	-
13-Oct-22	7AM	10AM	10800	180	216,000	20	1,200
14-Oct-22	NO PUMP		0	0	-	-	-
15-Oct-22	NO PUMP		0	0	-	-	-
16-Oct-22	NO PUMP		0	0	-	-	-
17-Oct-22		PUMP	0	0	-	-	-
18-Oct-22	7AM	10AM	10800	180	216,000	20	1,200
19-Oct-22	7AM	11AM	14400	240	288,000	20	1,200
20-Oct-22	NO PUMP NO PUMP		0	0	-	-	-
21-Oct-22			0	0	-	-	-
22-Oct-22	NO PUMP NO PUMP		0	0	-	-	-
23-Oct-22			0	0	-	-	-
24-Oct-22	NO PUMP		0	0	-	-	-

Table 6: Measured Water Volume and Rate of Discharge from Quarry Sump

Table 6. Measured Water Voi						Rate of Rate of	
Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Taking	Taking
						(L/sec)	(L/min)
	ECA Permitted I		Rate		6,544,800	76	4,545
25-Oct-22	NO PUMP		0	0	-	-	-
26-Oct-22	NO PUMP		0	0	-	-	-
27-Oct-22	7AM	10AM	10800	180	216,000	20	1,200
28-Oct-22		PUMP	0	0	-	-	-
29-Oct-22		PUMP	0	0	-	-	-
30-Oct-22		PUMP	0	0	-	-	-
31-Oct-22		PUMP	0	0	-	-	-
1-Nov-22		PUMP	0	0	-	-	-
2-Nov-22		PUMP	0	0	-	-	-
3-Nov-22		PUMP	0	0	-	-	-
4-Nov-22		PUMP	0	0	-	-	-
5-Nov-22			0	0	-	-	-
6-Nov-22 7-Nov-22		PUMP	0	0	-	-	-
8-Nov-22			18000	300			-
9-Nov-22	7:00 AM 12:00 PM		0	300 0	360,000	20	1,200
10-Nov-22			0	0	-	-	-
10-NOV-22 11-Nov-22	NO PUMP NO PUMP		0	0	-	-	-
12-Nov-22	NO PUMP		0	0		_	
13-Nov-22	NO PUMP		0	0	_	-	-
14-Nov-22	NO PUMP		0	0	_	_	_
15-Nov-22	7AM	12PM	18000	300	360,000	20	1,200
16-Nov-22		UMP	0	0	-	-	-
17-Nov-22	NO P	NO PUMP		0	-	-	-
18-Nov-22	NO PUMP		0	0	-	-	-
19-Nov-22	NO PUMP		0	0	-	-	-
20-Nov-22	NO PUMP		0	0	-	-	-
21-Nov-22	NO P	PUMP	0	0	-	-	-
22-Nov-22	7AM	12PM	18000	300	360,000	20	1,200
23-Nov-22	NO P	PUMP	0	0	-	-	-
24-Nov-22		PUMP	0	0	-	-	-
25-Nov-22	NO PUMP		0	0	-	-	-
26-Nov-22	NO PUMP		0	0	-	-	-
27-Nov-22	NO PUMP		0	0	-	-	-
28-Nov-22	7:00 AM 12:00 PM		18000	300	360,000	20	1,200
29-Nov-22	NO PUMP		0	0	-	-	-
30-Nov-22	NO PUMP		0	0	-	-	-
1-Dec-22	7:00 AM 12:00 PM		18000	300	360,000	20	1,200
2-Dec-22	NO PUMP		0	0	-	-	-
3-Dec-22	NO PUMP NO PUMP		0	0	-	-	-
4-Dec-22		PUMP	0	0	-	-	-
5-Dec-22 6-Dec-22		PUMP	0	0	-	-	-
0-Dec-22	NO P	UIVIP	U	U	-	-	-

Table 6: Measured Water Volume and Rate of Discharge from Quarry Sump

					T Discharge Hom	Rate of	Rate of
Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Taking	Taking
Dute	otart	otop				(L/sec)	(L/min)
	ECA Permitted F		Rate		6,544,800	76	4,545
7-Dec-22	1	UMP	0	0	-	-	-
8-Dec-22		12:00 PM	18000	300	360,000	20	1,200
9-Dec-22		UMP	0	0	-	-	-
10-Dec-22	NO P	UMP	0	0	-	-	-
11-Dec-22	NO P	PUMP	0	0	-	-	-
12-Dec-22	NO P	PUMP	0	0	-	-	-
13-Dec-22	7:00 AM	11:00 AM	14400	240	288,000	20	1,200
14-Dec-22	NO PUMP		0	0	-	-	-
15-Dec-22	NO PUMP		0	0	-	-	-
16-Dec-22	7:00 AM 12:00 PM		18000	300	360,000	20	1,200
17-Dec-22	NO PUMP		0	0	-	-	-
18-Dec-22	NO PUMP		0	0	-	-	-
19-Dec-22	NO PUMP		0	0	-	-	-
20-Dec-22	NO PUMP		0	0	-	-	-
21-Dec-22	NO PUMP		0	0	-	-	-
22-Dec-22	NO PUMP		0	0	-	-	-
23-Dec-22	NO PUMP		0	0	-	-	-
24-Dec-22	NO PUMP		0	0	-	-	-
25-Dec-22	NO PUMP		0	0	-	-	-
26-Dec-22	NO PUMP		0	0	-	-	-
27-Dec-22	NO PUMP		0	0	-	-	-
28-Dec-22	NO PUMP		0	0	-	-	-
29-Dec-22	NO PUMP		0	0	-	-	-
30-Dec-22	NO PUMP		0	0	-	-	-
31-Dec-22	NO PUMP		0	0	-	-	-

Table 6: Measured Water Volume and Rate of Discharge from Quarry Sump

APPENDIX A

ECA No. 7737-BH6QEA

Ministry of the Environment, Conservation and Parks Ministère de l'Environnement, de la Protection de la nature et des Parcs

AMENDED ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER 7737-BH6QEA Issue Date: October 22, 2019

QBJR Aggregates Inc. 949 Wilson Avenue Toronto, Ontario M3K 1G2

Site Location: McCarthy Quarry Lot 1, Concession 1, Original Township of Mara Township of Ramara County of Simcoe L0K 1B0

You have applied under section 20.2 of Part II.1 of the <u>Environmental Protection Act</u>, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

sewage works for the collection, transmission, treatment and disposal of stormwater and groundwater collecting within the confines of the Quarry, consisting of the following:

- one (1) sump, measuring 20 metres long, 10 metres wide and 3 metres deep, located at the base of the quarry floor, equipped with two (2) submersible pumps each rated at 38 litres per second with a suction intake approximately one (1) metre above the bottom of the sump, discharging to a settling pond via a 203 millimetre diameter pipeline; and
- one (1) horse-shoe shaped settling pond with an approximate volume of 14,000 cubic metres (at elevation 248.2 metres), with a Hickenbottom control structure equipped with a 150 millimetre diameter orifice plate, discharging to the roadside ditch along Concession Road 1 with ultimate discharge to the Talbot River via a private ditch.

all other controls, electrical equipment, instrumentation, piping, pumps, valves and appurtenances essential for the proper operation of the aforementioned sewage works.

all in accordance with supporting documents listed in Schedule A.

For the purpose of this environmental compliance approval, the following definitions apply:

"Application" means the application for an environmental compliance approval submitted to the Ministry for approval by or on behalf of the Owner and dated August 8, 2019.

"Approval" means this environmental compliance approval, any schedules attached to it, and the Application;

"Director" means a person appointed by the Minister pursuant to section 5 of the EPA for the purposes of Part II.1 of the EPA;

"District Manager" means the District Manager of the appropriate local District Office of the Ministry, where the Works are geographically located;

"EPA" means the Environmental Protection Act, R.S.O. 1990, c.E.19, as amended;

"Ministry" means the ministry of the government of Ontario responsible for the EPA and OWRA and includes all officials, employees or other persons acting on its behalf;

"Owner" means QBJR Aggregates Inc., and includes its successors and assignees;

"OWRA" means the Ontario Water Resources Act, R.S.O. 1990, c. O.40, as amended; and

"Works" means the sewage works described in the Approval.

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. **GENERAL CONDITION**

- (1) The Owner shall ensure that any person authorized to carry out work on or operate any aspect of the Works is notified of this Approval and the terms and conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- (2) Except as otherwise provided by these terms and conditions, the Owner shall design, build, install, operate and maintain the Works in accordance with this Approval.
- (3) Where there is a conflict between a provision of this environmental compliance approval and any document submitted by the Owner, the conditions in this environmental compliance approval shall take precedence. Where there is a conflict between one or more of the documents submitted by the Owner, the Application shall take precedence

unless it is clear that the purpose of the document was to amend the Application

- (4) Where there is a conflict between the documents listed in the Schedule A, and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application.
- (5) The terms and conditions of this Approval are severable. If any term and condition of this environmental compliance approval, or the application of any requirement of this environmental compliance approval to any circumstance, is held invalid or unenforceable, the application of such condition to other circumstances and the remainder of this Approval shall not be affected thereby.
- (6) The issuance of, and compliance with the conditions of, this Approval does not:
 - a) relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement, including, but not limited to, the obligation to obtain approval from the local conservation authority necessary to construct or operate the sewage Works; or
 - b) limit in any way the authority of the Ministry to require certain steps be taken to require the Owner to furnish any further information related to compliance with this Approval.

2. <u>CHANGE OF OWNER</u>

- (1) The Owner shall notify the District Manager and the Director, in writing, of any of the following changes within **thirty (30) days** of the change occurring:
 - (a) change of address of Owner or operating authority;
 - (b) change of Owner or operating authority or both, including address of new Owner or operating authority, or both;
 - (c) change of partners where the Owner or operating authority is or at any time becomes a partnership, and a copy of the most recent declaration filed under the *Business Names Act, R.S.O. 1990, c. B.17*; and
 - (d) change of name of the corporation where the Owner or operator is or at any time becomes a corporation, and a copy of the "Initial Return" or "Notice of Change" filed under the *Corporations Information Act, R.S.O. 1990, c. C.39*, shall be included in the notification to the District Manager.
- (2) In the event of any change in ownership of the Works, the Owner shall notify in writing the succeeding owner of the existence of this Approval, and a copy of such notice shall be

forwarded to the District Manager.

(3) The Owner shall ensure that all communications made pursuant to this condition refer to the number at the top of this environmental compliance approval.

3. **OPERATION AND MAINTENANCE**

- (1) The Owner shall prepare an operations manual of the Works that includes, but is not limited to, the following information:
 - (a) operating procedures for routine operation of the Works;
 - (b) inspection programs, including frequency of inspection, for the Works and the methods or tests to be employed to detect when maintenance is necessary;
 - (c) repair and maintenance programs, including the frequency of repair and maintenance for the Works;
 - (d) contingency plans and procedures for dealing with a potential spill, bypasses or any other abnormal situations, including notifying the District Manager of the situation; and
 - (e) procedures for receiving and responding to public complaints.
- (2) The Owner shall ensure that the Works and related equipment and appurtenances which are installed or used to achieve compliance with this Approval are properly operated and maintained.
- (3) The Owner shall inspect the sump, discharge pump and settling pond on a monthly basis and keep a log or record of the inspections at the Quarry.
- (4) The Owner shall carry out on an as-needed basis, specific maintenance requirements like removing build-up, associated with the sump, pump and settling pond.
- (5) The Owner shall, upon identification of a loss of oil and fuel, take immediate action to prevent the further occurrence of such loss and prevent the spill from entering into the sump and/or the settling pond.
- (6) In furtherance of, but without limiting the generality of, the obligation imposed by subsection (2), the Owner shall ensure that equipment and material for the containment, clean-up and disposal of oil and fuel and materials contaminated with oil or fuel are kept on hand and in good repair for immediate use in the event of:
 - (a) loss of oil or fuel during refuelling or equipment maintenance;

- (b) a spill within the meaning of Part X of the Environmental Protection Act; and/or
- (c) the identification of an abnormal amount of oil or fuel in the sump and/or settling pond.

4. <u>EFFLUENT LIMITS</u>

(1) The Owner shall construct, operate and maintain the Works such that the concentrations of the materials named below as effluent parameters are not exceeded in the effluent from the Works.

Table 1 - Effluent Limits				
Effluent Parameter	Daily Concentration (milligrams per litre unless otherwise indicated)	Monthly Average Concentration (milligrams per litre unless otherwise indicated)		
Column 1	Column 2	Column 3		
Oil and Grease	30	15		
Phenolics (4AAP)	0.04	0.02		
Total Suspended Solids	30	15		
pH of the effluent maintained between 6.0 to 9.5, inclusive, at all times				

- (2) For the purposes of determining compliance with and enforcing subsection (1):
 - (a) non-compliance with respect to a Daily Concentration is deemed to have occurred when any single grab sample analyzed for a parameter named in Column 1 of subsection (1) is greater than the corresponding daily concentration set out in Column 2 of subsection (1);
 - (b) non-compliance with respect to an Monthly Average Concentration is deemed to have occurred when the arithmetic mean concentration of all samples taken in a month, analyzed for a parameter named in Column 1 of subsection (1) is greater than the corresponding monthly average concentration set out in Column 3 of subsection (1); and
 - (c) non-compliance with respect to pH is deemed to have occurred when any single measurement is outside of the indicated range.

5. <u>EFFLUENT - VISUAL OBSERVATIONS</u>

- (1) Notwithstanding any other condition in this Approval, the Owner shall ensure that the effluent from the Works is essentially free of floating and settleable solids and does not contain oil or any other substance in amounts sufficient to create a visible film, sheen or foam on the receiving waters.
- (2) Notwithstanding any other condition in this Approval, the Owner shall ensure that the

effluent from the Works shall not cause flooding or erosion to the downstream receiver and in particular Road flooding.

6. MONITORING AND RECORDING

The Owner shall, upon the Issuance of this Approval, carry out the following monitoring program:

- (1) All samples and measurements taken for the purposes of this Approval are to be taken at a time and in a location characteristic of the quality and quantity of the effluent stream over the time period being monitored.
- (2) Samples shall be collected and analyzed at the following sampling point, at the sampling frequencies and using the sample type specified for each parameter listed:

Table 2 - Effluent Monitoring				
Sample Point	Outfall of settling pond approximately 150 metres north of Concession 1 (i.e. end of pipe discharge).			
Frequency	Weekly			
Sample Type	Grab			
Parameters	Oil and Grease, Phenolics (4AAP), and Total Suspended Solid (TSS).			

	Table 3 - Effluent and Surface Water Monitoring		
Sample Point	1. Outfall of settling pond approximately 150 metres north of Concession 1 (i.e end of pipe discharge).		
	2. Box culvert on Eldon-Ramara Townline approximately 260 metres north of the intersection of Ramara Concession 1 and Eldon-Ramara Townline (i.e. upgradient of end of pipe discharge).		
	 80 centimetre CSP located at Concession 1 Road on McCarthy property (i.e. downgradient of end of pipe discharge). 		
Frequency	Semi-Annually during discharge event.		
Sample Type	Grab		
Parameters	Total Suspended Solids, Copper, Lead, Nickel, Zinc, Arsenic, Oil and Grease, Phenolics (4AAP), Hardness (as CaCO ₃), Alkalinity(as CaCO ₃), Conductivity, pH, Fluoride, Chloride, Nitrate (N), Nitrite (N), Sulphate, Calcium, Magnesium, Sodium, Potassium, Ammonia (N), Dissolved Organic Carbon, Iron, Total Kjeldahl Nitrogen, Phosphorus (Total), Cadmium, Chromium, Manganese, Anion (Sum), Cation (Sum) and Total Dissolved Solids.		

- (3) The methods and protocols for sampling, analysis and recording shall conform, in order of precedence, to the methods and protocols specified in the following:
 - (a) the Ministry's publication "Protocol for the Sampling and Analysis of Industrial/Municipal Wastewater" (August 1994), ISBN 0-7778-1880-9, as amended from time to time by more recently published editions; and
 - (b) the publication "Standard Methods for the Examination of Water and Wastewater" (21st edition), as amended from time to time by more recently published editions.
- (4) The Owner shall measure, record and calculate the discharge rate and volume from the Works on a daily basis during discharging period.
- (5) The Owner shall retain for a minimum of **five (5) years** from the date of their creation, all records and information related to or resulting from the monitoring activities required by this Approval.

7. <u>RECEIVER INSPECTION</u>

(1) The Owner shall, at least once per year, undertake a visual inspection of the downstream ditches for evidence of erosion and/or flooding and shall report the observations in the annual report.

8. <u>REPORTING</u>

- (1) The Owner shall report to the District Manager or designate, any exceedance of any parameter specified in condition 4 orally, forthwith, and in writing within seven (7) days of the exceedance.
- (2) In addition to the obligations under Part X of the EPA, the Owner shall, within ten (10) working days of the occurrence of any reportable spill as defined in Ontario Regulation 675/98, bypass or loss of any product, by-product, intermediate product, oil, solvent, waste material or any other polluting substance into the environment, submit a full written report of the occurrence to the District Manager describing the cause and discovery of the spill or loss, clean-up and recovery measures taken, preventative measures to be taken and schedule of implementation.
- (3) The Owner shall, upon request, make all manuals, plans, records, data, procedures and supporting documentation available to Ministry staff.
- (4) The Owner shall submit quarterly reports of the information obtained under condition 6 within **30 days** of the end of each quarter.
- (5) The Owner shall prepare, and submit to the District Manager, a **performance report**, on

an annual basis, on or before March 31st. The reports shall contain, but shall not be limited to, the following information:

- (a) a summary and interpretation of all monitoring data and a comparison to the effluent limits outlined in condition 4, including an overview of the success and adequacy of the sewage Works;
- (b) a description of any operating problems encountered and corrective actions taken;
- (c) a summary of all maintenance carried out on any major structure, equipment, apparatus, mechanism or thing forming part of the sewage works;
- (d) a summary of any effluent quality assurance or control measures undertaken in the reporting period;
- (e) any other information the District Manager requires from time to time.

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is imposed to ensure that the Works are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the Approval and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review. Condition 1.(6) is included to emphasize that the issuance of this Approval does not diminish any other statutory and regulatory obligations to which the Owner is subject in the construction, maintenance and operation of the Works. The Condition specifically highlights the need to obtain any necessary conservation authority approvals. The Condition also emphasizes the fact that this Approval doesn't limit the authority of the Ministry to require further information.
- 2. Condition 2 is included to ensure that the Ministry records are kept accurate and current with respect to approved Works and to ensure that subsequent owners of the Works are made aware of the Approval and continue to operate the works in compliance with it.
- 3. Condition 3 is included to ensure that a comprehensive operations manual governing all significant areas of operation, maintenance and repair is prepared, implemented and kept up-to-date by the Owner and made available to the Ministry. Such a manual is an integral part of the operation of the Works. Its compilation and use should assist the owner in staff training, in proper plant operation and in identifying and planning for contingencies during possible abnormal conditions. The manual will also act as a benchmark for Ministry staff when reviewing the Owner's operation of the Works. The condition is also included to ensure that the Works will be operated and maintained in a manner enabling compliance with the terms and conditions of this Approval, such that the environment is protected and deterioration, loss, injury or damage to

any person or property is minimised and/or prevented.

- 4. Conditions 4 and 5 are imposed to ensure that the effluent discharged from the Works to the environment meets the Ministry's effluent quality requirements thus minimizing environmental impact on the receiver.
- 5. Condition 6 is included to enable the Owner to evaluate and demonstrate the performance of the Works, on a continual basis, so that the Works are properly operated and maintained at a level which is consistent with the design objectives and effluent limits specified in the Approval and that the Works does not cause any impairment to the receiver.
- 6. Condition 7 is included in order to determine if the ongoing discharge of quarry water is having a negative impact on the downstream ditches so that abatement measures can be taken to prevent such occurrences.
- 7. Condition 8 is included to provide a performance record for future references, to ensure that the Ministry is made aware of problems as they arise, and to provide a compliance record for all the terms and conditions outlined in this Approval, so that the Ministry can work with the Owner in resolving any problems in a timely manner.

SCHEDULE 'A'

1. <u>Environmental Compliance Approval Application for Industrial Sewage Works</u> submitted by John Easton, P.Geo., Golder Associates Ltd., and signed by Mr. Anthony Rossi, Director Land Development & Government Relations, QBJR Aggregates Inc., dated August 8, 2019; and all supporting documentation and information.

Upon issuance of the environmental compliance approval, I hereby revoke Approval No(s). 4731-987KM8 issued on October 15, 2013.

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- a. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- b. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 1. The name of the appellant;
- 2. The address of the appellant;
- 3. The environmental compliance approval number;
- 4. The date of the environmental compliance approval;
- 5. The name of the Director, and;
- 6. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary* Environmental Review Tribunal		The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment, Conservation and
655 Bay Street, Suite 1500	AND	Parks
Toronto, Ontario		135 St. Clair Avenue West, 1st Floor
M5G 1E5		Toronto, Ontario
		M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act. DATED AT TORONTO this 22nd day of October, 2019

Fariha Pannu, P.Eng. Director appointed for the purposes of Part II.1 of the *Environmental Protection Act*

AA/

c: District Manager, MECP Barrie District Office John Easton, P.Geo., Golder Associates Ltd.

APPENDIX B

Permit to Take Water No. 1603-BKTPQH

PERMIT TO TAKE WATER Ground Water NUMBER 1603-BKTPQH

Pursuant to Section 34.1 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990 this Permit To Take Water is hereby issued to:

QBJR Aggregates Inc. 949 Wilson Ave Toronto, Ontario, M3K 1G2 Canada

For the water Quarry Sump, McCarthy Quarry *taking from:*

Located at: Lot 1, Concession 1, Geographic Township of Mara Ramara, County of Simcoe

For the purposes of this Permit, and the terms and conditions specified below, the following definitions apply:

DEFINITIONS

- (a) "Director" means any person appointed in writing as a Director pursuant to section 5 of the OWRA for the purposes of section 34.1, OWRA.
- (b) "Provincial Officer" means any person designated in writing by the Minister as a Provincial Officer pursuant to section 5 of the OWRA.
- (c) "Ministry" means Ontario Ministry of the Environment, Conservation and Parks.
- (d) "District Office" means the Barrie District Office.
- (e) "Permit" means this Permit to Take Water No. 1603-BKTPQH including its Schedules, if any, issued in accordance with Section 34.1 of the OWRA.
- (f) "Permit Holder" means QBJR Aggregates Inc..
- (g) "OWRA" means the Ontario Water Resources Act, R.S.O. 1990, c. O. 40, as amended.

You are hereby notified that this Permit is issued subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. Compliance with Permit

- 1.1 Except where modified by this Permit, the water taking shall be in accordance with the application for this Permit To Take Water, dated October 23, 2019 and signed by Jenny Coco, CEO, and all Schedules included in this Permit.
- 1.2 The Permit Holder shall ensure that any person authorized by the Permit Holder to take water under this Permit is provided with a copy of this Permit and shall take all reasonable measures to ensure that any such person complies with the conditions of this Permit.
- 1.3 Any person authorized by the Permit Holder to take water under this Permit shall comply with the conditions of this Permit.
- 1.4 This Permit is not transferable to another person.
- 1.5 This Permit provides the Permit Holder with permission to take water in accordance with the conditions of this Permit, up to the date of the expiry of this Permit. This Permit does not constitute a legal right, vested or otherwise, to a water allocation, and the issuance of this Permit does not guarantee that, upon its expiry, it will be renewed.
- 1.6 The Permit Holder shall keep this Permit available at all times at or near the site of the taking, and shall produce this Permit immediately for inspection by a Provincial Officer upon his or her request.
- 1.7 The Permit Holder shall report any changes of address to the Director within thirty days of any such change. The Permit Holder shall report any change of ownership of the property for which this Permit is issued within thirty days of any such change. A change in ownership in the property shall cause this Permit to be cancelled.

2. General Conditions and Interpretation

2.1 Inspections

The Permit Holder must forthwith, upon presentation of credentials, permit a Provincial Officer to carry out any and all inspections authorized by the OWRA, the *Environmental Protection Act*, R.S.O. 1990, the *Pesticides Act*, R.S.O. 1990, or the *Safe Drinking Water Act*, S. O. 2002.

2.2 Other Approvals

The issuance of, and compliance with this Permit, does not:

(a) relieve the Permit Holder or any other person from any obligation to comply with any other applicable legal requirements, including the provisions of the *Ontario Water Resources Act*, and

the Environmental Protection Act, and any regulations made thereunder; or

(b) limit in any way any authority of the Ministry, a Director, or a Provincial Officer, including the authority to require certain steps be taken or to require the Permit Holder to furnish any further information related to this Permit.

2.3 Information

The receipt of any information by the Ministry, the failure of the Ministry to take any action or require any person to take any action in relation to the information, or the failure of a Provincial Officer to prosecute any person in relation to the information, shall not be construed as:

(a) an approval, waiver or justification by the Ministry of any act or omission of any person that contravenes this Permit or other legal requirement; or

(b) acceptance by the Ministry of the information's completeness or accuracy.

2.4 Rights of Action

The issuance of, and compliance with this Permit shall not be construed as precluding or limiting any legal claims or rights of action that any person, including the Crown in right of Ontario or any agency thereof, has or may have against the Permit Holder, its officers, employees, agents, and contractors.

2.5 Severability

The requirements of this Permit are severable. If any requirements of this Permit, or the application of any requirements of this Permit to any circumstance, is held invalid or unenforceable, the application of such requirements to other circumstances and the remainder of this Permit shall not be affected thereby.

2.6 Conflicts

Where there is a conflict between a provision of any submitted document referred to in this Permit, including its Schedules, and the conditions of this Permit, the conditions in this Permit shall take precedence.

3. Water Takings Authorized by This Permit

3.1 **Expiry**

This Permit expires on **January 31, 2025**. No water shall be taken under authority of this Permit after the expiry date.

3.2 Amounts of Taking Permitted

The Permit Holder shall only take water from the source, during the periods and at the rates and amounts of taking specified in Table A. Water takings are authorized only for the purposes specified in Table A.

<u>Table A</u>

	Source Name / Description:	Source: Type:	Taking Specific Purpose:	Taking Major Category:	Max. Taken per Minute (litres):	Max. Num. of Hrs Taken per Day:		Max. Num. of Days Taken per Year:	Zone/ Easting/ Northing:
1	Quarry Sump	Pond Connected	Pits and Quarries	Dewatering	4,545	24	6,544,800	250	17 650950 4933500
	· · · ·			Total Taking:	6,544,800				

3.3 There is an additional water taking limitation per year for Source 1 described as Quarry Sump within Table A. The maximum taking per year from the Quarry Sump is 196,500,000 litres.

4. Monitoring

- 4.1 The Permit Holder shall not lower the water in the quarry below an elevation of 232.0 metres above sea level.
- 4.2 The Permit Holder shall conduct daily water level monitoring with the use of pressure transducers and data loggers at:
 - a) The residential well known by the MOE Water Well Record Number 5727662 and identified as well DW3 on Figure 2 in Item 2 of Schedule A of this Permit, if granted permission by the property owner.
 - b) The monitoring wells named OW4-1, OW4-2, OW5-1, OW6-1, OW6-2, OW8-3, OW9-2, and Bored Well (shown on Figure 2, in Item 2 of Schedule A of this Permit).
 - c) The City of Kwartha Lakes monitoring well CKL-1, if granted permission by the property owner.

These pressure transducers and data loggers shall be inspected and downloaded at least every 6 months.

- 4.3 The Permit Holder shall conduct monthly water level monitoring with the use of a manual water level meter at:
 - a) The residential well known by the MOE Water Well Record Number 5727662 and identified as well DW3 on Figure 2 in Item 2 of Schedule A of this Permit, if granted permission by the property owner.
 - b) The residential wells named DW1, DW2, and DW4, if granted permission by the property owner (shown on Figure 2, in Item 2 of Schedule A of this Permit).
 - c) The monitoring wells named AM1b, AMX-R, TW1-1, OW4-1, OW4-2, OW5-1, OW5-2, OW5-3, OW6-1, OW6-2, OW6-3, OW7-1, OW7-2, OW7-3, OW8-1, OW8-2, OW8-3, OW9-1, OW9-2, and Bored Well (shown on Figure 2 in Item 2 of Schedule A of this Permit).
 - d) The City of Kwartha Lakes monitoring wells CKL-1 and CKL-2, if granted permission by the property owner .

The Permit Holder may suspend monthly water level monitoring under Condition 4.3 for the months of January and/or February if no water is taken from the quarry on those months.

- 4.4 The Permit Holder shall, if granted permission by the property owner, measure and record static water levels in the residential wells named DW6, DW7, and DW8, as shown on Figure 2 in Item 2 of Schedule A of this Permit, at least once in every two (2) month period during which water is taken from the quarry. The Permit Holder may suspend monthly water level monitoring under Condition 4.4 for the months of January and/or February if no water is taken from the quarry on those months.
- 4.5 The Permit Holder shall, if granted permission by the property owner, on a semi-annual basis collect raw water samples from the residential wells named DW1, DW2, and the well identified in condition 4.2(a). Each sample shall be tested, at a minimum, for the parameters listed in Table 1 below:

			G
pH	Sulphate	DOC	Copper
Alkalinity (CaCO3)	Magnesium	Colour	Iron
Bicarbonate	Calcium	Turbidity	Lead
Conductivity	Sodium	Aluminium	Manganese
Fluoride	Potassium	Arsenic	Selenium
Chloride	Ammonia (N)	Barium	Zinc
Nitrate	Phosphate	Boron	Hardness (CaCO3)
Nitrite	Phosphorus	Cadmium	TDS (iron sum calc.)
Chromium	Anion Sum	Ion Ratio	Langelier Index
Tannins	Cation Sum	% Difference	

Table 1: Water Quality Parameters for Residential Wells

The Permit Holder shall immediately report to the respective well owner, the Director, and District Office any sampling result that exceeds the Ontario Drinking Water Quality Standards as prescribed by O.Reg. 169/03, as amended.

4.6 The Permit Holder shall on a semi-annual basis conduct the groundwater quality monitoring from the on-site groundwater monitors listed in Table 2. Each sample shall be tested, at a minimum, for the parameters listed in Table 3.

Table 2: On-Site Groundwater Monitors for Water Quality Sampling						
Al	M1b	OW4-I	OW5-III	OW8-I		
Al	MX-R	OW4-II	OW6-II	OW8-II		
T١	W1-1	OW5-I	OW7-I	OW9-I		
Bo	ored Well	OW5-II	OW7-II	OW9-II		

Table 5. Water Quality Farameters for On-Site Oroundwater Monitors						
pH	pH Magnesium		Conductivity			
Alkalinity	Calcium	Nitrate	DOC			
Bicarbonate	Sodium	Nitrite	Colour			
Fluoride	Potassium	Phosphate	TDS			
Chloride	Ammonia	Phosphorus	Hardness			

Table 3. Water Quality Parameters for On-Site Groundwater Monitors

- 4.7 The Permit Holder shall notify the Director, in writing, within 30 days if the groundwater level or groundwater quality monitoring of any well listed under conditions 4.2, 4.3, 4.4, 4.5, and 4.6 is not possible, including being denied access to a private well. In the event of damage or loss of any monitoring well, monitoring devices or related equipment, the Permit Holder shall be allowed 30 calendar days from the date of discovery of the occurrence to repair or replace equipment. If a well is too damaged to be repaired or monitored, or if the well is deemed unsafe to be monitored, then the Director will decide if a replacement well is required and will modify the appropriate monitoring conditions in a written letter to the Permit Holder.
- 4.8 The Permit Holder shall maintain a record of all water takings. This record shall include the dates and times of water takings, and the total measured or calculated amounts for water pumped per day for each day that water is taken under the authorization of this Permit.
- 4.9 The Permit Holder shall keep all required records up to date and available at or near the site of the taking and shall produce the records immediately for inspection by a Provincial Officer upon his or her request.
- 4.10 The Permit Holder shall provide to the Director an annual monitoring report no later than March 1 each year during the life of this Permit. The annual monitoring report shall be prepared by an individual with P.Geo. or equivalent qualifications and shall include, at a minimum:
 - The review and assessment of all monitoring data required by this Permit. a)
 - An up-date of the quarry operations and predicted quarrying and dewatering for b) the next twelve (12) months.

- c) An assessment of the groundwater trends using the on-site on off-site monitoring data. This analysis should state the actual impact area of quarry dewatering and determine the potential for off-site impacts. If any impacts are predicted then a detailed mitigation plan shall be included within this report.
- d) Analysis that includes amount of water pumped, precipitation data, and an estimate of how much groundwater was pumped versus surface water.
- e) Figures that include site maps with current quarry depths, groundwater contour maps, impact area of quarry dewatering, groundwater elevation graphs, and geological cross-sections.
- f) Any groundwater interference complaints.
- g) Description of all communication with the public.
- h) Conclusions and recommendations, if any, to improve the monitoring and reporting at the site.

An electronic copy of the data collected must also accompany the report.

- 4.11 The Permit Holder shall make available on a publicly-accessible site on the internet the water quality and quantity data that it is required to monitor and record under this Permit and O.Reg. 387/04, as amended, and a copy of every report that is required to be prepared under this Permit. For greater clarity, the Permit Holder shall not publish any personal information as defined by the *Freedom of Information and Protection of Privacy Act*, R.S.O. 1990, c. F.31, as amended.
- 4.12 The Permit Holder shall maintain a Public Liaison Committee ("PLC") comprised of not more than seven (7) members that will meet at least once every four (4) months, unless the majority of the PLC decide that more or less frequent meetings are required. The PLC shall be comprised of: two (2) members appointed by the Permit Holder one of whom shall act as Chairperson; one (1) member from each of the Township and the County, if they wish to have representatives; and three (3) members appointed by the public, if they wish to have representatives, who must be permanent residents within a 3 kilometre radius of the quarry property. The PLC shall serve in an advisory / community liaison role and shall have no powers to direct the Permit Holder or the Ministry.
- 4.13 Any request for an amendment or renewal of this Permit must be accompanied by a report prepared by an individual with P.Geo. or equivalent qualifications and shall include, at a minimum:
 - a) The review and assessment of all monitoring data required by this Permit.
 - b) An up-date of the quarry operations and predicted quarrying and dewatering for the duration of the requested permit.
 - c) An assessment of the groundwater trends using the on-site on off-site monitoring data. This analysis should state the actual impact area of quarry dewatering and determine the potential for off-site impacts. If any impacts are predicted then a detailed mitigation plan shall be included within this report.
 - d) Analysis that includes amount of water pumped, precipitation data, and an estimate of how much groundwater was pumped versus surface water.

- e) Figures that include site maps with current quarry depths, groundwater contour maps, impact area of quarry dewatering, groundwater elevation graphs, and geological cross-sections.
- f) Any groundwater interference complaints.
- g) Description of all communication with the public.
- h) Conclusions and recommendations, if any, to improve the monitoring and reporting at the site.

An electronic copy of the data collected must also accompany the report. Any application for renewal of this Permit must be submitted to the Ministry at least ninety (90) days prior to the expiry of this Permit.

4.14 The Permit Holder shall, as directed by the Ministry, participate in a cumulative impact assessment for the Carden Plain Area with other quarry operators who have been issued a permit to take water in this area.

5. Impacts of the Water Taking

5.1 Notification

The Permit Holder shall immediately notify the local District Office of any complaint arising from the taking of water authorized under this Permit and shall report any action which has been taken or is proposed with regard to such complaint. The Permit Holder shall immediately notify the local District Office if the taking of water is observed to have any significant impact on the surrounding waters. After hours, calls shall be directed to the Ministry's Spills Action Centre at 1-800-268-6060.

5.2 For Groundwater Takings

If the taking of water is observed to cause any negative impact to other water supplies obtained from any adequate sources that were in use prior to initial issuance of a Permit for this water taking, the Permit Holder shall take such action necessary to make available to those affected, a supply of water equivalent in quantity and quality to their normal takings, or shall compensate such persons for their reasonable costs of so doing, or shall reduce the rate and amount of taking to prevent or alleviate the observed negative impact. Pending permanent restoration of the affected supplies, the Permit Holder shall provide, to those affected, temporary water supplies adequate to meet their normal requirements, or shall compensate such persons for their reasonable costs of doing so.

If permanent interference is caused by the water taking, the Permit Holder shall restore the water supplies of those permanently affected.

- 5.2.1 Where the water supply provided by the well known by MOE Water Well Record Number 5727662 is restored in accordance with Condition 5.2, the Permit Holder shall restore the supply in a manner satisfactory to the Director, taking into account the residential needs, requirements and preferences of the persons serviced by the well.
- 5.3 Upon the receipt of a groundwater interference complaint, the Permit Holder shall:

- a) Implement the McCarthy Quarry Complaint Resolution Process as described in Item 3 of Schedule A of this Permit.
- b) In addition, appropriate notification and actions must be taken as described in conditions 5.1 and 5.2 of this Permit. The provisions of conditions 5.1 and 5.2 shall take precedence over the provisions of condition 5.3(a) if there is a conflict.

6. Director May Amend Permit

The Director may amend this Permit by letter requiring the Permit Holder to suspend or reduce the taking to an amount or threshold specified by the Director in the letter. The suspension or reduction in taking shall be effective immediately and may be revoked at any time upon notification by the Director. This condition does not affect your right to appeal the suspension or reduction in taking to the Environmental Review Tribunal under the *Ontario Water Resources Act*, Section 100 (4).

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is included to ensure that the conditions in this Permit are complied with and can be enforced.
- 2. Condition 2 is included to clarify the legal interpretation of aspects of this Permit.
- 3. Conditions 3 through 6 are included to protect the quality of the natural environment so as to safeguard the ecosystem and human health and foster efficient use and conservation of waters. These conditions allow for the beneficial use of waters while ensuring the fair sharing, conservation and sustainable use of the waters of Ontario. The conditions also specify the water takings that are authorized by this Permit and the scope of this Permit.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, you may by written notice served upon me, the Environmental Review Tribunal and the Minister of the Environment, Conservation and Parks, within 15 days after receipt of this Notice, require a hearing by the Tribunal. The Minister of the Environment, Conservation and Parks will place notice of your appeal on the Environmental Registry. Section 101 of the <u>Ontario Water Resources Act</u>, as amended provides that the Notice requiring a hearing shall state:

- 1. The portions of the Permit or each term or condition in the Permit in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

In addition to these legal requirements, the Notice should also include:

- a. The name of the appellant;
- b. The address of the appellant;
- c. The Permit to Take Water number;
- d. The date of the Permit to Take Water;
- e. The name of the Director;
- f. The municipality within which the works are located;

This notice must be served upon:

The Secretary Environmental Review Tribunal 655 Bay Street, 15th Floor Toronto ON M5G 1E5 Fax: (416) 326-5370 Email: ERTTribunalsecretary@ontario.ca	<u>AND</u>	The Minister of the Environment, Conservation and Parks 777 Bay Street, 5th Floor Toronto, Ontario M7J 2J3	<u>AND</u>	The Director, Section 34.1, Ministry of the Environment, Conservation and Parks 8th Floor 5775 Yonge St Toronto ON M2M 4J1 Fax: (416) 325-6347
---	------------	--	------------	--

Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal:

by Telephone at	by Fax at	by e-mail at
(416) 212-6349	(416) 326-5370	www.ert.gov.on.ca
Toll Free 1(866) 448-2248	Toll Free 1(844) 213-3474	

This instrument is subject to Section 38 of the **Environmental Bill of Rights** that allows residents of Ontario to seek leave to appeal the decision on this instrument. Residents of Ontario may seek to appeal for 15 days from the date this decision is placed on the Environmental Registry. By accessing the Environmental Registry, you can determine when the leave to appeal period ends.

This Permit cancels and replaces Permit Number 7818-9QJNL4, issued on 2014/12/30.

Dated at Toronto this 31st day of January, 2020.

Allen Durgh l

Ellen Klupfel Director, Section 34.1 Ontario Water Resources Act, R.S.O. 1990

Schedule A

This Schedule "A" forms part of Permit To Take Water 1603-BKTPQH, dated January 31, 2020.

1. Permit to Take Water Application, dated October 23, 2019 and signed by Jenny Coco.

2. Golder Associates Ltd. (November 1, 2019). Hydrogeological Assessment, Permit to Take Water Renewal, McCarthy Quarry.

Ministry of the Environment, Conservation and Parks

Environmental Assessment and Permissions Division Brownfields and Permit to Take Water Permit To Take Water Unit Floor 1, 135 St Clair Ave W Toronto, ON M4V 1P5 Tel: (289) 830-5867

Ministère de l'Environnement, de la Protection de la nature et des Parcs

Division des évaluations et des permissions environnementales Réaménagement des friches contaminées et réglementation des prélèvements d'eau Unité de la réglementation des prélèvements d'eau 1er étage, 135 av St. Clair O Toronto, ON M4V 1P5 Tél:(289) 830-5867

February 28, 2022

QBJR Aggregates Inc. 949 Wilson Ave Toronto, Ontario, M3K 1G2 Canada

Attn: Jenny Coco

RE: Amendment to Permit To Take Water No. 1603-BKTPQH Lot 1 Concession 1 Original Township of Mara Ramara, County of Simcoe Reference Number 0707-BHMPF8

In a letter, *Change of Sump Location Identified at the McCarthy Quarry Under Permit No. 1603-BKTPQH*) prepared by Golder Associates Ltd. on behalf of QBJR Aggregates Inc., dated February 23, 2022, it has been requested the the location of water taking identified for **Source 1** in **Table A** (Quarry Sump) of Permit To Take Water ("PTTW") number 1603-BKTPQH be revised to reflect a new proposed water taking location, in the southern portion of the quarry site. In consultation with the Ministry's Central Region Technical Support Section Staff (Mihran Aslanyan, P.Geo., Hydrogeologist) there are no technical concerns identified regarding this request.

I am a Director appointed for the purposes of section 34.1 of the *Ontario Water Resources Act*, R.S.O. 1990, c. O.40, as amended ("OWRA"), and pursuant to my authority under subsection 34.1(2) of the OWRA, I am exercising my discretion to amend Permit to Take Water 1603-BKTPQH by amending Condition 3.2, Table A, as follows:

3.2 Amounts of Taking Permitted

The Permit Holder shall only take water from the source, during the periods and at the rates and amounts of taking specified in Table A. Water takings are authorized only for the purposes specified in Table A.

<u>Table A</u>

	Source Name / Description:	Source: Type:	Taking Specific Purpose:	Taking Major Category:	Max. Taken per Minute (litres):	Max. Num. of Hrs Taken per Day:		Max. Num. of Days Taken per Year:	Zone/ Easting/ Northing:
1	Quarry Sump	Pond Connected	Pits and Quarries	Dewatering	4,545	24	6,544,800	250	17 651324 4933188
				Total Taking:	6,544,800				

Please note that all other terms and conditions of Permit to Take Water 1603-BKTPQH shall remain in force.

This Notice now forms part of the current permit and must be attached to the original Permit to Take Water, if available. If the original is no longer available, this letter must be kept attached to a certified copy of the Permit to Take Water.

Any change in circumstances related to this permit should be reported promptly to a Director.

In accordance with Section 100 of the *Ontario Water Resources Act, R.S.O. 1990*, you may by written notice served upon me and the Ontario Land Tribunal within 15 days after receipt of this notice, require a hearing by the Tribunal. Section 101 of the *Ontario Water Resources Act, R.S.O. 1990*, as amended, provides that the notice requiring the hearing ("the Notice") shall state:

- 1. The portions of the Permit or each term or condition in the Permit in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

In addition to these legal requirements, the Notice should also include:

- a. The name of the appellant;
- b. The address of the appellant;
- c. The Permit to Take Water number;
- d. The date of the Permit to Take Water;
- e. The name of the Director;
- f. The municipality within which the works are located;

This notice must be served upon:

Registrar* Ontario Land Tribunal 655 Bay Street, Suite 1500 Toronto, Ontario M5G 1E5 OLT.Registrar@ontario.ca

AND

The Director, Section 34.1, Ministry of the Environment, Conservation and Parks

* Further information on the Ontario Land Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: (416) 212-6349 or 1 (866) 448-2248, or www.olt.gov.on.ca.

Yours truly,

Heek

Gregory Meek Supervisor (Acting), Permit To Take Water Director, Section 34.1, Ontario Water Resources Act, R.S.O. 1990 Environmental Permissions Branch

File Storage Number: -

APPENDIX C

Water Quality Results

Your Project #: 20448776 Site#: McCarthy Your C.O.C. #: 864938-01-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/04/08 Report #: R7078409 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C288562

Received: 2022/04/05, 08:54

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2022/04/08	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2022/04/07	2022/04/07	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2022/04/06	2022/04/06	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2022/04/06	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2022/04/08	2022/04/08	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2022/04/07	2022/04/08	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

- Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.
- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 20448776 Site#: McCarthy Your C.O.C. #: 864938-01-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/04/08 Report #: R7078409 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C288562 Received: 2022/04/05, 08:54

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		SGU703		
Sampling Date		2022/04/04 09:00		
COC Number		864938-01-01		
	UNITS	POND	RDL	QC Batch
Calculated Parameters				
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	0.50	7922875
Inorganics				
рН	рН	8.10	N/A	7923899
Phenols-4AAP	mg/L	<0.0010	0.0010	7924623
Total Suspended Solids	mg/L	2	1	7927529
Petroleum Hydrocarbons				
Total Oil & Grease	mg/L	<0.50	0.50	7928060
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	7929415
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				
N/A = Not Applicable				

GENERAL COMMENTS

Each te	mperature is the ave	erage of up to the	ree cooler temperatures taken at receipt
	Package 1	16.0°C	
-			
Results	relate only to the it	ems tested.	

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7923899	SAU	Spiked Blank	рН	2022/04/06		101	%	98 - 103
7923899	SAU	RPD	рН	2022/04/06	0.39		%	N/A
7924623	LHA	Matrix Spike	Phenols-4AAP	2022/04/06		101	%	80 - 120
7924623	LHA	Spiked Blank	Phenols-4AAP	2022/04/06		102	%	80 - 120
7924623	LHA	Method Blank	Phenols-4AAP	2022/04/06	<0.0010		mg/L	
7924623	LHA	RPD	Phenols-4AAP	2022/04/06	0.67		%	20
7927529	SHD	QC Standard	Total Suspended Solids	2022/04/08		95	%	85 - 115
7927529	SHD	Method Blank	Total Suspended Solids	2022/04/08	<1		mg/L	
7927529	SHD	RPD	Total Suspended Solids	2022/04/08	17		%	25
7928060	HPL	Spiked Blank	Total Oil & Grease	2022/04/07		100	%	85 - 115
7928060	HPL	RPD	Total Oil & Grease	2022/04/07	0.25		%	25
7928060	HPL	Method Blank	Total Oil & Grease	2022/04/07	<0.50		mg/L	
7929415	MPZ	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2022/04/08		98	%	85 - 115
7929415	MPZ	RPD	Total Oil & Grease Mineral/Synthetic	2022/04/08	2.1		%	25
7929415	MPZ	Method Blank	Total Oil & Grease Mineral/Synthetic	2022/04/08	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

auistin Camiere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 6 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 20448776 Site#: McCarthy Your C.O.C. #: 864938-04-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/04/18 Report #: R7090210 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C296331

Received: 2022/04/12, 08:54

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2022/04/18	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2022/04/17	2022/04/17	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2022/04/12	2022/04/13	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2022/04/13	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2022/04/17	2022/04/17	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2022/04/14	2022/04/18	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

- Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.
- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 20448776 Site#: McCarthy Your C.O.C. #: 864938-04-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/04/18 Report #: R7090210 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C296331 Received: 2022/04/12, 08:54

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		SIM503		
Sampling Date		2022/04/11 14:00		
COC Number		864938-04-01		
	UNITS	POND	RDL	QC Batch
Calculated Parameters				
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	0.50	7935271
Inorganics				
рН	рН	8.09	N/A	7937104
Phenols-4AAP	mg/L	<0.0010	0.0010	7938592
Total Suspended Solids	mg/L	2	1	7940914
Petroleum Hydrocarbons				
Total Oil & Grease	mg/L	<0.50	0.50	7943662
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	7943663
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable				

GENERAL COMMENTS

Each temperature is the	average of up to t	hree cooler temperatures taken at receipt
Package 1	15.3°C	
•	•	—
Results relate only to the	e items tested.	

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7937104	SAU	Spiked Blank	рН	2022/04/13		102	%	98 - 103
7937104	SAU	RPD	рН	2022/04/13	0.97		%	N/A
7938592	SSV	Matrix Spike	Phenols-4AAP	2022/04/13		102	%	80 - 120
7938592	SSV	Spiked Blank	Phenols-4AAP	2022/04/13		103	%	80 - 120
7938592	SSV	Method Blank	Phenols-4AAP	2022/04/13	<0.0010		mg/L	
7938592	SSV	RPD	Phenols-4AAP	2022/04/13	NC		%	20
7940914	SHD	QC Standard	Total Suspended Solids	2022/04/18		100	%	85 - 115
7940914	SHD	Method Blank	Total Suspended Solids	2022/04/18	<1		mg/L	
7940914	SHD	RPD	Total Suspended Solids	2022/04/18	7.4		%	25
7943662	HPL	Spiked Blank	Total Oil & Grease	2022/04/17		99	%	85 - 115
7943662	HPL	RPD	Total Oil & Grease	2022/04/17	0.25		%	25
7943662	HPL	Method Blank	Total Oil & Grease	2022/04/17	<0.50		mg/L	
7943663	HPL	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2022/04/17		99	%	85 - 115
7943663	HPL	RPD	Total Oil & Grease Mineral/Synthetic	2022/04/17	0.51		%	25
7943663	HPL	Method Blank	Total Oil & Grease Mineral/Synthetic	2022/04/17	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

auistin Camiere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 6 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 20448776 Site#: McCarthy Your C.O.C. #: 864938-03-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/04/26 Report #: R7099806 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2A2064

Received: 2022/04/19, 08:50

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2022/04/25	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2022/04/25	2022/04/25	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2022/04/20	2022/04/21	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2022/04/21	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2022/04/25	2022/04/25	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2022/04/21	2022/04/22	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 20448776 Site#: McCarthy Your C.O.C. #: 864938-03-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/04/26 Report #: R7099806 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2A2064 Received: 2022/04/19, 08:50

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

RESULTS OF ANALYSES OF WATER

	SJT409		
	2022/04/18		
	01:30		
	864938-03-01		
UNITS	POND	RDL	QC Batch
mg/L	<0.50	0.50	7946292
рН	8.25	N/A	7949906
mg/L	<0.0010	0.0010	7951664
mg/L	2	1	7949269
mg/L	0.90	0.50	7956925
mg/L	0.80	0.50	7956927
	mg/L pH mg/L mg/L	2022/04/18 01:30 864938-03-01 UNITS POND mg/L <0.50	2022/04/18 01:30 864938-03-01 UNITS POND RDL mg/L <0.50

GENERAL COMMENTS

Each temperatu	ure is the ave	rage of up to th	ree cooler temperatures taken at receipt
Packag	ge 1	12.7°C]
			-
Results relate o	only to the ite	ems tested.	

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7949269	SHD	QC Standard	Total Suspended Solids	2022/04/22		97	%	85 - 115
7949269	SHD	Method Blank	Total Suspended Solids	2022/04/22	<1		mg/L	
7949269	SHD	RPD	Total Suspended Solids	2022/04/22	4.4		%	25
7949906	TAK	Spiked Blank	рН	2022/04/21		102	%	98 - 103
7949906	TAK	RPD	рН	2022/04/21	0.031		%	N/A
7951664	LHA	Matrix Spike	Phenols-4AAP	2022/04/21		109	%	80 - 120
7951664	LHA	Spiked Blank	Phenols-4AAP	2022/04/21		106	%	80 - 120
7951664	LHA	Method Blank	Phenols-4AAP	2022/04/21	<0.0010		mg/L	
7951664	LHA	RPD	Phenols-4AAP	2022/04/21	1.6		%	20
7956925	MPZ	Spiked Blank	Total Oil & Grease	2022/04/25		98	%	85 - 115
7956925	MPZ	RPD	Total Oil & Grease	2022/04/25	1.3		%	25
7956925	MPZ	Method Blank	Total Oil & Grease	2022/04/25	<0.50		mg/L	
7956927	MPZ	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2022/04/25		95	%	85 - 115
7956927	MPZ	RPD	Total Oil & Grease Mineral/Synthetic	2022/04/25	2.1		%	25
7956927	MPZ	Method Blank	Total Oil & Grease Mineral/Synthetic	2022/04/25	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 20448776 Site#: McCarthy Your C.O.C. #: 859351-01-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/05/05 Report #: R7112263 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2B0038

Received: 2022/04/26, 08:49

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2022/05/05	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2022/05/04	2022/05/05	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2022/04/26	2022/04/27	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2022/04/28	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2022/05/04	2022/05/05	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2022/04/28	2022/04/29	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Your Project #: 20448776 Site#: McCarthy Your C.O.C. #: 859351-01-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/05/05 Report #: R7112263 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2B0038 Received: 2022/04/26, 08:49

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

l –			
	SLK143		
	2022/04/25		
	01:45		
	859351-01-01		
UNITS	POND	RDL	QC Batch
mg/L	<0.50	0.50	7959376
рН	8.23	N/A	7960454
mg/L	<0.0010	0.0010	7964458
mg/L	2	1	7965077
mg/L	0.90	0.50	7975346
mg/L	0.70	0.50	7975393
	mg/L pH mg/L mg/L	01:45 859351-01-01 UNITS POND mg/L <0.50 pH 8.23 mg/L <0.0010 mg/L 2 mg/L 0.90	2022/04/25 01:45 Annotation 859351-01-01 N/A UNITS POND RDL mg/L <0.50

GENERAL COMMENTS

Each temperature is the av	erage of up to th	ree cooler temperatures taken at receipt
Package 1	15.7°C	
·		
Results relate only to the it	tems tested.	

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7960454	TAK	Spiked Blank	рН	2022/04/27		101	%	98 - 103
7960454	TAK	RPD	рН	2022/04/27	0.21		%	N/A
7964458	LHA	Matrix Spike	Phenols-4AAP	2022/04/28		103	%	80 - 120
7964458	LHA	Spiked Blank	Phenols-4AAP	2022/04/28		101	%	80 - 120
7964458	LHA	Method Blank	Phenols-4AAP	2022/04/28	<0.0010		mg/L	
7964458	LHA	RPD	Phenols-4AAP	2022/04/28	NC		%	20
7965077	SHD	QC Standard	Total Suspended Solids	2022/04/29		95	%	85 - 115
7965077	SHD	Method Blank	Total Suspended Solids	2022/04/29	<1		mg/L	
7965077	SHD	RPD	Total Suspended Solids	2022/04/29	6.9		%	25
7975346	NP6	Spiked Blank	Total Oil & Grease	2022/05/05		98	%	85 - 115
7975346	NP6	RPD	Total Oil & Grease	2022/05/05	1.0		%	25
7975346	NP6	Method Blank	Total Oil & Grease	2022/05/05	<0.50		mg/L	
7975393	NP6	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2022/05/05		98	%	85 - 115
7975393	NP6	RPD	Total Oil & Grease Mineral/Synthetic	2022/05/05	2.6		%	25
7975393	NP6	Method Blank	Total Oil & Grease Mineral/Synthetic	2022/05/05	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 20448776 Site#: McCarthy Your C.O.C. #: 859351-02-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/05/09 Report #: R7116935 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2B8014

Received: 2022/05/03, 08:54

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2022/05/07	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2022/05/07	2022/05/07	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2022/05/04	2022/05/04	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2022/05/06	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2022/05/07	2022/05/07	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2022/05/05	2022/05/06	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Your Project #: 20448776 Site#: McCarthy Your C.O.C. #: 859351-02-01

Attention: Dawn Hoyle/Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/05/09 Report #: R7116935 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2B8014 Received: 2022/05/03, 08:54

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

	SNC777		
	2022/05/02 01:30		
	859351-02-01		
UNITS	POND	RDL	QC Batch
mg/L	<0.50	0.50	7972535
рН	8.22	N/A	7975934
mg/L	<0.0010	0.0010	7977698
mg/L	3	1	7977320
mg/L	<0.50	0.50	7982297
mg/L	<0.50	0.50	7982306
	mg/L pH mg/L mg/L	2022/05/02 01:30 859351-02-01 UNITS POND mg/L <0.50	2022/05/02 01:30 2022/05/02 01:30 859351-02-01 N/A UNITS POND RDL mg/L <0.50

GENERAL COMMENTS

Each t	emperature is the ave	erage of up to th	ree cooler temperatures taken at receipt
	Package 1	15.7°C	
Result	s relate only to the it	ems tested.	

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7975934	TAK	Spiked Blank	рН	2022/05/04		101	%	98 - 103
7975934	TAK	RPD	рН	2022/05/04	0.27		%	N/A
7977320	SHD	QC Standard	Total Suspended Solids	2022/05/06		95	%	85 - 115
7977320	SHD	Method Blank	Total Suspended Solids	2022/05/06	<1		mg/L	
7977320	SHD	RPD	Total Suspended Solids	2022/05/06	11		%	25
7977698	LHA	Matrix Spike	Phenols-4AAP	2022/05/06		103	%	80 - 120
7977698	LHA	Spiked Blank	Phenols-4AAP 2022/05/06 102		%	80 - 120		
7977698	LHA	Method Blank	Phenols-4AAP	2022/05/06	<0.0010		mg/L	
7977698	LHA	RPD	Phenols-4AAP	2022/05/06	NC		%	20
7982297	RK9	Spiked Blank	Total Oil & Grease	2022/05/07		100	%	85 - 115
7982297	RK9	RPD	Total Oil & Grease	2022/05/07	0.25		%	25
7982297	RK9	Method Blank	Total Oil & Grease	2022/05/07	<0.50		mg/L	
7982306	RK9	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2022/05/07		99	%	85 - 115
7982306	RK9	RPD	Total Oil & Grease Mineral/Synthetic	2022/05/07	0.51		%	25
7982306	RK9	Method Blank	Total Oil & Grease Mineral/Synthetic	2022/05/07	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 20448776 Site#: McCarthy Your C.O.C. #: 859351-04-01

Attention: Jamie Bonany/Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/05/16 Report #: R7127695 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2C4931

Received: 2022/05/10, 09:03

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2022/05/16	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2022/05/16	2022/05/16	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2022/05/11	2022/05/12	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2022/05/12	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2022/05/16	2022/05/16	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2022/05/12	2022/05/16	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

- Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.
- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Your Project #: 20448776 Site#: McCarthy Your C.O.C. #: 859351-04-01

Attention: Jamie Bonany/Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/05/16 Report #: R7127695 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2C4931 Received: 2022/05/10, 09:03

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		SOQ098		
Sampling Date		2022/05/09 15:30		
COC Number		859351-04-01		
	UNITS	POND	RDL	QC Batch
Calculated Parameters				
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	0.50	7986012
Inorganics				
рН	рН	8.43	N/A	7990276
Phenols-4AAP	mg/L	<0.0010	0.0010	7989617
Total Suspended Solids	mg/L	2	1	7991928
Petroleum Hydrocarbons				
Total Oil & Grease	mg/L	<0.50	0.50	7997414
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	7997416
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable				

GENERAL COMMENTS

Each temper	ature is the ave	erage of up to th	ree cooler temperatures taken at receipt
Рас	kage 1	17.3°C	
Results relat	e only to the it	ems tested.	

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7989617	LHA	Matrix Spike	Phenols-4AAP	2022/05/12		109	%	80 - 120
7989617	LHA	Spiked Blank	Phenols-4AAP	2022/05/11		96	%	80 - 120
7989617	LHA	Method Blank	Phenols-4AAP	2022/05/11	<0.0010		mg/L	
7989617	LHA	RPD	Phenols-4AAP	2022/05/12	12		%	20
7990276	TAK	Spiked Blank	рН	2022/05/12		102	%	98 - 103
7990276	TAK	RPD	рН	2022/05/12	0.35		%	N/A
7991928	SHD	QC Standard	Total Suspended Solids	2022/05/16		96	%	85 - 115
7991928	SHD	Method Blank	Total Suspended Solids	2022/05/16	<1		mg/L	
7991928	SHD	RPD	Total Suspended Solids	2022/05/16	0		%	25
7997414	MJ2	Spiked Blank	Total Oil & Grease	2022/05/16		98	%	85 - 115
7997414	MJ2	RPD	Total Oil & Grease	2022/05/16	0.77		%	25
7997414	MJ2	Method Blank	Total Oil & Grease	2022/05/16	<0.50		mg/L	
7997416	MJ2	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2022/05/16		95	%	85 - 115
7997416	MJ2	RPD	Total Oil & Grease Mineral/Synthetic	2022/05/16	0.53		%	25
7997416	MJ2	Method Blank	Total Oil & Grease Mineral/Synthetic	2022/05/16	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 21508089 Site Location: MCCARTHY Your C.O.C. #: 877895-01-01

Attention: Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/05/24 Report #: R7137282 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2D3220

Received: 2022/05/17, 12:46

Sample Matrix: Water # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	4	N/A	2022/05/19	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	4	N/A	2022/05/20	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	4	N/A	2022/05/19	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	4	N/A	2022/05/19	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	4	N/A	2022/05/19	CAM SOP-00446	SM 23 5310 B m
Fluoride	4	2022/05/18	2022/05/19	CAM SOP-00449	SM 23 4500-F C m
Hardness (calculated as CaCO3)	4	N/A	2022/05/20	CAM SOP 00102/00408/00447	SM 2340 B
Lab Filtered Metals Analysis by ICP	4	2022/05/18	2022/05/20	CAM SOP-00408	EPA 6010D m
Total Metals Analysis by ICPMS	4	N/A	2022/05/20	CAM SOP-00447	EPA 6020B m
Anion and Cation Sum	4	N/A	2022/05/20		
Total Ammonia-N	4	N/A	2022/05/19	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	4	N/A	2022/05/19	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Animal and Vegetable Oil and Grease	3	N/A	2022/05/21	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	3	2022/05/21	2022/05/21	CAM SOP-00326	EPA1664B m,SM5520B m
рН	4	2022/05/18	2022/05/19	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	4	N/A	2022/05/19	CAM SOP-00444	OMOE E3179 m
Orthophosphate	4	N/A	2022/05/19	CAM SOP-00461	EPA 365.1 m
Sat. pH and Langelier Index (@ 20C)	4	N/A	2022/05/20		Auto Calc
Sat. pH and Langelier Index (@ 4C)	4	N/A	2022/05/20		Auto Calc
Sulphate by Automated Colourimetry	4	N/A	2022/05/19	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids	4	2022/05/19	2022/05/20	CAM SOP-00428	SM 23 2540C m
Total Kjeldahl Nitrogen in Water	4	2022/05/18	2022/05/19	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	3	2022/05/18	2022/05/19	CAM SOP-00407	SM 23 4500 P B H m
Total Phosphorus (Colourimetric)	1	2022/05/19	2022/05/19	CAM SOP-00407	SM 23 4500 P B H m
Mineral/Synthetic O & G (TPH Heavy Oil) (3)	3	2022/05/21	2022/05/21	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	4	2022/05/18	2022/05/20	CAM SOP-00428	SM 23 2540D m
Turbidity	4	N/A	2022/05/18	CAM SOP-00417	SM 23 2130 B m

Remarks:

Page 1 of 18

Your Project #: 21508089 Site Location: MCCARTHY Your C.O.C. #: 877895-01-01

Attention: Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/05/24 Report #: R7137282 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2D3220

Received: 2022/05/17, 12:46

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(3) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Total Cover Pages : 2 Page 2 of 18

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

OIL & GREASE - A/V/M/T (WATER)

Bureau Veritas ID				SQK728	SQK729	SQK730			
Sampling Date				2022/05/13 04:00	2022/05/13 11:15	2022/05/13			
COC Number				877895-01-01	877895-01-01	877895-01-01			
		UNITS	Criteria	SW1	SW2	DUP3	RDL	QC Batch	
Calculated Parame	ters								
Total Animal/Vegetable Oil and Grease		mg/L	-	<0.50	<0.50	<0.50	0.50	7999597	
Petroleum Hydroca	Petroleum Hydrocarbons								
Total Oil & Grease			-	<0.50	<0.50	<0.50	0.50	8009165	
Total Oil & Grease	Mineral/Synthetic	mg/L	0.5	<0.50	<0.50	<0.50	0.50	8009166	
No Fill	No Exceedance								
Grey	Exceeds 1 criteria	policy/le	evel						
Black	Exceeds both crite	ria/leve	ls						
RDL = Reportable D	RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch									
	ovincial Water Quality r Management docum			999					

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID			SQK727			SQK727			
Sampling Date			2022/05/13			2022/05/13			
			04:15			04:15			
COC Number			877895-01-01			877895-01-01			
	UNITS	Criteria	POND	RDL	QC Batch	POND Lab-Dup	RDL	QC Batch	
Calculated Parameters									
Anion Sum	me/L	-	13.0	N/A	7999556				
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	58	1.0	7999549				
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1.3	1.0	7999549				
Cation Sum	me/L	-	13.6	N/A	7999556				
Hardness (CaCO3)	mg/L	-	360	1.0	7999552				
Langelier Index (@ 20C)	N/A	-	0.520		7999557				
Langelier Index (@ 4C)	N/A	-	0.272		7999558				
Saturation pH (@ 20C)	N/A	-	7.85		7999557				
Saturation pH (@ 4C)	N/A	-	8.10		7999558				
Inorganics	<u>.</u>	ļ	ł	Į		<u></u>			
Total Ammonia-N	mg/L	-	<0.050	0.050	8002264				
Conductivity	umho/cm	-	1400	1.0	8003291				
Total Dissolved Solids	mg/L	-	735	10	8005060				
Fluoride (F-)	mg/L	-	0.55	0.10	8003277				
Total Kjeldahl Nitrogen (TKN)	mg/L	-	0.42	0.10	8002031				
Dissolved Organic Carbon	mg/L	-	4.8	0.40	8002246				
Orthophosphate (P)	mg/L	-	<0.010	0.010	8001857				
рН	pН	6.5:8.5	8.37		8003290				
Phenols-4AAP	mg/L	0.001	<0.0010	0.0010	8002870				
Total Phosphorus	mg/L	0.01	0.008	0.004	8002313				
Total Suspended Solids	mg/L	-	<10	10	8002117				
Dissolved Sulphate (SO4)	mg/L	-	300	1.0	8001855				
Turbidity	NTU	-	2.6	0.1	8001988	2.5	0.1	8001988	
Alkalinity (Total as CaCO3)	mg/L	-	59	1.0	8003288				
Dissolved Chloride (Cl-)	mg/L	-	190	2.0	8001851				
Nitrite (N)	mg/L	-	0.063	0.010	8001828				
Nitrate (N)	mg/L	-	0.86	0.10	8001828				
No Fill No Exceeda	nce								
Grey Exceeds 1 c	riteria policy	/level							
,	h criteria/le								
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Lab-Dup = Laboratory Initiated Duplicate									
-	Criteria: Ontario Provincial Water Quality Objectives								
Ref. to MOEE Water Management			.1999						
N/A = Not Applicable									

Page 4 of 18

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID			SQK728			SQK729		SQK730		
Someling Data			2022/05/13			2022/05/13		2022/05/12		
Sampling Date			04:00			11:15		2022/05/13		
COC Number			877895-01-01			877895-01-01		877895-01-01		
	UNITS	Criteria	SW1	RDL	QC Batch	SW2	QC Batch	DUP3	RDL	QC Batch
Calculated Parameters										
Anion Sum	me/L	-	13.5	N/A	7999556	8.75	7999556	8.68	N/A	7999556
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	140	1.0	7999549	310	7999549	310	1.0	7999549
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1.7	1.0	7999549	2.2	7999549	2.1	1.0	7999549
Cation Sum	me/L	-	14.1	N/A	7999556	9.15	7999556	9.16	N/A	7999556
Hardness (CaCO3)	mg/L	-	410	1.0	7999552	430	7999552	430	1.0	7999552
Langelier Index (@ 20C)	N/A	-	0.759		7999557	1.07	7999557	1.04		7999557
Langelier Index (@ 4C)	N/A	-	0.513		7999558	0.826	7999558	0.794		7999558
Saturation pH (@ 20C)	N/A	-	7.37		7999557	6.81	7999557	6.82		7999557
Saturation pH (@ 4C)	N/A	-	7.61		7999558	7.06	7999558	7.07		7999558
Inorganics	•		•							
Total Ammonia-N	mg/L	-	0.10	0.050	8003284	<0.050	8003284	<0.050	0.050	8003284
Conductivity	umho/cm	-	1400	1.0	8003291	800	8003291	790	1.0	8003291
Total Dissolved Solids	mg/L	-	745	10	8005060	405	8005060	420	10	8005060
Fluoride (F-)	mg/L	-	0.53	0.10	8003277	<0.10	8003277	<0.10	0.10	8003277
Total Kjeldahl Nitrogen (TKN)	mg/L	-	0.56	0.10	8002031	0.66	8002031	0.67	0.10	8002031
Dissolved Organic Carbon	mg/L	-	5.4	0.40	8002246	8.3	8002246	8.6	0.40	8002246
Orthophosphate (P)	mg/L	-	<0.010	0.010	8002357	<0.010	8001857	<0.010	0.010	8002357
рН	рН	6.5:8.5	8.13		8003290	7.88	8003290	7.86		8003290
Phenols-4AAP	mg/L	0.001	<0.0010	0.0010	8002870	<0.0010	8002870	<0.0010	0.0010	8002870
Total Phosphorus	mg/L	0.01	0.015	0.004	8004565	0.017	8002313	0.017	0.004	8002313
Total Suspended Solids	mg/L	-	10	10	8002117	<10	8002117	<10	10	8002117
Dissolved Sulphate (SO4)	mg/L	-	270	1.0	8002354	100	8001855	97	1.0	8002354
Turbidity	NTU	-	4.1	0.1	8001988	2.2	8001988	1.1	0.1	8001988
Alkalinity (Total as CaCO3)	mg/L	-	140	1.0	8003288	310	8003288	310	1.0	8003288
Dissolved Chloride (Cl-)	mg/L	-	180	2.0	8002349	16	8001851	16	1.0	8002349
Nitrite (N)	mg/L	-	0.080	0.010	8001828	<0.010	8001828	<0.010	0.010	8001828
Nitrate (N)	mg/L	-	1.09	0.10	8001828	<0.10	8001828	<0.10	0.10	8001828
No Fill No Exc	eedance									
Grey Exceed	s 1 criteria p	olicy/lev	el							
Black Exceed	s both criter	ria/levels								

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

N/A = Not Applicable

RESULTS OF ANALYSES OF WATER

Bureau Veritas	s ID			SQK730		
Sampling Date				2022/05/13		
COC Number			877895-01-01			
		UNITS	Criteria	DUP3 Lab-Dup	RDL	QC Batch
Inorganics						
Orthophosphate (P)		mg/L	-	<0.010	0.010	8002357
Dissolved Sulp	mg/L	-	95	1.0	8002354	
Dissolved Chlo	ride (Cl-)	mg/L	-	16	1.0	8002349
No Fill	No Exceedance					
Grey	Exceeds 1 criteria	policy/leve	I			
Black	Exceeds both crite	ria/levels				
RDL = Reportal	ble Detection Limit					
QC Batch = Quality Control Batch						
Lab-Dup = Laboratory Initiated Duplicate						
-	io Provincial Water C			1000		

Ref. to MOEE Water Management document dated Feb.1999

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID			SQK727	SQK728	SQK729	SQK730			
Sampling Date			2022/05/13 04:15	2022/05/13 04:00	2022/05/13 11:15	2022/05/13			
COC Number			877895-01-01	877895-01-01	877895-01-01	877895-01-01			
	UNITS	Criteria	POND	SW1	SW2	DUP3	RDL	QC Batch	
Metals									
Dissolved Calcium (Ca)	mg/L	-	76	100	140	140	0.05	8002496	
Dissolved Magnesium (Mg	g) mg/L	-	42	39	19	20	0.05	8002496	
Dissolved Potassium (K)	mg/L	-	13	12	1	1	1	8002496	
Dissolved Sodium (Na)	mg/L	-	140	130	13	14	0.5	8002496	
Total Arsenic (As)	ug/L	100	<1.0	<1.0	<1.0	<1.0	1.0	8005543	
Total Cadmium (Cd)	ug/L	0.2	<0.090	<0.090	<0.090	<0.090	0.090	8005543	
Total Calcium (Ca)	ug/L	-	79000	100000	130000	130000	200	8005543	
Total Chromium (Cr)	ug/L	-	<5.0	<5.0	<5.0	<5.0	5.0	8005543	
Total Copper (Cu)	ug/L	5	<0.90	<0.90	<0.90	<0.90	0.90	8005543	
Total Iron (Fe)	ug/L	300	130	230	<100	110	100	8005543	
Total Lead (Pb)	ug/L	5	<0.50	<0.50	2.2	<0.50	0.50	8005543	
Total Magnesium (Mg)	ug/L	-	44000	42000	21000	22000	50	8005543	
Total Manganese (Mn)	ug/L	-	13	37	8.7	9.0	2.0	8005543	
Total Nickel (Ni)	ug/L	25	<1.0	1.8	<1.0	<1.0	1.0	8005543	
Total Potassium (K)	ug/L	-	12000	11000	880	900	200	8005543	
Total Sodium (Na)	ug/L	-	140000	130000	14000	14000	100	8005543	
Total Zinc (Zn)	ug/L	30	<5.0	<5.0	<5.0	<5.0	5.0	8005543	
No Fill No	Exceedanc	e					-		
Grey Exc	eeds 1 crit	eria polic ⁱ	y/level						
Black Exc									
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Criteria: Ontario Provincial Water Quality Objectives									
Ref. to MOEE Water Mana	gement do	cument d	ated Feb.1999						

TEST SUMMARY

Bureau Veritas ID:	SQK727
Sample ID:	POND
Matrix:	Water

Bureau Veritas ID: SQK727 Sample ID: POND Matrix: Water					Collected: 2022/05/13 Shipped: Received: 2022/05/17
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8003288	N/A	2022/05/19	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	7999549	N/A	2022/05/20	Automated Statchk
Chloride by Automated Colourimetry	KONE	8001851	N/A	2022/05/19	Alina Dobreanu
Conductivity	AT	8003291	N/A	2022/05/19	Yogesh Patel
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8002246	N/A	2022/05/19	Anna-Kay Gooden
Fluoride	ISE	8003277	2022/05/18	2022/05/19	Yogesh Patel
Hardness (calculated as CaCO3)		7999552	N/A	2022/05/20	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	8002496	2022/05/18	2022/05/20	Indira HarryPaul
Total Metals Analysis by ICPMS	ICP/MS	8005543	N/A	2022/05/20	Prempal Bhatti
Anion and Cation Sum	CALC	7999556	N/A	2022/05/20	Automated Statchk
Total Ammonia-N	LACH/NH4	8002264	N/A	2022/05/19	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	8001828	N/A	2022/05/19	Samuel Law
рН	AT	8003290	2022/05/18	2022/05/19	Yogesh Patel
Phenols (4AAP)	TECH/PHEN	8002870	N/A	2022/05/19	Louise Harding
Orthophosphate	KONE	8001857	N/A	2022/05/19	Chandra Nandlal
Sat. pH and Langelier Index (@ 20C)	CALC	7999557	N/A	2022/05/20	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7999558	N/A	2022/05/20	Automated Statchk
Sulphate by Automated Colourimetry	KONE	8001855	N/A	2022/05/19	Chandra Nandlal
Total Dissolved Solids	BAI	8005060	2022/05/19	2022/05/20	Kristen Chan

Sulphate by Automated Colourimetry	KONE	8001855	N/A	2022/05/19	Chandra Nandlal
Total Dissolved Solids	BAL	8005060	2022/05/19	2022/05/20	Kristen Chan
Total Kjeldahl Nitrogen in Water	SKAL	8002031	2022/05/18	2022/05/19	Massarat Jan
Total Phosphorus (Colourimetric)	LACH/P	8002313	2022/05/18	2022/05/19	Shivani Shivani
Total Suspended Solids	BAL	8002117	2022/05/18	2022/05/20	Shaneil Hall
Turbidity	AT	8001988	N/A	2022/05/18	Roya Fathitil
Turbiaity	AI	8001988	N/A	2022/05/18	Roya Fathitii
Burgan Varitas ID: SOK727 Dup					Collected: 2022/05/12

Sampl	e ID: SQK727 e ID: POND atrix: Water	Dup				Collected: Shipped: Received:	2022/05/13 2022/05/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Turbidity		AT	8001988	N/A	2022/05/18	Roya Fathiti	il

Bureau Veritas ID:	SQK728
Sample ID:	SW1
Matrix:	Water

Collected: 2022/05/13 Shipped: Received: 2022/05/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8003288	N/A	2022/05/19	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	7999549	N/A	2022/05/20	Automated Statchk
Chloride by Automated Colourimetry	KONE	8002349	N/A	2022/05/19	Alina Dobreanu
Conductivity	AT	8003291	N/A	2022/05/19	Yogesh Patel
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8002246	N/A	2022/05/19	Anna-Kay Gooden
Fluoride	ISE	8003277	2022/05/18	2022/05/19	Yogesh Patel
Hardness (calculated as CaCO3)		7999552	N/A	2022/05/20	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	8002496	2022/05/18	2022/05/20	Indira HarryPaul

Page 8 of 18

TEST SUMMARY

Bureau Veritas ID:	SQK728
Sample ID:	SW1
Matrix:	Water

Collected:	2022/05/13
Shipped:	
Received:	2022/05/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Metals Analysis by ICPMS	ICP/MS	8005543	N/A	2022/05/20	Prempal Bhatti
Anion and Cation Sum	CALC	7999556	N/A	2022/05/20	Automated Statchk
Total Ammonia-N	LACH/NH4	8003284	N/A	2022/05/19	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	8001828	N/A	2022/05/19	Samuel Law
Animal and Vegetable Oil and Grease	BAL	7999597	N/A	2022/05/21	Automated Statchk
Total Oil and Grease	BAL	8009165	2022/05/21	2022/05/21	Mitul Patel
рН	AT	8003290	2022/05/18	2022/05/19	Yogesh Patel
Phenols (4AAP)	TECH/PHEN	8002870	N/A	2022/05/19	Louise Harding
Orthophosphate	KONE	8002357	N/A	2022/05/19	Chandra Nandlal
Sat. pH and Langelier Index (@ 20C)	CALC	7999557	N/A	2022/05/20	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7999558	N/A	2022/05/20	Automated Statchk
Sulphate by Automated Colourimetry	KONE	8002354	N/A	2022/05/19	Chandra Nandlal
Total Dissolved Solids	BAL	8005060	2022/05/19	2022/05/20	Kristen Chan
Total Kjeldahl Nitrogen in Water	SKAL	8002031	2022/05/18	2022/05/19	Massarat Jan
Total Phosphorus (Colourimetric)	LACH/P	8004565	2022/05/19	2022/05/19	Shivani Shivani
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8009166	2022/05/21	2022/05/21	Mitul Patel
Total Suspended Solids	BAL	8002117	2022/05/18	2022/05/20	Shaneil Hall
Turbidity	AT	8001988	N/A	2022/05/18	Roya Fathitil

Bureau Veritas ID:	SQK729
Sample ID:	SW2
Matrix:	Water

Collected: 2022/05/13 Shipped: Received: 2022/05/17

Instrumentation	Batch	Extracted	Date Analyzed	Analyst
AT	8003288	N/A	2022/05/19	Yogesh Patel
CALC	7999549	N/A	2022/05/20	Automated Statchk
KONE	8001851	N/A	2022/05/19	Alina Dobreanu
AT	8003291	N/A	2022/05/19	Yogesh Patel
TOCV/NDIR	8002246	N/A	2022/05/19	Anna-Kay Gooden
ISE	8003277	2022/05/18	2022/05/19	Yogesh Patel
	7999552	N/A	2022/05/20	Automated Statchk
ICP	8002496	2022/05/18	2022/05/20	Indira HarryPaul
ICP/MS	8005543	N/A	2022/05/20	Prempal Bhatti
CALC	7999556	N/A	2022/05/20	Automated Statchk
LACH/NH4	8003284	N/A	2022/05/19	Raiq Kashif
LACH	8001828	N/A	2022/05/19	Samuel Law
BAL	7999597	N/A	2022/05/21	Automated Statchk
BAL	8009165	2022/05/21	2022/05/21	Mitul Patel
AT	8003290	2022/05/18	2022/05/19	Yogesh Patel
TECH/PHEN	8002870	N/A	2022/05/19	Louise Harding
KONE	8001857	N/A	2022/05/19	Chandra Nandlal
CALC	7999557	N/A	2022/05/20	Automated Statchk
CALC	7999558	N/A	2022/05/20	Automated Statchk
KONE	8001855	N/A	2022/05/19	Chandra Nandlal
	AT CALC KONE AT TOCV/NDIR ISE ICP ICP/MS CALC LACH/NH4 LACH BAL BAL BAL BAL AT TECH/PHEN KONE CALC CALC CALC	AT 8003288 CALC 7999549 KONE 8001851 AT 8003291 TOCV/NDIR 8002246 ISE 8003277 7999552 7999552 ICP 8002496 ICP/MS 8005543 CALC 7999556 LACH/NH4 8003284 LACH 8001828 BAL 7999597 BAL 8009165 AT 8003290 TECH/PHEN 8002870 KONE 8001857 CALC 7999557 BAL 8001857 CALC 7999557	AT 8003288 N/A CALC 7999549 N/A KONE 8001851 N/A AT 8003291 N/A AT 8003291 N/A TOCV/NDIR 8002246 N/A ISE 8003277 2022/05/18 ICP 8002496 2022/05/18 ICP/MS 8005543 N/A CALC 7999556 N/A LACH/NH4 8003284 N/A LACH 8001828 N/A BAL 7999597 N/A BAL 8009165 2022/05/18 TECH/PHEN 8002870 N/A KONE 8001857 N/A CALC 7999557 N/A	AT 8003288 N/A 2022/05/19 CALC 7999549 N/A 2022/05/20 KONE 8001851 N/A 2022/05/19 AT 8003291 N/A 2022/05/19 AT 8003291 N/A 2022/05/19 TOCV/NDIR 8002246 N/A 2022/05/19 ISE 8003277 2022/05/18 2022/05/20 ICP 8002496 2022/05/18 2022/05/20 ICP/MS 8005543 N/A 2022/05/20 CALC 799556 N/A 2022/05/20 LACH/NH4 8003284 N/A 2022/05/20 LACH 8001828 N/A 2022/05/21 BAL 799597 N/A 2022/05/21 BAL 7999597 N/A 2022/05/21 BAL 7999597 N/A 2022/05/21 BAL 8009165 2022/05/18 2022/05/21 AT 8003290 2022/05/18 2022/05/19 TECH/PHEN 8001857

Page 9 of 18

TEST SUMMARY

Bureau Veritas ID:	SQK729
Sample ID:	SW2
Matrix:	Water

Collected:	2022/05/13
Shipped:	

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Dissolved Solids	BAL	8005060	2022/05/19	2022/05/20	Kristen Chan
Total Kjeldahl Nitrogen in Water	SKAL	8002031	2022/05/18	2022/05/19	Massarat Jan
Total Phosphorus (Colourimetric)	LACH/P	8002313	2022/05/18	2022/05/19	Shivani Shivani
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8009166	2022/05/21	2022/05/21	Mitul Patel
Total Suspended Solids	BAL	8002117	2022/05/18	2022/05/20	Shaneil Hall
Turbidity	AT	8001988	N/A	2022/05/18	Roya Fathitil

Bureau Veritas ID: SQK730 Sample ID: DUP3 Matrix: Water

Collected:	2022/05/13
Shipped: Received:	2022/05/17

Received: 2022/05/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8003288	N/A	2022/05/19	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	7999549	N/A	2022/05/20	Automated Statchk
Chloride by Automated Colourimetry	KONE	8002349	N/A	2022/05/19	Alina Dobreanu
Conductivity	AT	8003291	N/A	2022/05/19	Yogesh Patel
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8002246	N/A	2022/05/19	Anna-Kay Gooden
Fluoride	ISE	8003277	2022/05/18	2022/05/19	Yogesh Patel
Hardness (calculated as CaCO3)		7999552	N/A	2022/05/20	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	8002496	2022/05/18	2022/05/20	Indira HarryPaul
Total Metals Analysis by ICPMS	ICP/MS	8005543	N/A	2022/05/20	Prempal Bhatti
Anion and Cation Sum	CALC	7999556	N/A	2022/05/20	Automated Statchk
Total Ammonia-N	LACH/NH4	8003284	N/A	2022/05/19	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	8001828	N/A	2022/05/19	Samuel Law
Animal and Vegetable Oil and Grease	BAL	7999597	N/A	2022/05/21	Automated Statchk
Total Oil and Grease	BAL	8009165	2022/05/21	2022/05/21	Mitul Patel
рН	AT	8003290	2022/05/18	2022/05/19	Yogesh Patel
Phenols (4AAP)	TECH/PHEN	8002870	N/A	2022/05/19	Louise Harding
Orthophosphate	KONE	8002357	N/A	2022/05/19	Chandra Nandlal
Sat. pH and Langelier Index (@ 20C)	CALC	7999557	N/A	2022/05/20	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7999558	N/A	2022/05/20	Automated Statchk
Sulphate by Automated Colourimetry	KONE	8002354	N/A	2022/05/19	Chandra Nandlal
Total Dissolved Solids	BAL	8005060	2022/05/19	2022/05/20	Kristen Chan
Total Kjeldahl Nitrogen in Water	SKAL	8002031	2022/05/18	2022/05/19	Massarat Jan
Total Phosphorus (Colourimetric)	LACH/P	8002313	2022/05/18	2022/05/19	Shivani Shivani
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8009166	2022/05/21	2022/05/21	Mitul Patel
Total Suspended Solids	BAL	8002117	2022/05/18	2022/05/20	Shaneil Hall
Turbidity	AT	8001988	N/A	2022/05/18	Roya Fathitil

TEST SUMMARY

Bureau Veritas ID:	SQK730 Dup
Sample ID:	DUP3
Matrix:	Water

Collected:	2022/05/13
Shipped:	
Received:	2022/05/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride by Automated Colourimetry	KONE	8002349	N/A	2022/05/19	Alina Dobreanu
Orthophosphate	KONE	8002357	N/A	2022/05/19	Chandra Nandlal
Sulphate by Automated Colourimetry	KONE	8002354	N/A	2022/05/19	Chandra Nandlal

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 3.3°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8001828	S1L	Matrix Spike	Nitrite (N)	2022/05/19		98	%	80 - 120
		·	Nitrate (N)	2022/05/19		97	%	80 - 120
8001828	S1L	Spiked Blank	Nitrite (N)	2022/05/19		99	%	80 - 120
		·	Nitrate (N)	2022/05/19		99	%	80 - 120
8001828	S1L	Method Blank	Nitrite (N)	2022/05/19	<0.010		mg/L	
			Nitrate (N)	2022/05/19	<0.10		mg/L	
8001828	S1L	RPD	Nitrite (N)	2022/05/19	NC		%	20
			Nitrate (N)	2022/05/19	NC		%	20
8001851	ADB	Matrix Spike	Dissolved Chloride (Cl-)	2022/05/19		NC	%	80 - 120
8001851	ADB	Spiked Blank	Dissolved Chloride (Cl-)	2022/05/19		104	%	80 - 120
8001851	ADB	Method Blank	Dissolved Chloride (Cl-)	2022/05/19	<1.0		mg/L	
8001851	ADB	RPD	Dissolved Chloride (Cl-)	2022/05/19	0.65		%	20
8001855	C_N	Matrix Spike	Dissolved Sulphate (SO4)	2022/05/19		NC	%	75 - 125
8001855	C_N	Spiked Blank	Dissolved Sulphate (SO4)	2022/05/19		107	%	80 - 120
8001855	C_N	Method Blank	Dissolved Sulphate (SO4)	2022/05/19	<1.0		mg/L	
8001855	C_N	RPD	Dissolved Sulphate (SO4)	2022/05/19	1.1		%	20
8001857	C_N	Matrix Spike	Orthophosphate (P)	2022/05/19		107	%	 75 - 125
8001857	C_N	Spiked Blank	Orthophosphate (P)	2022/05/19		100	%	80 - 120
8001857	C_N	Method Blank	Orthophosphate (P)	2022/05/19	<0.010	100	mg/L	00 110
8001857	C_N	RPD	Orthophosphate (P)	2022/05/19	NC		%	25
8001988	RFT	Spiked Blank	Turbidity	2022/05/18	110	98	%	85 - 115
8001988	RFT	Method Blank	Turbidity	2022/05/18	<0.1	50	NTU	00 110
8001988	RFT	RPD [SQK727-01]	Turbidity	2022/05/18	4.7		%	20
8002031	MJ1	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2022/05/19	,	107	%	80 - 120
8002031	MJ1	QC Standard	Total Kjeldahl Nitrogen (TKN)	2022/05/19		99	%	80 - 120
8002031	MJ1	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2022/05/19		103	%	80 - 120
8002031	MJ1	Method Blank	Total Kjeldahl Nitrogen (TKN)	2022/05/19	<0.10	105	mg/L	00 120
8002031	MJ1	RPD	Total Kjeldahl Nitrogen (TKN)	2022/05/19	20		%	20
8002117	SHD	QC Standard	Total Suspended Solids	2022/05/20	20	95	%	85 - 115
8002117	SHD	Method Blank	Total Suspended Solids	2022/05/20	<10	55	mg/L	05 115
8002117	SHD	RPD	Total Suspended Solids	2022/05/20	NC		%	25
8002246	AGD	Matrix Spike	Dissolved Organic Carbon	2022/05/19	Ne	96	%	80 - 120
8002240	AGD	Spiked Blank	Dissolved Organic Carbon	2022/05/19		95	%	80 - 120
8002240	AGD	Method Blank	Dissolved Organic Carbon	2022/05/19	<0.40	55	mg/L	00 - 120
8002246	AGD	RPD	Dissolved Organic Carbon	2022/05/19	0.67		%	20
8002240	RKF	Matrix Spike	Total Ammonia-N	2022/05/19	0.07	91	%	75 - 125
8002264	RKF	Spiked Blank	Total Ammonia-N	2022/05/19		97	%	80 - 120
8002264		Method Blank	Total Ammonia-N	2022/05/19	<0.050	57	mg/L	00 120
8002264	RKF	RPD	Total Ammonia-N	2022/05/19	NC		%	20
8002313	SSV	Matrix Spike	Total Phosphorus	2022/05/19	Ne	NC	%	80 - 120
8002313	SSV	QC Standard	Total Phosphorus	2022/05/19		81	%	80 - 120
8002313	SSV	Spiked Blank	Total Phosphorus	2022/05/19		92	%	80 - 120
8002313	SSV	Method Blank	Total Phosphorus	2022/05/19	<0.004	52	mg/L	00 120
8002313	SSV	RPD	Total Phosphorus	2022/05/19	1.5		%	20
8002313	ADB	Matrix Spike [SQK730-02]	Dissolved Chloride (Cl-)	2022/05/19	1.5	103	%	80 - 120
8002349 8002349	ADB	Spiked Blank	Dissolved Chloride (Cl-)	2022/05/19		103	%	80 - 120
8002349 8002349	ADB	Method Blank	Dissolved Chloride (Cl-)	2022/05/19	<1.0	104	∽ mg/L	50 - 120
8002349	ADB	RPD [SQK730-02]	Dissolved Chloride (Cl-)	2022/05/19	0.0056		111g/L %	20
8002349 8002354	C_N	Matrix Spike [SQK730-02]	Dissolved Sulphate (SO4)	2022/05/19	0.0050	NC	%	20 75 - 125
8002354 8002354	C_N C_N	Spiked Blank	Dissolved Sulphate (SO4)	2022/05/19		107	%	75 - 125 80 - 120
8002354 8002354	C N	Method Blank	Dissolved Sulphate (SO4) Dissolved Sulphate (SO4)	2022/05/19	<1.0	107		00 - 120
0002004	C_11		Dissolved Sulphate (SO4)	2022/05/19	×1.0		mg/L	

Page 13 of 18

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8002354	C_N	RPD [SQK730-02]	Dissolved Sulphate (SO4)	2022/05/19	2.9		%	20
8002357	C_N	Matrix Spike [SQK730-02]	Orthophosphate (P)	2022/05/19		113	%	75 - 125
8002357	C_N	Spiked Blank	Orthophosphate (P)	2022/05/19		100	%	80 - 120
8002357	C_N	Method Blank	Orthophosphate (P)	2022/05/19	<0.010		mg/L	
8002357	C_N	RPD [SQK730-02]	Orthophosphate (P)	2022/05/19	NC		%	25
8002496	IHP	Matrix Spike	Dissolved Calcium (Ca)	2022/05/20		NC	%	80 - 120
			Dissolved Magnesium (Mg)	2022/05/20		NC	%	80 - 120
			Dissolved Potassium (K)	2022/05/20		NC	%	80 - 120
			Dissolved Sodium (Na)	2022/05/20		NC	%	80 - 120
8002496	IHP	Spiked Blank	Dissolved Calcium (Ca)	2022/05/20		99	%	80 - 120
			Dissolved Magnesium (Mg)	2022/05/20		96	%	80 - 120
			Dissolved Potassium (K)	2022/05/20		99	%	80 - 120
			Dissolved Sodium (Na)	2022/05/20		99	%	80 - 120
8002496	IHP	Method Blank	Dissolved Calcium (Ca)	2022/05/20	<0.05		mg/L	
			Dissolved Magnesium (Mg)	2022/05/20	<0.05		mg/L	
			Dissolved Potassium (K)	2022/05/20	<1		mg/L	
			Dissolved Sodium (Na)	2022/05/20	<0.5		mg/L	
8002496	IHP	RPD	Dissolved Calcium (Ca)	2022/05/20	1.8		%	25
			Dissolved Magnesium (Mg)	2022/05/20	2.1		%	25
			Dissolved Potassium (K)	2022/05/20	0.080		%	25
			Dissolved Sodium (Na)	2022/05/20	0.33		%	25
8002870	LHA	Matrix Spike	Phenols-4AAP	2022/05/19		105	%	80 - 120
8002870	LHA	Spiked Blank	Phenols-4AAP	2022/05/19		102	%	80 - 120
8002870	LHA	Method Blank	Phenols-4AAP	2022/05/19	<0.0010		mg/L	
8002870	LHA	RPD	Phenols-4AAP	2022/05/19	1.8		%	20
8003277	YPA	Matrix Spike	Fluoride (F-)	2022/05/19		102	%	80 - 120
8003277	YPA	Spiked Blank	Fluoride (F-)	2022/05/19		99	%	80 - 120
8003277	YPA	Method Blank	Fluoride (F-)	2022/05/19	<0.10		mg/L	
8003277	YPA	RPD	Fluoride (F-)	2022/05/19	0.47		%	20
8003284	RKF	Matrix Spike	Total Ammonia-N	2022/05/19		90	%	75 - 125
8003284	RKF	Spiked Blank	Total Ammonia-N	2022/05/19		94	%	80 - 120
8003284	RKF	Method Blank	Total Ammonia-N	2022/05/19	<0.050		mg/L	
8003284	RKF	RPD	Total Ammonia-N	2022/05/19	5.5		%	20
8003288	YPA	Spiked Blank	Alkalinity (Total as CaCO3)	2022/05/19		98	%	85 - 115
8003288	YPA	Method Blank	Alkalinity (Total as CaCO3)	2022/05/19	<1.0		mg/L	
8003288	YPA	RPD	Alkalinity (Total as CaCO3)	2022/05/19	1.1		%	20
8003290	YPA	Spiked Blank	рН	2022/05/19		102	%	98 - 103
8003290	YPA	RPD	рН	2022/05/19	0.59		%	N/A
8003291	YPA	Spiked Blank	Conductivity	2022/05/19		101	%	85 - 115
8003291	YPA	Method Blank	Conductivity	2022/05/19	<1.0		umho/cm	
8003291	YPA	RPD	Conductivity	2022/05/19	0.22		%	25
8004565	SSV	Matrix Spike	Total Phosphorus	2022/05/19		NC	%	80 - 120
8004565	SSV	QC Standard	Total Phosphorus	2022/05/19		91	%	80 - 120
8004565	SSV	Spiked Blank	Total Phosphorus	2022/05/19		98	%	80 - 120
8004565	SSV	Method Blank	Total Phosphorus	2022/05/19	<0.004		mg/L	
8004565	SSV	RPD	Total Phosphorus	2022/05/19	9.4		%	20
8005060	KCB	QC Standard	Total Dissolved Solids	2022/05/20		100	%	90 - 110
8005060	KCB	Method Blank	Total Dissolved Solids	2022/05/20	<10		mg/L	
8005543	PBA	Matrix Spike	Total Arsenic (As)	2022/05/20		102	%	80 - 120
			Total Cadmium (Cd)	2022/05/20		102	%	80 - 120
			Total Calcium (Ca)	2022/05/20		NC	%	80 - 120

Page 14 of 18

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Chromium (Cr)	2022/05/20		97	%	80 - 120
			Total Copper (Cu)	2022/05/20		97	%	80 - 120
			Total Iron (Fe)	2022/05/20		101	%	80 - 120
			Total Lead (Pb)	2022/05/20		101	%	80 - 120
			Total Magnesium (Mg)	2022/05/20		103	%	80 - 120
			Total Manganese (Mn)	2022/05/20		97	%	80 - 120
			Total Nickel (Ni)	2022/05/20		99	%	80 - 120
			Total Potassium (K)	2022/05/20		101	%	80 - 120
			Total Sodium (Na)	2022/05/20		NC	%	80 - 120
			Total Zinc (Zn)	2022/05/20		100	%	80 - 120
8005543	PBA	Spiked Blank	Total Arsenic (As)	2022/05/20		102	%	80 - 120
			Total Cadmium (Cd)	2022/05/20		101	%	80 - 120
			Total Calcium (Ca)	2022/05/20		99	%	80 - 120
			Total Chromium (Cr)	2022/05/20		98	%	80 - 120
			Total Copper (Cu)	2022/05/20		94	%	80 - 120
			Total Iron (Fe)	2022/05/20		102	%	80 - 120
			Total Lead (Pb)	2022/05/20		103	%	80 - 120
			Total Magnesium (Mg)	2022/05/20		104	%	80 - 120
			Total Manganese (Mn)	2022/05/20		98	%	80 - 120
			Total Nickel (Ni)	2022/05/20		99	%	80 - 120
			Total Potassium (K)	2022/05/20		94	%	80 - 120
			Total Sodium (Na)	2022/05/20		103	%	80 - 120
			Total Zinc (Zn)	2022/05/20		103	%	80 - 120
8005543	PBA	Method Blank	Total Arsenic (As)	2022/05/24	<1.0		ug/L	
			Total Cadmium (Cd)	2022/05/24	<0.090		ug/L	
			Total Calcium (Ca)	2022/05/24	<200		ug/L	
			Total Chromium (Cr)	2022/05/24	<5.0		ug/L	
			Total Copper (Cu)	2022/05/24	<0.90		ug/L	
			Total Iron (Fe)	2022/05/24	<100		ug/L	
			Total Lead (Pb)	2022/05/24	<0.50		ug/L	
			Total Magnesium (Mg)	2022/05/24	<50		ug/L	
			Total Manganese (Mn)	2022/05/24	<2.0		ug/L	
			Total Nickel (Ni)	2022/05/24	<1.0		ug/L	
			Total Potassium (K)	2022/05/24	<200		ug/L	
			Total Sodium (Na)	2022/05/24	<100		ug/L	
			Total Zinc (Zn)	2022/05/24	<5.0		ug/L	
8005543	PBA	RPD	Total Arsenic (As)	2022/05/20	5.2		%	20
0000010	1 8/1		Total Cadmium (Cd)	2022/05/20	NC		%	20
			Total Calcium (Ca)	2022/05/20	3.6		%	20
			Total Chromium (Cr)	2022/05/20	NC		%	20
			Total Copper (Cu)	2022/05/20	6.8		%	20
			Total Lead (Pb)	2022/05/20	NC		%	20
			Total Magnesium (Mg)	2022/05/20	1.7		%	20
			Total Manganese (Mn)	2022/05/20	4.1		%	20
			Total Nickel (Ni)	2022/05/20	4.1		%	20
			Total Potassium (K)	2022/05/20	4.9 2.6		%	20
			Total Sodium (Na)	2022/05/20	0.40		%	20
			Total Zinc (Zn)	2022/05/20	0.40 NC		%	20
8009165	1/107	Spiked Plank	Total Oil & Grease		INC	00		20 85 - 115
8009165	MPZ MPZ	Spiked Blank RPD	Total Oil & Grease	2022/05/21 2022/05/21	2.0	98	% %	85 - 115 25
								20
8009165	IVIPZ	Method Blank	Total Oil & Grease	2022/05/21	<0.50		mg/L	

Page 15 of 18

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8009166	MPZ	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2022/05/21		95	%	85 - 115
8009166	MPZ	RPD	Total Oil & Grease Mineral/Synthetic	2022/05/21	3.6		%	25
8009166	MPZ	Method Blank	Total Oil & Grease Mineral/Synthetic	2022/05/21	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Cuistin Camiere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Golder Associates Ltd Client Project #: 21508089 Site Location: MCCARTHY Sampler Initials: Cl

Exceedance Summary Table – Prov. Water Quality Obj.

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
SW1	SQK728-06	Total Phosphorus	0.01	0.015	0.004	mg/L
SW2	SQK729-06	Total Phosphorus	0.01	0.017	0.004	mg/L
DUP3	SQK730-06	Total Phosphorus	0.01	0.017	0.004	mg/L
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to						

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Your Project #: 20448776 Site#: McCarthy Your C.O.C. #: 851932-02-01

Attention: Jamie Bonany/Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/06/02 Report #: R7148663 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2E0819

Received: 2022/05/25, 09:31

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2022/06/01	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2022/06/01	2022/06/01	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2022/05/26	2022/05/27	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2022/05/27	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2022/06/01	2022/06/01	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2022/05/27	2022/05/30	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

- Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.
- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 20448776 Site#: McCarthy Your C.O.C. #: 851932-02-01

Attention: Jamie Bonany/Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/06/02 Report #: R7148663 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2E0819 Received: 2022/05/25, 09:31

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		SSA366		
Sampling Date		2022/05/24 01:15		
COC Number		851932-02-01		
	UNITS	POND	RDL	QC Batch
Calculated Parameters				
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	0.50	8012953
Inorganics				
рН	рН	8.94	N/A	8016698
Phenols-4AAP	mg/L	<0.0010	0.0010	8019127
Total Suspended Solids	mg/L	4	1	8019011
Petroleum Hydrocarbons				
Total Oil & Grease	mg/L	1.8	0.50	8027358
Total Oil & Grease Mineral/Synthetic	mg/L	1.5	0.50	8027388
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch N/A = Not Applicable				

Page 3 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt							
	Package 1	19.7°C]				
	Results relate only to the	items tested.					

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8016698	TAK	Spiked Blank	рН	2022/05/27		102	%	98 - 103
8016698	TAK	RPD	рН	2022/05/27	0.45		%	N/A
8019011	SHD	QC Standard	Total Suspended Solids	2022/05/30		95	%	85 - 115
8019011	SHD	Method Blank	Total Suspended Solids	2022/05/30	<1		mg/L	
8019011	SHD	RPD	Total Suspended Solids	2022/05/30	11		%	25
8019127	LHA	Matrix Spike	Phenols-4AAP	2022/05/27		103	%	80 - 120
8019127	LHA	Spiked Blank	Phenols-4AAP	2022/05/27		97	%	80 - 120
8019127	LHA	Method Blank	Phenols-4AAP	2022/05/27	<0.0010		mg/L	
8019127	LHA	RPD	Phenols-4AAP	2022/05/27	NC		%	20
8027358	MJ2	Spiked Blank	Total Oil & Grease	2022/06/01		100	%	85 - 115
8027358	MJ2	RPD	Total Oil & Grease	2022/06/01	0.25		%	25
8027358	MJ2	Method Blank	Total Oil & Grease	2022/06/01	<0.50		mg/L	
8027388	MJ2	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2022/06/01		97	%	85 - 115
8027388	MJ2	RPD	Total Oil & Grease Mineral/Synthetic	2022/06/01	0.52		%	25
8027388	MJ2	Method Blank	Total Oil & Grease Mineral/Synthetic	2022/06/01	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

auistin Camiere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

Your Project #: 21508089 Site#: McCarthy Your C.O.C. #: 877887-01-01

Attention: Jamie Bonany/Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/06/07 Report #: R7155686 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2E8479

Received: 2022/06/01, 08:57

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2022/06/07	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2022/06/07	2022/06/07	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2022/06/02	2022/06/03	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2022/06/03	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2022/06/07	2022/06/07	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2022/06/02	2022/06/06	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 21508089 Site#: McCarthy Your C.O.C. #: 877887-01-01

Attention: Jamie Bonany/Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/06/07 Report #: R7155686 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2E8479 Received: 2022/06/01, 08:57

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

RESULTS OF ANALYSES OF WATER

	STS413		
	2022/05/30 02:06		
	877887-01-01		
UNITS	POUND	RDL	QC Batch
mg/L	1.3	0.50	8027256
рН	8.85	N/A	8030792
mg/L	0.0018	0.0010	8031715
mg/L	15	1	8030243
mg/L	1.3	0.50	8037050
mg/L	<0.50	0.50	8037052
	mg/L pH mg/L mg/L	2022/05/30 02:06 877887-01-01 UNITS POUND mg/L 1.3 mg/L 15 mg/L 1.3	2022/05/30 02:06 2022/05/30 02:06 877887-01-01 N/A UNITS POUND RDL mg/L 1.3 0.50 pH 8.85 N/A mg/L 0.0018 0.0010 mg/L 15 1 mg/L 1.3 0.50

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt							
		Package 1	25.7°C				
	Results	relate only to the ite	ems tested.				

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8030243	KCB	QC Standard	Total Suspended Solids	2022/06/06		98	%	85 - 115
8030243	KCB	Method Blank	Total Suspended Solids	2022/06/06	<1		mg/L	
8030243	KCB	RPD	Total Suspended Solids	2022/06/06	NC		%	25
8030792	TAK	Spiked Blank	рН	2022/06/03		102	%	98 - 103
8030792	TAK	RPD	рН	2022/06/03	0.15		%	N/A
8031715	LHA	Matrix Spike	Phenols-4AAP	2022/06/03		103	%	80 - 120
8031715	LHA	Spiked Blank	Phenols-4AAP	2022/06/03		103	%	80 - 120
8031715	LHA	Method Blank	Phenols-4AAP	2022/06/03	<0.0010		mg/L	
8031715	LHA	RPD	Phenols-4AAP	2022/06/03	NC		%	20
8037050	MPZ	Spiked Blank	Total Oil & Grease	2022/06/07		98	%	85 - 115
8037050	MPZ	RPD	Total Oil & Grease	2022/06/07	1.5		%	25
8037050	MPZ	Method Blank	Total Oil & Grease	2022/06/07	<0.50		mg/L	
8037052	MPZ	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2022/06/07		96	%	85 - 115
8037052	MPZ	RPD	Total Oil & Grease Mineral/Synthetic	2022/06/07	1.6		%	25
8037052	MPZ	Method Blank	Total Oil & Grease Mineral/Synthetic	2022/06/07	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

austin Camere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

Your Project #: 21508089 Site#: McCarthy Your C.O.C. #: 877887-03-01

Attention: Jamie Bonany/Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/06/14 Report #: R7166581 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2F4495

Received: 2022/06/07, 09:23

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2022/06/13	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2022/06/13	2022/06/13	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2022/06/09	2022/06/10	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2022/06/10	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2022/06/13	2022/06/13	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2022/06/09	2022/06/10	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 21508089 Site#: McCarthy Your C.O.C. #: 877887-03-01

Attention: Jamie Bonany/Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/06/14 Report #: R7166581 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2F4495 Received: 2022/06/07, 09:23

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

RESULTS OF ANALYSES OF WATER

	SVA346		
	2022/06/06		
	02:00		
	877887-03-01		
UNITS	POND	RDL	QC Batch
mg/L	<0.50	0.50	8037256
рН	8.45	N/A	8043740
mg/L	0.0010	0.0010	8042384
mg/L	4	1	8042557
mg/L	<0.50	0.50	8049692
mg/L	<0.50	0.50	8049696
	mg/L pH mg/L mg/L	2022/06/06 02:00 877887-03-01 UNITS POND mg/L <0.50	2022/06/06 02:00 877887-03-01 UNITS POND RDL mg/L <0.50 0.50 pH 8.45 N/A mg/L 0.0010 0.0010 mg/L 4 1

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt						
	Package 1	19.3°C				
	Results relate only to the	items tested.				

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8042384	MKX	Matrix Spike	Phenols-4AAP	2022/06/10		102	%	80 - 120
8042384	MKX	Spiked Blank	Phenols-4AAP	2022/06/10		107	%	80 - 120
8042384	MKX	Method Blank	Phenols-4AAP	2022/06/10	<0.0010		mg/L	
8042384	MKX	RPD	Phenols-4AAP	2022/06/10	0		%	20
8042557	SHD	QC Standard	Total Suspended Solids	2022/06/10		96	%	85 - 115
8042557	SHD	Method Blank	Total Suspended Solids	2022/06/10	<1		mg/L	
8042557	SHD	RPD	Total Suspended Solids	2022/06/10	NC		%	25
8043740	TAK	Spiked Blank	рН	2022/06/10		102	%	98 - 103
8043740	TAK	RPD	рН	2022/06/10	0.18		%	N/A
8049692	MJ2	Spiked Blank	Total Oil & Grease	2022/06/13		99	%	85 - 115
8049692	MJ2	RPD	Total Oil & Grease	2022/06/13	0.51		%	25
8049692	MJ2	Method Blank	Total Oil & Grease	2022/06/13	<0.50		mg/L	
8049696	MJ2	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2022/06/13		97	%	85 - 115
8049696	MJ2	RPD	Total Oil & Grease Mineral/Synthetic	2022/06/13	0.52		%	25
8049696	MJ2	Method Blank	Total Oil & Grease Mineral/Synthetic	2022/06/13	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

austin Camere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

Your Project #: 21508089 Site#: McCarthy Your C.O.C. #: 877887-04-01

Attention: Jamie Bonany/Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/06/23 Report #: R7182370 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2G2675

Received: 2022/06/14, 09:05

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2022/06/20	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2022/06/20	2022/06/20	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2022/06/17	2022/06/17	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2022/06/16	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2022/06/20	2022/06/20	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2022/06/16	2022/06/17	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 21508089 Site#: McCarthy Your C.O.C. #: 877887-04-01

Attention: Jamie Bonany/Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/06/23 Report #: R7182370 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2G2675 Received: 2022/06/14, 09:05

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

RESULTS OF ANALYSES OF WATER

		CIVILIOCC		
Bureau Veritas ID		SWU966		
Compling Date		2022/06/13		
Sampling Date		03:00		
COC Number		877887-04-01		
	UNITS	POND	RDL	QC Batch
Calculated Parameters				
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	0.50	8050762
Inorganics				
рН	рН	8.43	N/A	8058985
Phenols-4AAP	mg/L	<0.0010	0.0010	8057497
Total Suspended Solids	mg/L	5	1	8055214
Petroleum Hydrocarbons				
Total Oil & Grease	mg/L	<0.50	0.50	8063580
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	8063589
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				
N/A = Not Applicable				

GENERAL COMMENTS

Each temperature is	the average of up to th	ree cooler temperatures taken at receipt
Package 1	23.0°C	
Results relate only t	o the items tested.	

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8055214	SHD	QC Standard	Total Suspended Solids	2022/06/17		95	%	85 - 115
8055214	SHD	Method Blank	Total Suspended Solids	2022/06/17	<1		mg/L	
8055214	SHD	RPD	Total Suspended Solids	2022/06/17	0		%	25
8057497	МКХ	Matrix Spike	Phenols-4AAP	2022/06/16		104	%	80 - 120
8057497	МКХ	Spiked Blank	Phenols-4AAP	2022/06/16		101	%	80 - 120
8057497	МКХ	Method Blank	Phenols-4AAP	2022/06/16	<0.0010		mg/L	
8057497	МКХ	RPD	Phenols-4AAP	2022/06/16	NC		%	20
8058985	TAK	Spiked Blank	рН	2022/06/17		102	%	98 - 103
8058985	TAK	RPD	рН	2022/06/17	0.0074		%	N/A
8063580	MJ2	Spiked Blank	Total Oil & Grease	2022/06/20		99	%	85 - 115
8063580	MJ2	RPD	Total Oil & Grease	2022/06/20	0.51		%	25
8063580	MJ2	Method Blank	Total Oil & Grease	2022/06/20	<0.50		mg/L	
8063589	MJ2	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2022/06/20		97	%	85 - 115
8063589	MJ2	RPD	Total Oil & Grease Mineral/Synthetic	2022/06/20	0.52		%	25
8063589	MJ2	Method Blank	Total Oil & Grease Mineral/Synthetic	2022/06/20	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 20448776 Site Location: McCarthy Your C.O.C. #: 825330-03-01

Attention: Jamie Bonany/Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/06/27 Report #: R7188702 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2H0619

Received: 2022/06/21, 09:14

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2022/06/27	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2022/06/27	2022/06/27	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2022/06/22	2022/06/23	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2022/06/23	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2022/06/27	2022/06/27	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2022/06/22	2022/06/24	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

- Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.
- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 20448776 Site Location: McCarthy Your C.O.C. #: 825330-03-01

Attention: Jamie Bonany/Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/06/27 Report #: R7188702 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2H0619 Received: 2022/06/21, 09:14

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		SYN051			
Semuling Date		2022/06/20			
Sampling Date		01:30			
COC Number		825330-03-01			
	UNITS	POND	RDL	QC Batch	
Calculated Parameters	-				
Total Animal/Vegetable Oil and Grease	mg/L	0.60	0.50	8065273	
Inorganics	•				
рН	рН	8.15	N/A	8069309	
Phenols-4AAP	mg/L	<0.0010	0.0010	8071505	
Total Suspended Solids	mg/L	2	1	8067467	
Petroleum Hydrocarbons					
Total Oil & Grease	mg/L	0.60	0.50	8076236	
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	8076238	
RDL = Reportable Detection Limit		-			
QC Batch = Quality Control Batch					
N/A = Not Applicable					

Page 3 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 23.3°C

Results relate only to the items tested.

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8067467	KCB	QC Standard	Total Suspended Solids	2022/06/24		96	%	85 - 115
8067467	KCB	Method Blank	Total Suspended Solids	2022/06/24	<1		mg/L	
8067467	КСВ	RPD	Total Suspended Solids	2022/06/24	NC		%	25
8069309	SAU	Spiked Blank	рН	2022/06/23		102	%	98 - 103
8069309	SAU	RPD	рН	2022/06/23	0.41		%	N/A
8071505	MKX	Matrix Spike	Phenols-4AAP	2022/06/23		100	%	80 - 120
8071505	MKX	Spiked Blank	Phenols-4AAP	2022/06/23		100	%	80 - 120
8071505	MKX	Method Blank	Phenols-4AAP	2022/06/23	<0.0010		mg/L	
8071505	MKX	RPD	Phenols-4AAP	2022/06/23	NC		%	20
8076236	MPZ	Spiked Blank	Total Oil & Grease	2022/06/27		98	%	85 - 115
8076236	MPZ	RPD	Total Oil & Grease	2022/06/27	1.5		%	25
8076236	MPZ	Method Blank	Total Oil & Grease	2022/06/27	<0.50		mg/L	
8076238	MPZ	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2022/06/27		95	%	85 - 115
8076238	MPZ	RPD	Total Oil & Grease Mineral/Synthetic	2022/06/27	1.6		%	25
8076238	MPZ	Method Blank	Total Oil & Grease Mineral/Synthetic	2022/06/27	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

Your Project #: 20448776 Site#: McCarthy Your C.O.C. #: 851932-01-01

Attention: Jamie Bonany/Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/08/12 Report #: R7251465 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2M3492

Received: 2022/08/09, 09:05

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2022/08/12	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2022/08/12	2022/08/12	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2022/08/10	2022/08/10	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2022/08/11	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2022/08/12	2022/08/12	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2022/08/11	2022/08/12	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 20448776 Site#: McCarthy Your C.O.C. #: 851932-01-01

Attention: Jamie Bonany/Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/08/12 Report #: R7251465 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2M3492 Received: 2022/08/09, 09:05

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		TJV292		TJV292				
Sampling Date		2022/08/08		2022/08/08				
Sumpling Bute		01:00		01:00				
COC Number		851932-01-01		851932-01-01				
	UNITS	POND	RDL	POND	QC Batch			
	UNITS	POND	NUL	Lab-Dup	QC Batch			
Calculated Parameters								
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	0.50	N/A	8155571			
Inorganics								
рН	рН	7.35	N/A	7.37	8158409			
Phenols-4AAP	mg/L	0.0014	0.0010	N/A	8161505			
Total Suspended Solids	mg/L	3	1	N/A	8157694			
Petroleum Hydrocarbons								
Total Oil & Grease	mg/L	<0.50	0.50	N/A	8162569			
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	N/A	8162572			
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
Lab-Dup = Laboratory Initiated Duplicate	_ab-Dup = Laboratory Initiated Duplicate							
N/A = Not Applicable								

Page 3 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each temperature is th	e average of up to t	hree cooler temperatures taken at receipt
Package 1	22.0°C]
		-
Results relate only to	the items tested.	

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8157694	SHD	QC Standard	Total Suspended Solids	2022/08/12		96	%	85 - 115
8157694	SHD	Method Blank	Total Suspended Solids	2022/08/12	<1		mg/L	
8157694	SHD	RPD	Total Suspended Solids	2022/08/12	15		%	25
8158409	TAK	Spiked Blank	рН	2022/08/10		102	%	98 - 103
8158409	TAK	RPD [TJV292-04]	рН	2022/08/10	0.31		%	N/A
8161505	MKX	Matrix Spike	Phenols-4AAP	2022/08/11		102	%	80 - 120
8161505	MKX	Spiked Blank	Phenols-4AAP	2022/08/11		99	%	80 - 120
8161505	MKX	Method Blank	Phenols-4AAP	2022/08/11	<0.0010		mg/L	
8161505	MKX	RPD	Phenols-4AAP	2022/08/11	NC		%	20
8162569	MPZ	Spiked Blank	Total Oil & Grease	2022/08/12		99	%	85 - 115
8162569	MPZ	RPD	Total Oil & Grease	2022/08/12	1.5		%	25
8162569	MPZ	Method Blank	Total Oil & Grease	2022/08/12	<0.50		mg/L	
8162572	MPZ	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2022/08/12		97	%	85 - 115
8162572	MPZ	RPD	Total Oil & Grease Mineral/Synthetic	2022/08/12	2.1		%	25
8162572	MPZ	Method Blank	Total Oil & Grease Mineral/Synthetic	2022/08/12	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

auistin Camiere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 20448776 Site#: McCarthy Your C.O.C. #: 864938-02-01

Attention: Jamie Bonany/Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/11/07 Report #: R7377982 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2V5102

Received: 2022/10/28, 09:04

Sample Matrix: Surface Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2022/11/07	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2022/11/05	2022/11/05	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2022/11/01	2022/11/01	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2022/11/04	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2022/11/05	2022/11/07	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2022/11/02	2022/11/03	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

- Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.
- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Your Project #: 20448776 Site#: McCarthy Your C.O.C. #: 864938-02-01

Attention: Jamie Bonany/Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/11/07 Report #: R7377982 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2V5102 Received: 2022/10/28, 09:04

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF SURFACE WATER

Bureau Veritas ID		UDG809		
Sampling Date		2022/10/27 14:50		
COC Number		864938-02-01		
	UNITS	POND	RDL	QC Batch
Calculated Parameters				
Total Animal/Vegetable Oil and Grease	mg/L	<0.50	0.50	8311791
Inorganics				
рН	рН	8.05	N/A	8319205
Phenols-4AAP	mg/L	<0.0010	0.0010	8326699
Total Suspended Solids	mg/L	5	1	8321613
Petroleum Hydrocarbons				
Total Oil & Grease	mg/L	1.5	0.50	8328568
Total Oil & Grease Mineral/Synthetic	mg/L	1.5	0.50	8328569
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable				

GENERAL COMMENTS

Each te	mperature is the ave	rage of up to th	ree cooler temperatures taken at receipt
	Package 1	17.0°C	
Results	relate only to the ite	ems tested.	

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8319205	TAK	Spiked Blank	рН	2022/11/01		102	%	98 - 103
8319205	TAK	RPD	рН	2022/11/01	0.088		%	N/A
8321613	SHD	QC Standard	Total Suspended Solids	2022/11/03		96	%	85 - 115
8321613	SHD	Method Blank	Total Suspended Solids	2022/11/03	<1		mg/L	
8321613	SHD	RPD	Total Suspended Solids	2022/11/03	22		%	25
8326699	MKX	Matrix Spike	Phenols-4AAP	2022/11/04		102	%	80 - 120
8326699	MKX	Spiked Blank	Phenols-4AAP	2022/11/04		100	%	80 - 120
8326699	MKX	Method Blank	Phenols-4AAP	2022/11/04	<0.0010		mg/L	
8326699	MKX	RPD	Phenols-4AAP	2022/11/04	11		%	20
8328568	NKW	Spiked Blank	Total Oil & Grease	2022/11/05		99	%	85 - 115
8328568	NKW	RPD	Total Oil & Grease	2022/11/07	0.76		%	25
8328568	NKW	Method Blank	Total Oil & Grease	2022/11/05	<0.50		mg/L	
8328569	NKW	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2022/11/07		97	%	85 - 115
8328569	NKW	RPD	Total Oil & Grease Mineral/Synthetic	2022/11/07	1.0		%	25
8328569	NKW	Method Blank	Total Oil & Grease Mineral/Synthetic	2022/11/07	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Your Project #: 21508089 Site Location: MCCARTHY Your C.O.C. #: 901522-01-01

Attention: Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/11/07 Report #: R7378001 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2V7988

Received: 2022/10/31, 15:40

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	3	N/A	2022/11/02	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	3	N/A	2022/11/03	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	3	N/A	2022/11/04	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	3	N/A	2022/11/02	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	3	N/A	2022/11/02	CAM SOP-00446	SM 23 5310 B m
Fluoride	3	2022/11/01	2022/11/02	CAM SOP-00449	SM 23 4500-F C m
Hardness (calculated as CaCO3)	3	N/A	2022/11/04	CAM SOP	SM 2340 B
				00102/00408/00447	
Lab Filtered Metals Analysis by ICP	3	2022/11/02	2022/11/04	CAM SOP-00408	EPA 6010D m
Total Metals Analysis by ICPMS	3	N/A	2022/11/03	CAM SOP-00447	EPA 6020B m
Anion and Cation Sum	3	N/A	2022/11/04		
Total Ammonia-N	3	N/A	2022/11/05	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	3	N/A	2022/11/04	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Animal and Vegetable Oil and Grease	3	N/A	2022/11/06	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	3	2022/11/06	2022/11/06	CAM SOP-00326	EPA1664B m,SM5520B m
рН	3	2022/11/01	2022/11/02	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	3	N/A	2022/11/04	CAM SOP-00444	OMOE E3179 m
Orthophosphate	3	N/A	2022/11/03	CAM SOP-00461	EPA 365.1 m
Sat. pH and Langelier Index (@ 20C)	3	N/A	2022/11/04		Auto Calc
Sat. pH and Langelier Index (@ 4C)	3	N/A	2022/11/04		Auto Calc
Sulphate by Automated Colourimetry	3	N/A	2022/11/07	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids	3	2022/11/02	2022/11/03	CAM SOP-00428	SM 23 2540C m
Total Kjeldahl Nitrogen in Water	3	2022/11/02	2022/11/02	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	3	2022/11/02	2022/11/02	CAM SOP-00407	SM 23 4500-P I
Mineral/Synthetic O & G (TPH Heavy Oil) (3)	3	2022/11/06	2022/11/06	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	3	2022/11/02	2022/11/03	CAM SOP-00428	SM 23 2540D m
Turbidity	3	N/A	2022/11/02	CAM SOP-00417	SM 23 2130 B m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau

Page 1 of 18

Your Project #: 21508089 Site Location: MCCARTHY Your C.O.C. #: 901522-01-01

Attention: Jamie Bonany

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2022/11/07 Report #: R7378001 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2V7988

Received: 2022/10/31, 15:40

Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(3) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 18

OIL & GREASE - A/V/M/T (WATER)

Bureau Veritas ID				UDX806	UDX807	UDX808		
Sampling Date				2022/10/28 11:30	2022/10/28 11:30	2022/10/28		
COC Number				901522-01-01	901522-01-01	901522-01-01		
		UNITS	Criteria	POND	SW1	DUP 3	RDL	QC Batch
Calculated Paramet	ters							
Total Animal/Veget	able Oil and Grease	mg/L	-	0.60	1.3	0.80	0.50	8316617
Petroleum Hydroca	rbons							
Total Oil & Grease			-	0.60	1.3	1.3	0.50	8329463
Total Oil & Grease N	/lineral/Synthetic	mg/L	0.5	<0.50	<0.50	0.50	0.50	8329467
No Fill	No Exceedance							
Grey	Exceeds 1 criteria	policy/le	evel					
Black	Exceeds both crite	ria/leve	ls					
RDL = Reportable D	etection Limit							
QC Batch = Quality Control Batch								
	ovincial Water Quality Management docum			999				

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID			UDX806			UDX806			
Comulias Data			2022/10/28			2022/10/28			
Sampling Date			11:30			11:30			
COC Number			901522-01-01			901522-01-01			
	UNITS	Criteria	POND	RDL	QC Batch	POND Lab-Dup	RDL	QC Batch	
Calculated Parameters									
Anion Sum	me/L	-	16.5	N/A	8317577				
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	110	1.0	8316069				
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1.0	1.0	8316069				
Cation Sum	me/L	-	17.2	N/A	8317577				
Hardness (CaCO3)	mg/L	-	470	1.0	8316897				
Langelier Index (@ 20C)	N/A	-	0.485		8317580				
Langelier Index (@ 4C)	N/A	-	0.239		8317584				
Saturation pH (@ 20C)	N/A	-	7.53		8317580				
Saturation pH (@ 4C)	N/A	-	7.77		8317584				
Inorganics			<u>I</u>	1		<u>I</u>			
Total Ammonia-N	mg/L	-	0.17	0.050	8324582				
Conductivity	umho/cm	-	1600	1.0	8318841				
Total Dissolved Solids	mg/L	-	1080	10	8321805	1090	10	8321805	
Fluoride (F-)	mg/L	-	0.59	0.10	8318852				
Total Kjeldahl Nitrogen (TKN)	mg/L	-	0.65	0.10	8321959				
Dissolved Organic Carbon	mg/L	-	7.4	0.40	8321392				
Orthophosphate (P)	mg/L	-	<0.010	0.010	8320273				
рН	рН	6.5:8.5	8.01		8318865				
Phenols-4AAP	mg/L	0.001	<0.0010	0.0010	8326458				
Total Phosphorus	mg/L	0.01	0.019	0.004	8319206				
Total Suspended Solids	mg/L	-	<10	10	8321801				
Dissolved Sulphate (SO4)	mg/L	-	330	1.0	8320279				
Turbidity	NTU	-	3.5	0.1	8319286				
Alkalinity (Total as CaCO3)	mg/L	-	110	1.0	8318859				
Dissolved Chloride (Cl-)	mg/L	-	270	3.0	8320281				
Nitrite (N)	mg/L	-	<0.010	0.010	8319325				
Nitrate (N)	mg/L	-	<0.10	0.10	8319325				
No Fill No Exceedar	nce								
Grey Exceeds 1 cr	iteria policy	/level							
Black Exceeds bot									
RDL = Reportable Detection Limit	-,								
QC Batch = Quality Control Batch									
Lab-Dup = Laboratory Initiated Duplicate									
Criteria: Ontario Provincial Water Quality Objectives									
Ref. to MOEE Water Management document dated Feb.1999									
N/A = Not Applicable									

Page 4 of 18

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID			UDX807		UDX808				
Sampling Date			2022/10/28 11:30		2022/10/28				
COC Number			901522-01-01		901522-01-01				
	UNITS	Criteria	SW1	QC Batch	DUP 3	RDL	QC Batch		
Calculated Parameters									
Anion Sum	me/L	-	18.8	8317577	18.5	N/A	8317577		
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	150	8316069	150	1.0	8316069		
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1.1	8316069	1.2	1.0	8316069		
Cation Sum	me/L	-	20.0	8317577	19.5	N/A	8317577		
Hardness (CaCO3)	mg/L	-	600	8316897	590	1.0	8316897		
Langelier Index (@ 20C)	N/A	-	0.713	8317580	0.719		8317580		
Langelier Index (@ 4C)	N/A	-	0.468	8317584	0.474		8317584		
Saturation pH (@ 20C)	N/A	-	7.20	8317580	7.21		8317580		
Saturation pH (@ 4C)	N/A	-	7.44	8317584	7.46		8317584		
Inorganics	•	•		•		•			
Total Ammonia-N	mg/L	-	0.15	8324582	0.13	0.050	8324582		
Conductivity	umho/cm	-	1800	8318841	1800	1.0	8318841		
Total Dissolved Solids	mg/L	-	1060	8321805	1070	10	8321805		
Fluoride (F-)	mg/L	-	0.50	8318852	0.50	0.10	8318852		
Total Kjeldahl Nitrogen (TKN)	mg/L	-	0.56	8321959	0.55	0.10	8321959		
Dissolved Organic Carbon	mg/L	-	6.2	8321392	6.3	0.40	8321392		
Orthophosphate (P)	mg/L	-	<0.010	8320273	<0.010	0.010	8320273		
рН	рН	6.5:8.5	7.91	8318865	7.93		8318865		
Phenols-4AAP	mg/L	0.001	<0.0010	8326458	<0.0010	0.0010	8326699		
Total Phosphorus	mg/L	0.01	0.021	8319206	0.020	0.004	8319206		
Total Suspended Solids	mg/L	-	12	8321416	<10	10	8321416		
Dissolved Sulphate (SO4)	mg/L	-	370	8320279	370	1.0	8320279		
Turbidity	NTU	-	3.2	8319286	3.6	0.1	8319286		
Alkalinity (Total as CaCO3)	mg/L	-	150	8318859	150	1.0	8318859		
Dissolved Chloride (Cl-)	mg/L	-	290	8320281	280	3.0	8320281		
Nitrite (N)	mg/L	-	0.020	8319346	0.016	0.010	8319325		
Nitrate (N)	mg/L	-	0.52	8319346	0.51	0.10	8319325		
No Fill No Exceedan	ce								
Grey Exceeds 1 cri	teria policy/	level							
Black Exceeds both									
RDI = Reportable Detection Limit									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

N/A = Not Applicable

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID			UDX806		UDX807			UDX807		
Comuling Data			2022/10/28		2022/10/28			2022/10/28		
Sampling Date			11:30		11:30			11:30		
COC Number			901522-01-01		901522-01-01			901522-01-01		
	UNITS	Criteria	POND	QC Batch	SW1	RDL	QC Batch	SW1 Lab-Dup	RDL	QC Batch
Metals										
Dissolved Calcium (Ca)	mg/L	-	99	8321931	150	0.05	8321931	150	0.05	8321931
Dissolved Magnesium (M	g) mg/L	-	54	8321931	53	0.05	8321931	51	0.05	8321931
Dissolved Potassium (K)	mg/L	-	20	8321931	17	1	8321931	17	1	8321931
Dissolved Sodium (Na)	mg/L	-	170	8321931	170	0.5	8321931	170	0.5	8321931
Total Arsenic (As)	ug/L	100	<1.0	8323476	<1.0	1.0	8324011			
Total Cadmium (Cd)	ug/L	0.2	<0.090	8323476	<0.090	0.090	8324011			
Total Calcium (Ca)	ug/L	-	100000	8323476	160000	200	8324011			
Total Chromium (Cr)	ug/L	-	<5.0	8323476	<5.0	5.0	8324011			
Total Copper (Cu)	ug/L	5	<0.90	8323476	1.3	0.90	8324011			
Total Iron (Fe)	ug/L	300	320	8323476	300	100	8324011			
Total Lead (Pb)	ug/L	5	<0.50	8323476	<0.50	0.50	8324011			
Total Magnesium (Mg)	ug/L	-	54000	8323476	52000	50	8324011			
Total Manganese (Mn)	ug/L	-	130	8323476	65	2.0	8324011			
Total Nickel (Ni)	ug/L	25	1.7	8323476	1.6	1.0	8324011			
Total Potassium (K)	ug/L	-	19000	8323476	17000	200	8324011			
Total Sodium (Na)	ug/L	-	170000	8323476	170000	100	8324011			
Total Zinc (Zn)	ug/L	30	<5.0	8323476	5.2	5.0	8324011			
No Fill	No Exceedar	nce								
Grey	Exceeds 1 cr	iteria pol	icy/level							
Black	Exceeds bot	h criteria	/levels							
RDL = Reportable Detecti	on Limit									
QC Batch = Quality Contr	ol Batch									
Lab-Dup = Laboratory Init	ciated Duplic	cate								
Criteria: Ontario Provincia										
Ref. to MOEE Water Man	agement do	cument d	ated Feb.1999							

Bureau Verita	as ID			UDX808				
Sampling Date				2022/10/28				
COC Number				901522-01-01				
		UNITS	Criteria	DUP 3	RDL	QC Batch		
Metals								
Dissolved Cal	cium (Ca)	mg/L	-	150	0.05	8321931		
Dissolved Ma	gnesium (Mg)	mg/L	-	52	0.05	8321931		
Dissolved Pot	assium (K)	mg/L	-	17	1	8321931		
Dissolved Sod	lium (Na)	mg/L	-	170	0.5	8321931		
Total Arsenic	(As)	ug/L	100	<1.0	1.0	8324011		
Total Cadmiu	m (Cd)	ug/L	0.2	<0.090	0.090	8324011		
Total Calcium (Ca)		ug/L	-	150000	200	8324011		
Total Chromiu	um (Cr)	ug/L	-	<5.0	5.0	8324011		
Total Copper	ug/L	5	1.0	0.90	8324011			
Total Iron (Fe	ug/L	300	290	100	8324011			
Total Lead (Pl	o)	ug/L	5	<0.50	0.50	8324011		
Total Magnes	ium (Mg)	ug/L	-	50000	50	8324011		
Total Mangar	iese (Mn)	ug/L	-	63	2.0	8324011		
Total Nickel (I	Ni)	ug/L	25	1.4	1.0	8324011		
Total Potassiu	ım (K)	ug/L	-	16000	200	8324011		
Total Sodium	(Na)	ug/L	-	170000	100	8324011		
Total Zinc (Zn)	ug/L	30	<5.0	5.0	8324011		
No Fill	No Exceedanc	e						
Grey	Exceeds 1 crite	eria poli	cy/level					
Black	Exceeds both	criteria/	levels					
RDL = Reporta	able Detection L	imit						
QC Batch = Q	uality Control Ba	atch						
	rio Provincial W Water Manager							

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

TEST SUMMARY

Bureau Veritas ID:	UDX806
Sample ID:	POND
Matrix:	Water

Bureau Veritas ID: UDX806 Sample ID: POND Matrix: Water					Collected: 2022/10/28 Shipped:
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8318859	N/A	2022/11/02	Kien Tran
Carbonate, Bicarbonate and Hydroxide	CALC	8316069	N/A	2022/11/03	Automated Statchk
Chloride by Automated Colourimetry	KONE	8320281	N/A	2022/11/04	Alina Dobreanu
Conductivity	AT	8318841	N/A	2022/11/02	Kien Tran
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8321392	N/A	2022/11/02	Gyulshen Idriz
Fluoride	ISE	8318852	2022/11/01	2022/11/02	Kien Tran
Hardness (calculated as CaCO3)		8316897	N/A	2022/11/04	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	8321931	2022/11/02	2022/11/04	Indira HarryPaul
Total Metals Analysis by ICPMS	ICP/MS	8323476	N/A	2022/11/03	Arefa Dabhad
Anion and Cation Sum	CALC	8317577	N/A	2022/11/04	Automated Statchk
Total Ammonia-N	LACH/NH4	8324582	N/A	2022/11/05	Amanpreet Sappal
Nitrate & Nitrite as Nitrogen in Water	LACH	8319325	N/A	2022/11/04	Chandra Nandlal
Animal and Vegetable Oil and Grease	BAL	8316617	N/A	2022/11/06	Automated Statchk
Total Oil and Grease	BAL	8329463	2022/11/06	2022/11/06	Navneet Singh
рН	AT	8318865	2022/11/01	2022/11/02	Kien Tran
Phenols (4AAP)	TECH/PHEN	8326458	N/A	2022/11/04	Mandeep Kaur
Orthophosphate	KONE	8320273	N/A	2022/11/03	Samuel Law
Sat. pH and Langelier Index (@ 20C)	CALC	8317580	N/A	2022/11/04	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	8317584	N/A	2022/11/04	Automated Statchk
Sulphate by Automated Colourimetry	KONE	8320279	N/A	2022/11/07	Samuel Law
Total Dissolved Solids	BAL	8321805	2022/11/02	2022/11/03	Shaneil Hall
Total Kjeldahl Nitrogen in Water	SKAL	8321959	2022/11/02	2022/11/02	Jency Sara Johnson
Total Phosphorus (Colourimetric)	SKAL/P	8319206	2022/11/02	2022/11/02	Sachi Patel
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8329467	2022/11/06	2022/11/06	Navneet Singh
Total Suspended Solids	BAL	8321801	2022/11/02	2022/11/03	Shaneil Hall
Turbidity	AT	8319286	N/A	2022/11/02	Surinder Rai

Bureau Veritas ID: Sample ID: Matrix:	UDX806 Dup POND Water					Collected: Shipped: Received:	2022/10/28 2022/10/31
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Dissolved Solids		BAL	8321805	2022/11/02	2022/11/03	Shaneil Ha	ll
Bureau Veritas ID: Sample ID: Matrix:	UDX807 SW1 Water					Collected: Shipped: Received:	2022/10/28 2022/10/31
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Alkalinity		AT	8318859	N/A	2022/11/02	Kien Tran	
Carbonate, Bicarbonate a	nd Hydroxide	CALC	8316069	N/A	2022/11/03	Automate	d Statchk
Chloride by Automated Colourimetry		KONE	8320281	N/A	2022/11/04	Alina Dobr	reanu
Conductivity		AT	8318841	N/A	2022/11/02	Kien Tran	
Dissolved Organic Carbor	(DOC)	TOCV/NDIR	8321392	N/A	2022/11/02	Gyulshen I	driz

Page 8 of 18

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

2022/11/02

Surinder Rai

Received: 2022/10/31

TEST SUMMARY

Bureau Veritas ID:	UDX807
Sample ID:	SW1
Matrix:	Water

Turbidity

Bureau Veritas ID: UDX807 Sample ID: SW1 Matrix: Water					Collected: 2022/10/28 Shipped:
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Fluoride	ISE	8318852	2022/11/01	2022/11/02	Kien Tran
Hardness (calculated as CaCO3)		8316897	N/A	2022/11/04	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	8321931	2022/11/02	2022/11/04	Indira HarryPaul
Total Metals Analysis by ICPMS	ICP/MS	8324011	N/A	2022/11/03	Arefa Dabhad
Anion and Cation Sum	CALC	8317577	N/A	2022/11/04	Automated Statchk
Total Ammonia-N	LACH/NH4	8324582	N/A	2022/11/05	Amanpreet Sappal
Nitrate & Nitrite as Nitrogen in Water	LACH	8319346	N/A	2022/11/04	Chandra Nandlal
Animal and Vegetable Oil and Grease	BAL	8316617	N/A	2022/11/06	Automated Statchk
Total Oil and Grease	BAL	8329463	2022/11/06	2022/11/06	Navneet Singh
рН	AT	8318865	2022/11/01	2022/11/02	Kien Tran
Phenols (4AAP)	TECH/PHEN	8326458	N/A	2022/11/04	Mandeep Kaur
Orthophosphate	KONE	8320273	N/A	2022/11/03	Samuel Law
Sat. pH and Langelier Index (@ 20C)	CALC	8317580	N/A	2022/11/04	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	8317584	N/A	2022/11/04	Automated Statchk
Sulphate by Automated Colourimetry	KONE	8320279	N/A	2022/11/07	Samuel Law
Total Dissolved Solids	BAL	8321805	2022/11/02	2022/11/03	Shaneil Hall
Total Kjeldahl Nitrogen in Water	SKAL	8321959	2022/11/02	2022/11/02	Jency Sara Johnson
Total Phosphorus (Colourimetric)	SKAL/P	8319206	2022/11/02	2022/11/02	Sachi Patel
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8329467	2022/11/06	2022/11/06	Navneet Singh
Total Suspended Solids	BAL	8321416	2022/11/02	2022/11/03	Shaneil Hall

N/A

Bureau Veritas ID: Sample ID: Matrix:	SW1					Shipped:	2022/10/28 2022/10/31
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Lab Filtered Metals Analy	vsis by ICP	ICP	8321931	2022/11/02	2022/11/04	Indira Har	ryPaul
Bureau Veritas ID: Sample ID:						Collected: Shipped:	2022/10/28

8319286

AT

Sample ID: DUP 3

Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8318859	N/A	2022/11/02	Kien Tran
Carbonate, Bicarbonate and Hydroxide	CALC	8316069	N/A	2022/11/03	Automated Statchk
Chloride by Automated Colourimetry	KONE	8320281	N/A	2022/11/04	Alina Dobreanu
Conductivity	AT	8318841	N/A	2022/11/02	Kien Tran
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8321392	N/A	2022/11/02	Gyulshen Idriz
Fluoride	ISE	8318852	2022/11/01	2022/11/02	Kien Tran
Hardness (calculated as CaCO3)		8316897	N/A	2022/11/04	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	8321931	2022/11/02	2022/11/04	Indira HarryPaul
Total Metals Analysis by ICPMS	ICP/MS	8324011	N/A	2022/11/03	Arefa Dabhad
Anion and Cation Sum	CALC	8317577	N/A	2022/11/04	Automated Statchk

Page 9 of 18

TEST SUMMARY

Bureau Veritas ID:	UDX808
Sample ID:	DUP 3
Matrix:	Water

Collected:	2022/10/28
Shipped:	
Received:	2022/10/31

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Ammonia-N	LACH/NH4	8324582	N/A	2022/11/05	Amanpreet Sappal
Nitrate & Nitrite as Nitrogen in Water	LACH	8319325	N/A	2022/11/04	Chandra Nandlal
Animal and Vegetable Oil and Grease	BAL	8316617	N/A	2022/11/06	Automated Statchk
Total Oil and Grease	BAL	8329463	2022/11/06	2022/11/06	Navneet Singh
рН	AT	8318865	2022/11/01	2022/11/02	Kien Tran
Phenols (4AAP)	TECH/PHEN	8326699	N/A	2022/11/04	Mandeep Kaur
Orthophosphate	KONE	8320273	N/A	2022/11/03	Samuel Law
Sat. pH and Langelier Index (@ 20C)	CALC	8317580	N/A	2022/11/04	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	8317584	N/A	2022/11/04	Automated Statchk
Sulphate by Automated Colourimetry	KONE	8320279	N/A	2022/11/07	Samuel Law
Total Dissolved Solids	BAL	8321805	2022/11/02	2022/11/03	Shaneil Hall
Total Kjeldahl Nitrogen in Water	SKAL	8321959	2022/11/02	2022/11/02	Jency Sara Johnson
Total Phosphorus (Colourimetric)	SKAL/P	8319206	2022/11/02	2022/11/02	Sachi Patel
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8329467	2022/11/06	2022/11/06	Navneet Singh
Total Suspended Solids	BAL	8321416	2022/11/02	2022/11/03	Shaneil Hall
Turbidity	AT	8319286	N/A	2022/11/02	Surinder Rai

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 7.3°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8318841	KIT	Spiked Blank	Conductivity	2022/11/02	value	103	%	85 - 115
8318841	KIT	Method Blank	Conductivity	2022/11/02	<1.0	105	umho/cm	05-115
8318841	KIT	RPD	Conductivity	2022/11/02	2.2		%	25
8318852	KIT	Matrix Spike	Fluoride (F-)	2022/11/02	2.2	100	%	80 - 120
8318852	КІТ	Spiked Blank	Fluoride (F-)	2022/11/02		100	%	80 - 120
8318852	KIT	Method Blank	Fluoride (F-)	2022/11/02	<0.10	101	mg/L	00 - 120
8318852	KIT	RPD	Fluoride (F-)	2022/11/02	1.9		%	20
8318859	KIT	Spiked Blank	Alkalinity (Total as CaCO3)	2022/11/02	1.5	97	%	85 - 115
8318859	KIT	Method Blank	Alkalinity (Total as CaCO3)	2022/11/02	<1.0	57	mg/L	89 - 113
8318859	KIT	RPD	Alkalinity (Total as CaCOS)	2022/11/02	0.34		%	20
8318865	KIT	Spiked Blank	pH	2022/11/02	0.54	102	%	98 - 103
8318865	KIT	RPD	рн	2022/11/02	0.39	102	%	N/A
8318805	SPC	Matrix Spike	Total Phosphorus	2022/11/02	0.39	113	%	80 - 120
8319206	SPC	QC Standard	Total Phosphorus	2022/11/02		106	%	80 - 120
8319206	SPC	Spiked Blank	Total Phosphorus	2022/11/02		98	%	80 - 120
8319206	SPC	•	Total Phosphorus	2022/11/02	< 0.004	90		80 - 120
8319206	SPC	Method Blank RPD	Total Phosphorus	2022/11/02	2.2		mg/L %	20
8319200	SAU	Spiked Blank	Turbidity	2022/11/02	2.2	114	%	20 85 - 115
8319286	SAU	Method Blank	Turbidity		0.4,	114	∕₀ NTU	65 - 115
				2022/11/02	RDL=0.1			
8319286	SAU	RPD	Turbidity	2022/11/02	1.5		%	20
8319325	C_N	Matrix Spike	Nitrite (N)	2022/11/04		102	%	80 - 120
			Nitrate (N)	2022/11/04		95	%	80 - 120
8319325	C_N	Spiked Blank	Nitrite (N)	2022/11/04		106	%	80 - 120
			Nitrate (N)	2022/11/04		97	%	80 - 120
8319325	C_N	Method Blank	Nitrite (N)	2022/11/04	<0.010		mg/L	
			Nitrate (N)	2022/11/04	<0.10		mg/L	
8319325	C_N	RPD	Nitrate (N)	2022/11/04	NC		%	20
8319346	C_N	Matrix Spike	Nitrite (N)	2022/11/04		103	%	80 - 120
			Nitrate (N)	2022/11/04		97	%	80 - 120
8319346	C_N	Spiked Blank	Nitrite (N)	2022/11/04		106	%	80 - 120
			Nitrate (N)	2022/11/04		99	%	80 - 120
8319346	C_N	Method Blank	Nitrite (N)	2022/11/04	<0.010		mg/L	
			Nitrate (N)	2022/11/04	<0.10		mg/L	
8319346	C_N	RPD	Nitrite (N)	2022/11/04	16		%	20
			Nitrate (N)	2022/11/04	0.078		%	20
8320273	S1L	Matrix Spike	Orthophosphate (P)	2022/11/03		105	%	75 - 125
8320273	S1L		Orthophosphate (P)	2022/11/03		102	%	80 - 120
8320273	S1L	Method Blank	Orthophosphate (P)	2022/11/03	<0.010		mg/L	
8320273	S1L	RPD	Orthophosphate (P)	2022/11/03	NC		%	25
8320279	S1L	Matrix Spike	Dissolved Sulphate (SO4)	2022/11/07		NC	%	75 - 125
8320279	S1L	Spiked Blank	Dissolved Sulphate (SO4)	2022/11/07		108	%	80 - 120
8320279	S1L	Method Blank	Dissolved Sulphate (SO4)	2022/11/07	<1.0		mg/L	
8320279	S1L	RPD	Dissolved Sulphate (SO4)	2022/11/07	NC		%	20
8320281	ADB	Matrix Spike	Dissolved Chloride (Cl-)	2022/11/04		119	%	80 - 120
8320281	ADB	Spiked Blank	Dissolved Chloride (Cl-)	2022/11/04		103	%	80 - 120
8320281	ADB	Method Blank	Dissolved Chloride (Cl-)	2022/11/04	<1.0		mg/L	
8320281	ADB	RPD	Dissolved Chloride (Cl-)	2022/11/04	0.14		%	20
8321392	GID	Matrix Spike	Dissolved Organic Carbon	2022/11/02		97	%	80 - 120
8321392	GID	Spiked Blank	Dissolved Organic Carbon	2022/11/02		98	%	80 - 120
8321392	GID	Method Blank	Dissolved Organic Carbon	2022/11/02	<0.40		mg/L	

Page 12 of 18

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8321392	GID	RPD	Dissolved Organic Carbon	2022/11/02	2.0		%	20
8321416	SHD	QC Standard	Total Suspended Solids	2022/11/03		95	%	85 - 115
8321416	SHD	Method Blank	Total Suspended Solids	2022/11/03	<10		mg/L	
8321416	SHD	RPD	Total Suspended Solids	2022/11/03	NC		%	25
8321801	SHD	QC Standard	Total Suspended Solids	2022/11/03		95	%	85 - 115
8321801	SHD	Method Blank	Total Suspended Solids	2022/11/03	<10		mg/L	
8321801	SHD	RPD	Total Suspended Solids	2022/11/03	0.16		%	25
8321805	SHD	QC Standard	Total Dissolved Solids	2022/11/03		100	%	90 - 110
8321805	SHD	Method Blank	Total Dissolved Solids	2022/11/03	<10		mg/L	
8321805	SHD	RPD [UDX806-03]	Total Dissolved Solids	2022/11/03	0.46		%	25
8321931	IHP	Matrix Spike [UDX807-01]	Dissolved Calcium (Ca)	2022/11/04		NC	%	80 - 120
			Dissolved Magnesium (Mg)	2022/11/04		NC	%	80 - 120
			Dissolved Potassium (K)	2022/11/04		NC	%	80 - 120
			Dissolved Sodium (Na)	2022/11/04		NC	%	80 - 120
8321931	IHP	Spiked Blank	Dissolved Calcium (Ca)	2022/11/04		100	%	80 - 120
			Dissolved Magnesium (Mg)	2022/11/04		107	%	80 - 120
			Dissolved Potassium (K)	2022/11/04		106	%	80 - 120
			Dissolved Sodium (Na)	2022/11/04		101	%	80 - 120
8321931	IHP	Method Blank	Dissolved Calcium (Ca)	2022/11/04	<0.05		mg/L	
			Dissolved Magnesium (Mg)	2022/11/04	<0.05		mg/L	
			Dissolved Potassium (K)	2022/11/04	<1		mg/L	
			Dissolved Sodium (Na)	2022/11/04	<0.5		mg/L	
8321931	IHP	RPD [UDX807-01]	Dissolved Calcium (Ca)	2022/11/04	3.6		%	25
			Dissolved Magnesium (Mg)	2022/11/04	2.8		%	25
			Dissolved Potassium (K)	2022/11/04	3.9		%	25
			Dissolved Sodium (Na)	2022/11/04	3.1		%	25
8321959	ΠH	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2022/11/03		96	%	80 - 120
8321959	IJΗ	QC Standard	Total Kjeldahl Nitrogen (TKN)	2022/11/02		103	%	80 - 120
8321959	ΠH	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2022/11/02		104	%	80 - 120
8321959	ΠH	Method Blank	Total Kjeldahl Nitrogen (TKN)	2022/11/02	<0.10		mg/L	
8321959	IJΗ	RPD	Total Kjeldahl Nitrogen (TKN)	2022/11/03	10		%	20
8323476	ADA	Matrix Spike	Total Arsenic (As)	2022/11/03		102	%	80 - 120
			Total Cadmium (Cd)	2022/11/03		102	%	80 - 120
			Total Calcium (Ca)	2022/11/03		NC	%	80 - 120
			Total Chromium (Cr)	2022/11/03		96	%	80 - 120
			Total Copper (Cu)	2022/11/03		107	%	80 - 120
			Total Iron (Fe)	2022/11/03		100	%	80 - 120
			Total Lead (Pb)	2022/11/03		101	%	80 - 120
			Total Magnesium (Mg)	2022/11/03		98	%	80 - 120
			Total Manganese (Mn)	2022/11/03		98	%	80 - 120
			Total Nickel (Ni)	2022/11/03		99	%	80 - 120
			Total Potassium (K)	2022/11/03		99	%	80 - 120
			Total Sodium (Na)	2022/11/03		NC	%	80 - 120
			Total Zinc (Zn)	2022/11/03		100	%	80 - 120
8323476	ADA	Spiked Blank	Total Arsenic (As)	2022/11/03		101	%	80 - 120
			Total Cadmium (Cd)	2022/11/03		101	%	80 - 120
			Total Calcium (Ca)	2022/11/03		101	%	80 - 120
			Total Chromium (Cr)	2022/11/03		96	%	80 - 120
			Total Copper (Cu)	2022/11/03		105	%	80 - 120
			Total Iron (Fe)	2022/11/03		101	%	80 - 120
			Total Lead (Pb)	2022/11/03		98	%	80 - 120

Page 13 of 18

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Data Analyzad	Value	Pacovory		OC Limita
Batch	Init	uc Type	Parameter Total Magnesium (Mg)	Date Analyzed 2022/11/03	Value	Recovery 101	UNITS %	QC Limits 80 - 120
						98	%	80 - 120 80 - 120
			Total Manganese (Mn)	2022/11/03		98 99		
			Total Nickel (Ni)	2022/11/03			%	80 - 120
			Total Potassium (K)	2022/11/03		100	%	80 - 120
			Total Sodium (Na)	2022/11/03		102	%	80 - 120
0000476			Total Zinc (Zn)	2022/11/03		101	%	80 - 120
8323476	ADA	Method Blank	Total Arsenic (As)	2022/11/03	<1.0		ug/L	
			Total Cadmium (Cd)	2022/11/03	<0.090		ug/L	
			Total Calcium (Ca)	2022/11/03	<200		ug/L	
			Total Chromium (Cr)	2022/11/03	<5.0		ug/L	
			Total Copper (Cu)	2022/11/03	<0.90		ug/L	
			Total Iron (Fe)	2022/11/03	<100		ug/L	
			Total Lead (Pb)	2022/11/03	<0.50		ug/L	
			Total Magnesium (Mg)	2022/11/03	<50		ug/L	
			Total Manganese (Mn)	2022/11/03	<2.0		ug/L	
			Total Nickel (Ni)	2022/11/03	<1.0		ug/L	
			Total Potassium (K)	2022/11/03	<200		ug/L	
			Total Sodium (Na)	2022/11/03	<100		ug/L	
			Total Zinc (Zn)	2022/11/03	<5.0		ug/L	
8323476	ADA	RPD	Total Cadmium (Cd)	2022/11/03	8.4		%	20
			Total Chromium (Cr)	2022/11/03	NC		%	20
			Total Copper (Cu)	2022/11/03	0.43		%	20
			Total Iron (Fe)	2022/11/03	3.4		%	20
			Total Lead (Pb)	2022/11/03	2.4		%	20
			Total Nickel (Ni)	2022/11/03	2.6		%	20
			Total Zinc (Zn)	2022/11/03	1.4		%	20
8324011	ADA	Matrix Spike	Total Arsenic (As)	2022/11/03		102	%	80 - 120
			Total Cadmium (Cd)	2022/11/03		101	%	80 - 120
			Total Calcium (Ca)	2022/11/03		103	%	80 - 120
			Total Chromium (Cr)	2022/11/03		98	%	80 - 120
			Total Copper (Cu)	2022/11/03		104	%	80 - 120
			Total Iron (Fe)	2022/11/03		103	%	80 - 120
			Total Lead (Pb)	2022/11/03		102	%	80 - 120
			Total Magnesium (Mg)	2022/11/03		NC	%	80 - 120
			Total Manganese (Mn)	2022/11/03		100	%	80 - 120
			Total Nickel (Ni)	2022/11/03		100	%	80 - 120
			Total Potassium (K)	2022/11/03		103	%	80 - 120
			Total Sodium (Na)	2022/11/03		103	%	80 - 120
			Total Zinc (Zn)	2022/11/03		101	%	80 - 120
8324011	ADA	Spiked Blank	Total Arsenic (As)	2022/11/03		103	%	80 - 120
			Total Cadmium (Cd)	2022/11/03		101	%	80 - 120
			Total Calcium (Ca)	2022/11/03		104	%	80 - 120
			Total Chromium (Cr)	2022/11/03		98	%	80 - 120
			Total Copper (Cu)	2022/11/03		103	%	80 - 120
			Total Iron (Fe)	2022/11/03		103	%	80 - 120
			Total Lead (Pb)	2022/11/03		100	%	80 - 120
			Total Magnesium (Mg)	2022/11/03		102	%	80 - 120
			Total Manganese (Mn)	2022/11/03		99	%	80 - 120
			Total Nickel (Ni)	2022/11/03		101	%	80 - 120
			Total Potassium (K)	2022/11/03		101	%	80 - 120
			Total Sodium (Na)	2022/11/03		102	%	80 - 120

Page 14 of 18

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Zinc (Zn)	2022/11/03		102	%	80 - 120
8324011	ADA	Method Blank	Total Arsenic (As)	2022/11/03	<1.0		ug/L	
			Total Cadmium (Cd)	2022/11/03	<0.090		ug/L	
			Total Calcium (Ca)	2022/11/03	<200		ug/L	
			Total Chromium (Cr)	2022/11/03	<5.0		ug/L	
			Total Copper (Cu)	2022/11/03	<0.90		ug/L	
			Total Iron (Fe)	2022/11/03	<100		ug/L	
			Total Lead (Pb)	2022/11/03	<0.50		ug/L	
			Total Magnesium (Mg)	2022/11/03	<50		ug/L	
			Total Manganese (Mn)	2022/11/03	<2.0		ug/L	
			Total Nickel (Ni)	2022/11/03	<1.0		ug/L	
			Total Potassium (K)	2022/11/03	<200		ug/L	
			Total Sodium (Na)	2022/11/03	<100		ug/L	
			Total Zinc (Zn)	2022/11/03	<5.0		ug/L	
8324011	ADA	RPD	Total Arsenic (As)	2022/11/03	NC		%	20
			Total Cadmium (Cd)	2022/11/03	NC		%	20
			Total Calcium (Ca)	2022/11/03	4.0		%	20
			Total Chromium (Cr)	2022/11/03	3.9		%	20
			Total Copper (Cu)	2022/11/03	NC		%	20
			Total Iron (Fe)	2022/11/03	NC		%	20
			Total Lead (Pb)	2022/11/03	NC		%	20
			Total Magnesium (Mg)	2022/11/03	5.2		%	20
			Total Manganese (Mn)	2022/11/03	7.3		%	20
			Total Nickel (Ni)	2022/11/03	4.3		%	20
			Total Potassium (K)	2022/11/03	NC		%	20
			Total Sodium (Na)	2022/11/03	4.0		%	20
			Total Zinc (Zn)	2022/11/03	12		%	20
8324582	ASP	Matrix Spike	Total Ammonia-N	2022/11/05		100	%	75 - 125
8324582	ASP	Spiked Blank	Total Ammonia-N	2022/11/05		103	%	80 - 120
8324582	ASP	Method Blank	Total Ammonia-N	2022/11/05	<0.050		mg/L	
8324582	ASP	RPD	Total Ammonia-N	2022/11/05	NC		%	20
8326458	МКХ	Matrix Spike	Phenols-4AAP	2022/11/04		104	%	80 - 120
8326458	МКХ	Spiked Blank	Phenols-4AAP	2022/11/04		102	%	80 - 120
8326458	МКХ	Method Blank	Phenols-4AAP	2022/11/04	<0.0010		mg/L	
8326458	МКХ	RPD	Phenols-4AAP	2022/11/04	NC		%	20
8326699	МКХ	Matrix Spike	Phenols-4AAP	2022/11/04		102	%	80 - 120
8326699	МКХ	Spiked Blank	Phenols-4AAP	2022/11/04		100	%	80 - 120
8326699	МКХ	Method Blank	Phenols-4AAP	2022/11/04	<0.0010		mg/L	
8326699	МКХ	RPD	Phenols-4AAP	2022/11/04	11		%	20
8329463	NSG	Spiked Blank	Total Oil & Grease	2022/11/06		99	%	85 - 115
8329463	NSG	RPD	Total Oil & Grease	2022/11/06	0.25		%	25
8329463	NSG	Method Blank	Total Oil & Grease	2022/11/06	<0.50		mg/L	
8329467	NSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2022/11/06		97	%	85 - 115
8329467	NSG	RPD	Total Oil & Grease Mineral/Synthetic	2022/11/06	0.52	0.	%	25
0329467	INSG	RPD	Total OIL& Grease Mineral/Synthetic	2022/11/06	0.52		%	25

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC									
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits	
8329467	NSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2022/11/06	<0.50		mg/L		
N/A = No	ot Applic	able							
Duplicate	e: Paireo	d analysis of a separa	te portion of the same sample. Used to evaluate the	variance in the measure	ment.				
Matrix Sp	oike: A s	ample to which a kn	own amount of the analyte of interest has been adde	ed. Used to evaluate sam	ple matrix inte	rference.			
QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.									
Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.									
Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.									
•	NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)								
NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolut difference <= 2x RDL).								n (absolute	

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Exceedance Summary Table – Prov. Water Quality Obj.

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
POND	UDX806-06	Total Iron (Fe)	300	320	100	ug/L
POND	UDX806-05	Total Phosphorus	0.01	0.019	0.004	mg/L
SW1	UDX807-05	Total Phosphorus	0.01	0.021	0.004	mg/L
DUP 3	UDX808-05	Total Phosphorus	0.01	0.020	0.004	mg/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Your Project #: 21508089 Site#: McCarthy Site Location: MCCARTHY Your C.O.C. #: 901523-01-01

Attention: Jamie Bonany/Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2023/01/25 Report #: R7483508 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C314146

Received: 2023/01/17, 09:05

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2023/01/24	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2023/01/24	2023/01/24	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2023/01/18	2023/01/19	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2023/01/19	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2023/01/24	2023/01/24	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2023/01/21	2023/01/23	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Your Project #: 21508089 Site#: McCarthy Site Location: MCCARTHY Your C.O.C. #: 901523-01-01

Attention: Jamie Bonany/Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2023/01/25 Report #: R7483508 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C314146 Received: 2023/01/17, 09:05

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		UUY025					
Sampling Data		2023/01/16					
Sampling Date		14:00					
COC Number		901523-01-01					
	UNITS	POND	RDL	QC Batch			
Calculated Parameters							
Total Animal/Vegetable Oil and Grease	mg/L	0.70	0.50	8455307			
Inorganics							
рН	рН	7.42	N/A	8456032			
Phenols-4AAP	mg/L	0.0011	0.0010	8458557			
Total Suspended Solids	mg/L	1	1	8460812			
Petroleum Hydrocarbons							
Total Oil & Grease	mg/L	0.70	0.50	8465416			
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	8465417			
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							
N/A = Not Applicable							

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 13.3°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8456032	TAK	Spiked Blank	рН	2023/01/19		102	%	98 - 103
8456032	TAK	RPD	рН	2023/01/19	0.064		%	N/A
8458557	MKX	Matrix Spike	Phenols-4AAP	2023/01/19		107	%	80 - 120
8458557	MKX	Spiked Blank	Phenols-4AAP	2023/01/19		105	%	80 - 120
8458557	MKX	Method Blank	Phenols-4AAP	2023/01/19	<0.0010		mg/L	
8458557	MKX	RPD	Phenols-4AAP	2023/01/19	NC		%	20
8460812	SHD	QC Standard	Total Suspended Solids	2023/01/23		95	%	85 - 115
8460812	SHD	Method Blank	Total Suspended Solids	2023/01/23	<1		mg/L	
8460812	SHD	RPD	Total Suspended Solids	2023/01/23	6.5		%	20
8465416	NSG	Spiked Blank	Total Oil & Grease	2023/01/24		99	%	85 - 115
8465416	NSG	RPD	Total Oil & Grease	2023/01/24	0		%	25
8465416	NSG	Method Blank	Total Oil & Grease	2023/01/24	<0.50		mg/L	
8465417	NSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2023/01/24		96	%	85 - 115
8465417	NSG	RPD	Total Oil & Grease Mineral/Synthetic	2023/01/24	0.52		%	25
8465417	NSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2023/01/24	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

