

FINAL REPORT REV 2

# Hydrogeological Impact Assessment for the Expansion of the Cruickshank Elginburg Quarry

Lot 12 and 13, Concession 5, City of Kingston, County of Frontenac, Ontario

Presented to:

Ken Bangma Properties and Compliance Manager

**Cruickshank Construction Limited** 751 Dalton Avenue Kingston, Ontario K7M 8N6

Report No. 2130039.00

February 22, 2016

L:\PROJ\2130039\200 - WORKING FILES\HYDROGEOLOGY AND AGGREGATES\HYDROGEOLOGY REPORT\REV2\FINAL\_HYDROGEOLOGY ELGIN EXPAN\_REV2.DOCX

# **EXECUTIVE SUMMARY**

Morrison Hershfield Limited (MH) was retained by Cruickshank Construction Limited (Cruickshank) to assess the hydrogeological impacts of the westward expansion of the Elginburg Quarry.

The study included background data review, site and area inspections, drilling of eight boreholes using a variety of drilling methods over a three year period, hydraulic testing of open holes, geophysical logging, installation of piezometers in select holes, hydraulic testing of the piezometers, groundwater level monitoring, groundwater sampling/analysis, and a domestic well survey of all wells within 500 m of the existing quarry and proposed expansion. The study also included analysis of the collected field data to prepare a conceptual hydrogeological model of the expansion lands and surrounding area, predictive analysis of drawdown cone propagation, impact assessment, and proposal of monitoring and contingency plans.

The results of the study support the definition of a north- and east-dipping layer-cake hydrostratigraphic model for the bedrock. The most distinctive geological marker within the model is the green beds of the middle member of the Gull River Formation, while the only significant permeability is approximately 7 m below the bottom of these beds. In the southern part of the expansion lands this permeability makes a confined aquifer, locally influenced by the nearby escarpment and also supplying water to residents on Cordukes Road to the west. To protect these wells, a set back of the third lift to the Lot 12/Lot 13 boundary is recommended.

North of the expansion lands, the confined aquifer has not been proven due to its depth, and water supply is sporadic, with some properties relying on cisterns in the absence of a reliable well. The best water supply is obtained from discrete fractures in the shallow bedrock, which are locally recharged by infiltrating precipitation. Due to its proximity to the expansion and not due to the permeability of the rock, a 250 m setback of the third lift is recommended from the closest residence at 2528 Unity Road.

Quarrying and dewatering of the quarry sump will lower the water table at the quarry itself. Using conservative assumptions, the radius of influence for the two-lift and three-lifts parts of the quarry were calculated as 300 m and 180 m, respectively.

Following rehabilitation, lakes are expected to form in the quarries on the north and south side of the pipeline which traverses the property. The north lake is expected to flow into the south lake, and the south lake is expected to equilibrate at approximately the elevation of the current water table at the south side of the property. Approximate post-rehabilitation lake elevations have been estimated at 125 mASL (north lake) and 110 mASL (south lake).

Wells, aquifers, surface water features, and anthropogenic structures were all considered in the impact assessment, and the highest risk receptor is the assumed domestic well closest to the expansion lands at 2528 Unity Road. Assuming the well is present, this is the only well within the estimated radius of influence of the fully extracted quarry, and to minimize the chance of impact to this well, a setback of 250 m is recommended for the third lift of the quarry. Wells at 2034, 2130, 2150, and 2166 Cordukes Road are identified as the next most likely to be affected because they appear to take water from the same confined aquifer as identified at depth within the southern part of the expansion lands. To protect these wells a setback of the third lift to the Lot 12/Lot 13 boundary is recommended.

# **EXECUTIVE SUMMARY**

A minor change in flow along the ditch on the south side of Unity Road where the expansion lands abut is anticipated, and drainage of the south end of the property at 2467 Unity Road must be maintained despite the proposed berming in this area.

To address the possibility of a well impact, monthly groundwater level monitoring is recommended between the potentially affected wells and the quarry at all times during quarry operation; and annual winter seepage face monitoring is recommended as any lift of the quarry advances through the last 250 m of the approach to Unity Road, and through Lot 12 (approximately 400 m).

Since all the evidence suggests that bedrock permeability in the area of the potentially affected wells is generally low, and is derived from relatively discrete bedding plane fractures; grouting of discrete fracture zones, when used in combination with the recommended seepage and groundwater level monitoring, is considered a viable option for reversal of well impacts in the unlikely event they occur.

The following is a summary of recommendations made:

- 1. Monthly groundwater level monitoring is recommended in DDH 10-01. BH 11-02, BH 11-03, BH 11-04, BH 12-01, BH 12-02, BH 12-03, BH 13-01, the domestic well at 2528 Unity Road, and in the following three additional monitoring wells:
  - Future Monitoring Well 1 (FMW-1) on the Lot 12-Lot 13 boundary, approximately 60 m south of BH 13-01, to be drilled prior to extraction within the western half of Lot 13,
  - FMW-2 on the Lot 11-Lot 12 boundary at the northwest corner of the part of the expansion lands in Lot 12, to be drilled prior to extraction within Lot 12.
  - FMW-3 on the Lot 11-Lot 12 boundary at the southwest corner of the part of the expansion lands in Lot 12, to be drilled prior to extraction within Lot 12.
- 2. Annual winter photographic seepage face monitoring is recommended on all available extraction faces within 250 m of Unity Road in the western half of Lot 13 and also in Lot 12. This would consist of taking one or more photographs of the rock face from static viewpoints, where possible based on quarry operations. The information will provide a record of seepage into the quarry in the winter when ice will form at key seepage locations.
- 3. No extraction of the third lift (i.e., below 115 mASL) should occur within 250 m of the property at 2528 Unity Road, and west of the Lot 12/Lot 13 lot line.
- 4. A grouting pilot study may be considered during extraction of Lift 3 in Lot 13, if suitable conditions exist. The terms of reference for the study are included in Appendix J.
- 5. In consultation with the property owner, drainage from 2467 Unity Road must be allowed to discharge at the southern end of this property by way of a culvert(s) or break(s) in the berm.
- 6. The existing PTTW will be sufficient for dewatering of the existing quarry and the expansion area until its expiry in 2022. Upon renewal, it is recommended to combine the monitoring programs proposed in this report for the quarry expansion with the monitoring program for the existing quarry.

# TABLE OF CONTENTS

| EXE | CUTIVE | SUMMA                                 | RY                                                 | i  |  |
|-----|--------|---------------------------------------|----------------------------------------------------|----|--|
| 1.  | INTR   | INTRODUCTION                          |                                                    |    |  |
|     | 1.1    | Study Area                            |                                                    |    |  |
|     | 1.2    | Scope                                 | of Work                                            | 5  |  |
|     | 1.3    | Conten                                | ts of Report                                       | 5  |  |
| 2.  | METI   | METHODS                               |                                                    |    |  |
|     | 2.1    | Background Data Review                |                                                    |    |  |
|     | 2.2    | Site Ins                              | Site Inspection                                    |    |  |
|     | 2.3    | Subsur                                | Subsurface Investigation                           |    |  |
|     |        | 2.3.1                                 | Diamond Drilling, Core Recovery, Core Logging      | 7  |  |
|     |        | 2.3.2                                 | Rock Drilling and Rock Chip Logging                | 7  |  |
|     |        | 2.3.3                                 | Downhole Geophysical Logging                       | 8  |  |
|     | 2.4    | Water Investigation                   |                                                    |    |  |
|     |        | 2.4.1                                 | Groundwater Level Monitoring and Hydraulic Testing | 8  |  |
|     |        | 2.4.2                                 | Piezometer Installation                            | 9  |  |
|     |        | 2.4.3                                 | Groundwater Sampling and Analysis                  | 9  |  |
|     |        | 2.4.4                                 | Domestic Well Survey                               | 10 |  |
|     |        | 2.4.5                                 | Surface Water Inspection and Sampling              | 10 |  |
|     | 2.5    | Calcula                               | Calculations                                       |    |  |
|     |        | 2.5.1                                 | Drawdown during Operations Analysis                | 11 |  |
|     |        | 2.5.2                                 | Groundwater Inflow Rate                            | 13 |  |
|     |        | 2.5.3                                 | Lake Level Following Rehabilitation Analysis       | 13 |  |
|     |        | 2.5.4                                 | Water Balance and Lake Filling Time Calculations   | 14 |  |
|     | 2.6    | Storm Water Management Considerations |                                                    |    |  |
|     | 2.7    | Impact Assessment                     |                                                    |    |  |



# **TABLE OF CONTENTS (Continued)**

| 3. | RESULTS |          |                                                        | 15 |  |
|----|---------|----------|--------------------------------------------------------|----|--|
|    | 3.1     | Backgro  | Background Data Review                                 |    |  |
|    |         | 3.1.1    | Physiography and Topography                            | 15 |  |
|    |         | 3.1.2    | Drainage and Surface Water (Hydrology)                 | 15 |  |
|    |         | 3.1.3    | Geology                                                | 15 |  |
|    |         | 3.1.4    | Hydrogeology                                           | 16 |  |
|    |         | 3.1.5    | Existing Permit to Take Water                          | 18 |  |
|    | 3.2     | Site Ins | pection                                                | 19 |  |
|    | 3.3     | Subsur   | face Investigation                                     | 20 |  |
|    |         | 3.3.1    | Diamond Drilling, Core Recovery, Core Logging          | 20 |  |
|    |         | 3.3.2    | Rock Drilling and Rock Chip Logging                    | 20 |  |
|    |         | 3.3.3    | Downhole Geophysical Logging                           | 20 |  |
|    | 3.4     | Water I  | nvestigation                                           | 21 |  |
|    |         | 3.4.1    | Groundwater Level and Hydraulic Testing of Open Holes  | 21 |  |
|    |         | 3.4.2    | Piezometer Installation                                | 21 |  |
|    |         | 3.4.3    | Groundwater Level and Hydraulic Testing of Piezometers | 22 |  |
|    |         | 3.4.4    | Monthly Groundwater Monitoring / Static Water Levels   | 22 |  |
|    |         | 3.4.5    | Groundwater Sampling Results                           | 23 |  |
|    |         | 3.4.6    | Domestic Well Survey and Sampling Results              | 23 |  |
|    |         | 3.4.7    | Surface Water Inspection and Sampling Results          | 25 |  |
|    | 3.5     | Calcula  | Calculations                                           |    |  |
|    |         | 3.5.1    | Results of the Conceptual Modelling                    | 26 |  |
|    |         | 3.5.2    | Estimated Drawdown During Quarry Operation             | 27 |  |
|    |         | 3.5.3    | Estimated Inflow During Quarry Operation               | 28 |  |
|    |         | 3.5.4    | Estimated Lake Levels Following Rehabilitation         | 29 |  |

# **TABLE OF CONTENTS (Continued)**

|    |                                       | 3.5.5     | Water Balance and Lake Filling Time                             | 30 |  |
|----|---------------------------------------|-----------|-----------------------------------------------------------------|----|--|
|    | 3.6                                   | Stormwat  | er Management Considerations                                    | 30 |  |
| 4. | IMPAC                                 | T ASSES   | SMENT                                                           | 32 |  |
|    | 4.1                                   | Impact or | n Wells and Aquifers                                            | 32 |  |
|    | 4.2                                   | Impact or | n Surface Water                                                 | 34 |  |
|    |                                       | 4.2.1     | Flow Routing                                                    | 34 |  |
|    |                                       | 4.2.2     | Flow Volumes                                                    | 35 |  |
|    |                                       | 4.2.3     | Water Quality                                                   | 35 |  |
|    | 4.3                                   | Impact or | n Existing Contamination                                        | 35 |  |
|    | 4.4                                   | Impact or | n Anthropogenic Structures                                      | 35 |  |
|    | 4.5                                   | Impact or | n Ecology                                                       | 36 |  |
| 5. | ENVIRONMENTAL PROTECTION / MITIGATION |           |                                                                 |    |  |
|    | 5.1                                   | Recomm    | ended Monitoring Plan                                           | 37 |  |
|    | 5.2                                   | Recomm    | ended Contingency Plan                                          | 37 |  |
|    |                                       | 5.2.1     | A Water Well Interference Complaint                             | 37 |  |
|    |                                       | 5.2.2     | Monitoring Data Which Suggests a Potential Impact to a Receptor | 38 |  |
| 6. | SUMM                                  | IARY OF F | RECOMMENDATIONS                                                 | 39 |  |
| 7. | CLOS                                  | URE       |                                                                 | 40 |  |
| 8. | LIMITA                                | ATIONS AI | ND USE                                                          | 41 |  |
| 9. | REFERENCES                            |           |                                                                 | 42 |  |

# **TABLE OF CONTENTS (Continued)**

## LIST OF TABLES

| Table 1: Hydraulic Conductivities - Existing Quarry       | 18 |
|-----------------------------------------------------------|----|
| Table 2: Takings Allowable Under the Existing PTTW        | 19 |
| Table 3: Hydraulic Conductivities Measured in Open Holes  | 21 |
| Table 4: Hydraulic Conductivities Measured in Piezometers | 22 |
| Table 5: Groundwater Inflow Calculation                   | 29 |
| Table 6: Lake Filling Calculations                        | 30 |
| Table 7: Impacts on Local Wells                           | 32 |

## LIST OF FIGURES

- Figure 1 Site Plan
- Figure 2 Bedrock Geology
- Figure 3 Stratigraphic Model based on Geophysical Logging
- Figure 4 Hydrogeological Cross Section A-A'
- Figure 5 Hydrogeological Cross Section B-B'
- Figure 6 Hydrogeological Cross Section C-C'
- Figure 7 Groundwater Levels at Existing Quarry, 2007-2014
- Figure 8 Groundwater Level Monitoring in Expansion Lands, 2013-2015
- Figure 9 Water Table & Predicted Limits of Drawdown
- Figure 10 Potentiometric Surface in Confined Aquifer
- Figure 11 Groundwater Monitoring Program for Proposed Elginburg Quarry Expansion

## APPENDICES

**APPENDIX A: Figures** 

APPENDIX B: Well Logs and Well Completions

- APPENDIX C: Water Well Information System (Well Records)
- APPENDIX D: Photographs from Site Inspection
- APPENDIX E: Downhole Geophysics Report
- APPENDIX F: Groundwater Level Monitoring Data

APPENDIX G: Hvorslev Analysis

- **APPENDIX H: Analytical Results**
- APPENDIX I: Domestic Well Survey Summary

## APPENDIX J: Terms of Reference for Grouting Study

# 1. INTRODUCTION

Cruickshank Construction Limited (Cruickshank) owns the Elginburg Quarry, Lots 14 and 15, Concession 5, City of Kingston, Ontario. The quarry is licensed under the Aggregate Resources Act (# 2901). Cruickshank intends to expand this quarry westward into Lots 12 and 13, Concession 5 (see Figure 1 in Appendix A). These expansion lands are south of Unity Road and north of Burbrook Road, to the west of the existing quarry.

Morrison Hershfield Limited (MH) was retained by Cruickshank to assess the hydrogeological impacts of the expansion of the Cruickshank Elginburg Quarry in support of the following:

- an application for major site plan amendment under the Aggregate Resources Act (ARA) for the expansion to be made with Ministry of Natural Resources;
- City of Kingston zoning by-law amendment; and,
- an eventual Permit to Take Water (PTTW) application to be made for the expanded quarry with the Ministry of the Environment and Climate Change (MOECC).

## 1.1 Study Area

The study area is approximately defined by the extents shown on Figure 1 in Appendix A. The study area includes the area to be licensed and the existing and proposed extraction limits, as well as the area surrounding the quarry including the nearest water wells, wetlands, or other features potentially impacted by the project.

# 1.2 Scope of Work

The scope of work is defined by the Provincial Standards for a Hydrogeological Level 2 Technical Report, Category 2 - Class "A" License for quarrying below the water table. The scope includes field work and hydrogeological analysis deemed necessary to achieve the objective. All work is to be carried out in accordance with applicable industry standard practices.

# **1.3 Contents of Report**

This section of the report provides information on the context for the study, the scope of work and the layout of the report. Section 2 describes the methods used in the study. Section 3 describes the results including background information, the results of field investigations, and any calculations necessary for the impact assessment. Section 4 describes the assessment of the impacts of the project on all identified potential receptors. Section 5 presents a summary of the results and the potential impacts, describes any recommended monitoring, and contingency plans to be implemented in the event of certain occurrences. Section 6 provides a summary of recommendations. Section 7 provides closure notes and signatures of the report authors, and Section 8 presents the limitations and use of this report. References are provided in Section 9. Figures, tables, and supporting documents are provided in the appendices.

# 2. METHODS

This section describes the methods used in this study. Specifics to the project including dates, specific data sources, and specific details of the chosen methodology are included as part of the results.

# 2.1 Background Data Review

Background data review was conducted in accordance with industry standard practices using readily available information from federal, provincial, municipal, and other sources of information. The following is a non-exhaustive list of key data sources:

- Cruickshank files and previous reports;
- MOECC Water Well Information System (WWIS, 2012);
- Geology Ontario (maps published by the Ontario Geological Survey);
- Google Earth (for quick reference topographic and land use information); and,
- Land Information Ontario, for detailed topographic and hydrological mapping.

The background review included analysis as necessary to develop an overall understanding of the hydrogeological setting and potential impacts of the expansion. In this case, the analysis included the tabulation and plotting of site-specific borehole information; tabulation and use of WWIS water well information to determine depths and available drawdown in area wells; plan view plotting of surface water features such as streams, rivers, lakes and wetlands to assess groundwater and surface water interaction; and plan view plotting of surficial and bedrock geology to determine the likely occurrence of surficial deposits as well as the occurrence and thickness of sedimentary bedrock.

# 2.2 Site Inspection

Site inspections were carried out primarily to observe geological and hydrogeological conditions in the existing quarry. During these inspections, the quarry walls were inspected for variations in rock bedding and colour, and for signs of seepage. Photographs were taken of observed features.

# 2.3 Subsurface Investigation

Hydrogeological analysis and impact assessment requires that the properties of the soil, rock, and groundwater be known in proximity to the area affected by the project. Unless it can be inferred entirely from existing sources, field work such as drilling and soil/rock sampling is required. In this case, subsurface investigations were carried out by two separate consultants over a four year period, for the combined purpose of investigating the rock quality and the hydrogeology. The remainder of this section describes the methods used as they pertain to the subsurface properties.

## 2.3.1 Diamond Drilling, Core Recovery, Core Logging

Diamond drilling allows for the recovery of a piece of rock core, with diameter determined by the drill bit size. Core is recovered from the core barrel, labeled to indicate depth interval, and inspected and placed in core boxes. Diamond drilling was carried out under MH supervision. Each core was visually inspected for colour, texture and composition of the rocks, fractures in the core, and evidence of fossils or bioturbation. The surface of the core was also scratch-tested for hardness using a pocket blade. The classification shown in Table 2.1 was used to determine the hardness of the rock.

| Classification | Description                                    |
|----------------|------------------------------------------------|
| Very Soft      | Can be peeled with a knife.                    |
| Soft           | Can be easily gouged or carved with a knife.   |
|                | Can be readily scratched with a knife blade;   |
| Medium soft    | scratch leaves heavy trace of dust and is      |
|                | readily visible after powder blown away.       |
|                | Can be scratched with a knife with difficulty; |
| Hard           | scratch produces little powder and is often    |
|                | faintly visible.                               |
| Very Hard      | Cannot be scratched with a knife or can barely |
| very rialu     | be scratched with a knife.                     |

| Table 2.1: Rock hardness | Classification |
|--------------------------|----------------|
|--------------------------|----------------|

Acid testing was carried out on the core samples to distinguish between limestone and dolostone. Acid was prepared by mixing muriatic acid and water in a 1:7 ratio to form a diluted hydrochloric (HCI) acid. The HCI acid was transferred into a squeeze bottle fitted with a cap to enable precise application of small amounts of acid onto the core samples. When applied to limestone, acid reacts and fizzes vigorously as carbon dioxide is produced. When applied to dolostone, acid reacts to a lesser extent and fizzes very slightly. Dolostone surfaces typically need to be scratched prior to adding acid to facilitate a more visible reaction. It is noted that the reaction may also take place on other rock types if calcite is present (e.g. sandstone with calcite cement).

Diamond drilling had also been carried out in December, 2010 at DDH 10-01 by Marathon Drilling Co. Ltd. under the supervision of Golder. The core had been split (apparently using a rotary rock saw) and the remaining half was available for inspection by MH.

### 2.3.2 Rock Drilling and Rock Chip Logging

The bit of a rock drill is pushed and hammered into the ground, while the crushed rock chips are brought to the surface using compressed air. Common types of rock drills at quarry sites include water well rigs and top-hammer rigs used in quarrying. The drilling was carried out in intervals and rock chips from each interval were flushed out into piles near the drill. Rock chips samples at each interval were collected using a trowel and placed into zip-lock bags for later analysis. After samples were taken, the piles were cleared out to make room for the next rock chip sample interval so as to avoid mixing sample intervals.

The rock chips were later arranged into compartmentalized boxes for ease of storage and assessment. The rock chips were visually inspected for colour and tested for limestone and/or dolostone using HCl acid (as described in Section 2.2). All observations and field test results were noted down and used to produce borehole logs using Gint software.

## 2.3.3 Downhole Geophysical Logging

Downhole geophysics was carried out in all boreholes by Notra Inc. of Ottawa using a BMP06 probe which simultaneously measures temperature, apparent conductivity, apparent resistivity, single point resistance, magnetic susceptibility, and natural gamma at a rate of 2 readings per second recorded on a logging computer. The probe was lined up with the top of the casing and a depth of zero was entered in the logging computer. With the computer logging, the probe was lowered at approximately 5 meters per minute, resulting in one data point for all parameters recorded every 4 cm. The probe was stopped briefly at calibrated 10 meter intervals to confirm accuracy of the logged depth. After reaching the end of the hole, the probe was brought back up at a faster rate, while still logging data. The up data is compared to the down data to ensure proper operation of the unit.

Depth data in each borehole were calibrated using the 10 m calibration intervals and each parameter was extracted to an electronic file. The files were then plotted in LogView from which the analysis was conducted. More detailed methodology and analysis are described in the report attached in Appendix E.

## 2.4 Water Investigation

In hydrogeological studies, especially at a regional scale, it is necessary to understand the interaction of groundwater and surface water.

### 2.4.1 Groundwater Level Monitoring and Hydraulic Testing

To provide information on the permeability of the subsurface, a rising head (bail) test was performed on all open holes, and on all installed piezometers. Open holes were pumped down using a 51 mm (2") submersible pump, while piezometers were pumped down using a hand-actuated inertial foot valve on the bottom of tubing installed to the base of the piezometer. Water levels were monitored as the well or piezometer recovered using an electric water level tape. The hydraulic conductivity of the tested media was determined by applying the Hvorslev method to the measured water level recovery data.

To determine information on the variation in hydraulic conductivity with depth within the stratigraphy, packer testing was completed in one open hole. Packer testing is conducted in intervals of an open borehole, which are isolated from the remainder of the borehole using inflatable rubber "packers". The hydraulic conductivity of the test interval is calculated using the equation (Powers et al., 2007):

$$K = \frac{Q}{2\pi L\Delta H} \ln\left(\frac{L}{r_w}\right) \tag{1}$$

where,

- K = Hydraulic conductivity of borehole interval [L/T]
- *L* = Length of test section [L]
- Q = Steady injection rate [L<sup>3</sup>/T]
- $\Delta H$  = Differential pressure head [L]
- $r_w$  = Radius of borehole [L].

The differential pressure head is the gauge pressure converted into metres of water, plus the height of the gauge above the water table.

Water level monitoring was also carried out using a electric water level tape on a monthly basis in all installed piezometers.

#### 2.4.2 Piezometer Installation

The design of the piezometers was finalized based on observations of water bearing zones made during drilling. Piezometers were completed using 32 mm inside diameter PVC slotted screen and riser pipe, washed crushed stone for the gravel packs, and bentonite clay seals. The piezometers were installed in conformance with the requirements of Ontario Regulation 903 (Wells) by a licensed well driller.

#### 2.4.3 Groundwater Sampling and Analysis

Groundwater sampling was conducted in open holes and/or piezometers where permeability allowed. The water sampling procedure involved purging three well volumes and then filling the sampling bottles provided by the laboratory with the groundwater. Samples to be analyzed for metals were field filtered using 45  $\mu$ m filters. The sampling bottles were returned to Caduceon Laboratories Ltd., in Kingston and Ottawa, Ontario, for some or all of the following analyses, depending on setting:

- Inorganics and general chemistry (alkalinity, ammonia, chloride, conductivity, NO<sub>2</sub>, NO<sub>3</sub>, pH, TSS, sulphate, carbonate, bicarbonate, hardness, phenolics, turbidity);
- Metals (Al, B, Cd, Ca, Co, Cr, Cu, Fe, Pb, Mg, Ni, Ag, Si, K, Na & Zn).

Although there is no requirement to meet these standards, the results were compared to both the Ontario Drinking Water Quality Standards (ODWQS) (MOE, 2003) and the Provincial Water Quality Objectives (PWQO) (MOE, 1994) for reference purposes.

## 2.4.4 Domestic Well Survey

The intent of the domestic well survey was to verify the presence of wells, to determine their depth and completion details, and to identify water quantity or quality issues in the area, if any.

A desk-top review of property parcels within 500 m from the quarry was undertaken using the City of Kingston K-Maps site. Based on the information collected, letters were sent to a set of addresses notifying the occupants of the dates of the survey.

The survey was conducted by MH staff and Cruickshank staff by enquiry at the addresses identified in the desk-top review. Staff were instructed to include residences or businesses that were present within the search radius but which had not been identified during the desk-top review. The well survey consisted of an interview with the occupant and filling of a well questionnaire form based on the Guidelines for Drinking Well Water Sampling and Testing in Ministry of Transportation Activities, April 2004. Where possible the well was visually inspected. The measurement of water levels and the collection of groundwater samples for analysis were also included in the well survey. Samples were collected from the plumbing system at the residence, upstream of any treatment system where possible, after a five-minute flush of the plumbing system, and for bacteriological samples after the sample location had been disinfected using either the combination of flaming and alcohol swab (outdoor taps) or the alcohol swab alone (kitchen taps). Samples were collected into laboratory prepared bottles, were stored in coolers with ice, and were delivered to the laboratory immediately following the sampling event.

Samples were analyzed for the following parameters:

- Bacteriological (E. coli, Fecal Coliforms, and Total Coliforms)
- Inorganics and general chemistry (alkalinity, ammonia, chloride, conductivity, NO<sub>2</sub>, NO<sub>3</sub>, pH, TSS, sulphate, carbonate, bicarbonate, hardness, phenolics, turbidity, dissolved organic and inorganic carbon);
- Metals (Al, B, Cd, Ca, Co, Cr, Cu, Fe, Pb, Mg, Ni, Ag, Si, K, Na & Zn).

### 2.4.5 Surface Water Inspection and Sampling

Surface water and storm water management features were inspected within the existing quarry and in the expansion area. Water samples were collected from strategic locations within and downstream of the existing quarry. Water samples were collected with a clean container which was used for measurement of field parameters (temperature, pH, electrical conductivity, and dissolved oxygen) and to decant the samples into bottles provided by the laboratory. Samples were kept refrigerated, and were shipped to the analytical laboratory under Chain of Custody. Samples were analyzed for the following parameters:

- General chemistry including Alkalinity, Ammonia, Chloride, Conductivity, NO<sub>2</sub>, NO<sub>3</sub>, TP/TKN, TSS, pH, TDS, Sulphate, Carbonate, Bicarbonate, Phenols (4AAP)
- Metals (Hardness, Al, As, Ba, Be, B, Cd, Ca, Co, Cr, Cu, Fe, Pb, Mg, Mn, Mo, Ni, Ag, Si, Hg, K, Na, Sr, Tl, Ti, V & Zn)
- BOD, COD, DIC, DOC
- Oil and Grease (Total)
- PHC (F1-F4)

Field and laboratory measured parameters were compared to Provincial Water Quality Objectives (PWQO, being referenced as MOE, 1994) to further assess the water quality being discharged from the existing quarry.

## 2.5 Calculations

### 2.5.1 Drawdown during Operations Analysis

Drawdown analysis was conducted using two different approaches: a calculation approach based on measured parameters, and an "analogue" approach based on observation of existing conditions.

#### **Calculation Approach**

In this approach, drawdown analysis was conducted assuming steady state radial flow towards the extraction area at full development of the quarry, using a two-step process. In the first step, the radius of influence of the dewatering,  $r_0$ , was estimated using a variation on the method of Sichart and Kyrieleis (see Powers et al., 2007):

$$r_0 = 3000 s_{qry} \sqrt{K} \tag{2}$$

where:

 $r_0$  = radius of influence of the quarry dewatering [L; metres]

 $s_{qry}$  = drawdown at the quarry face [L; metres]

In the second step, the radial distance to the critical drawdown used in the impact assessment (i.e., to determine where to draw contours of drawdown) was calculated from a re-arrangement of the equation describing steady state radial flow in a confined aquifer (see Bear, 1979). That is,

$$r_{crit} = r_0 \left(\frac{r_o}{r_{qry}}\right)^{-\frac{S_{crit}}{S_{qry}}}$$
(3)

where:

| $r_0$             | = | radius of influence of the quarry dewatering [L; metres]                        |
|-------------------|---|---------------------------------------------------------------------------------|
| r <sub>crit</sub> | = | radius to the critical drawdown $s_{crit}$ [L; metres]                          |
| r <sub>qry</sub>  | = | radius of the quarry [L; metres].                                               |
| S <sub>qry</sub>  | = | drawdown at quarry face [L; metres]                                             |
| S <sub>crit</sub> | = | critical drawdown between 0 and $s_{qry}$ for the impact assessment [L; metres] |

The main limitation of the calculation method is that it does not account for the propagation of drawdown in discrete fractures which may be intersected by the guarry. In the event that a discrete fracture is intersected by the quarry, water is drained from it such that the groundwater elevation (total head) at the guarry wall is equal to the elevation (elevation head) of the fracture (i.e., the pressure head is zero). The discrete fracture is in fact a tortuous channel within a planar feature, and the reduction in groundwater elevation induced by the drainage propagates backwards through the channel. There will be a transient stage and then an equilibration between the rate of drainage at the guarry wall and the rate of recharge to the facture from the complex interconnectedness with other fractures, both horizontal and vertical, and from recharge infiltrating from the ground surface. As guarries advance so slowly, the groundwater system is in this equilibrium stage at all times except for brief periods after each blasting event. Since modelling of this process at the level of a discrete fracture network requires data that is difficult if not impossible to obtain, alternative methods of assessment are required.

#### Analogue Approach

To address the need for an assessment of propagation of drawdown in discrete fractures which may be intersected by the quarry, an analogue approach was used. An analogue approach is to infer the behavior of a complex system from another similar (analogous) system, whose behavior is better understood or can be observed. This approach is common in science, generally, and in the earth sciences is especially popular to support predictions over long time scales (e.g., predictions of the performance of a radioactive waste disposal site over millennia). The methodology used in the analogue approach is as follows: find an analogue, study its performance and how this performance can be used as an analogy for the performance of the target system, then use the knowledge gained to make predictions about the future performance of the target system.

#### 2.5.2 Groundwater Inflow Rate

Groundwater inflow to an excavation is dependent on many factors including the hydrogeological setting, the construction method (e.g., use of sheet piles, coffer dams, etc.), and the depth of construction. For various assessments in this report, the following equation was used (Powers et al, 2007) to calculate groundwater inflow:

$$Q_{gw} = 2\pi K B \frac{(h_{outer} - h_{inner})}{\ln(r_{outer}/r_{inner})}$$
(4)

where:

| $Q_{gw}$                | = | groundwater inflow rate [L <sub>3</sub> /T]                                                              |
|-------------------------|---|----------------------------------------------------------------------------------------------------------|
| Κ                       | = | hydraulic conductivity of the aquifer [L/T]                                                              |
| В                       | = | Thickness of aquifer [L]                                                                                 |
| $h_{outer} - h_{inner}$ | = | Maximum drawdown from expected water table to bottom of excavation [L]                                   |
| r <sub>outer</sub>      | = | Radius of Influence calculated, for example, with Sichart and Kyrieleis equation (see Section 2.5.1) [L] |
| r <sub>inner</sub>      | = | Equivalent radius of excavation [L]                                                                      |

This equation was used to assess a variety of inflows to different parts of the quarry and/or at different stages of quarry development.

A groundwater inflow rate for the existing quarry under current conditions was also very approximately calculated based on visual observations of groundwater inflow as ice build-up on the quarry walls between two or more observations times. The volume of ice formed due to groundwater inflow on the quarry walls was estimated from photographs of certain representative sections of the quarry. This was then extrapolated to estimate total volume of ice formed along the quarry walls and ultimately total volume of groundwater inflow in the quarry between the two visits. The groundwater inflow calculated was only for information purposes and not used in any other assessment in this report. The weather record was checked to verify that that no major thaw events occurred between the two visits.

#### 2.5.3 Lake Level Following Rehabilitation Analysis

Following final rehabilitation of the quarry, a lake will be established north and south of the pipeline in the quarries which will no longer be pumped. Lake levels were estimated using best judgment considering the existing water table elevation, rock permeability, estimates of how this rock permeability may change during quarrying, topography, and the influence of evaporation.

## 2.5.4 Water Balance and Lake Filling Time Calculations

The water balance for the quarry was determined on an annual basis, using meteorological information from Environment Canada, and the estimated groundwater inflow rates. The inflow of water from precipitation was estimated by multiplying an estimated catchment area by the average precipitation rate from the Environment Canada historical weather data for Kingston.

Once the pumps are shut off and the quarry allowed to fill with water, evaporation from the lake surface will occur. The evaporation rate was taken from the Hydrological Atlas of Canada which shows contours of this value over the whole country. The lake filling rate was calculated as the precipitation inflow rate (above) plus the groundwater inflow rate minus evaporation from the lake surface.

The time for complete lake filling was calculated as the volume of the lake divided by the filling rate.

## 2.6 Storm Water Management Considerations

Management of storm water during operations of the expanded quarry was considered in a qualitative fashion, considering how the quarry is currently operated, and how it may operate in the future.

# 2.7 Impact Assessment

Groundwater impacts are generally assessed based on calculated or estimated drawdown of the water table/potentiometric surface, and on calculated or estimated changes in volumetric flow (such as loss of baseflow to local streams). The impact assessment is made by considering the impacts of these project-induced calculated or estimated hydrogeological effects on the following potential receptors:

- Wells and Aquifers;
- Surface water;
- Existing subsurface contamination;
- Anthropogenic structures; and,
- Ecology.

# 3. RESULTS

# 3.1 Background Data Review

This section describes the results of the background data review. Key documents found during the review were:

- Hydrogeological Investigation of Elginburg Quarry, Part Lots 14 & 15, Conc.
   V, Township of Kingston, County of Frontenac. Report No. 934000, Gorrell Resource Investigations, 1995.
- Hydrogeological Investigation of the Cruickshank Elginburg Quarry, Lot 14 and 15, Concession V, City of Kingston, County of Frontenac, by Morrison Hershfield, dated September, 2012.

## 3.1.1 Physiography and Topography

The Elginburg Quarry is located in the Napanee Plain physiographic region (Chapman and Putman, 1984). This region is characterized by the flat topography of the limestone formations. The defining feature of the study area is a north-east to south-west trending escarpment which is approximately coincident with the south end of the existing and proposed expanded Cruickshank Elginburg quarry. The escarpment marks the edge of the limestone plain. At Unity Road the ground surface is essentially flat in the east-west direction, at approximately 140 mASL.

### 3.1.2 Drainage and Surface Water (Hydrology)

Figure 1 in Appendix A shows the surface water features in and around the existing Elginburg Quarry and the expansion area. The main branch of Collins Creek traverses the south east corner of the Figure 1 map area, flowing northeast to southwest and crossing Bur Brook Road approximately one kilometer west of Silvers Corners. South of the existing quarry and expansion area, Collins Creek turns northwards and flows for approximately 0.5 km on the north side of Bur Brook Road. This section of the Creek is joined by a tributary from the north carrying drainage from the existing quarry and Elginburg village area, and is also the receiver of overland flow from the south part of the expansion area. Drainage from the north part of the expansion area flows overland in the southwesterly direction, discharging to another tributary which joins Collins Creek in a wetland south of Burbrook Road. Collins Creek flows to the south approximately 12 km before draining into Lake Ontario at Collin's Bay.

### 3.1.3 Geology

Most of the expansion lands are underlain directly by bedrock, with very little overburden soil cover. In some low-lying upland areas (coincident with the drainage features), and at the base of the escarpment, there are massive to

well-laminated, fine-textured glaciolacustrine deposits of silt and clay with minor sand and gravel (Ontario Geological Survey, 2010).

Above the escarpment the ground surface is at approximately 126 mASL and the bedrock is mapped as the upper member of the Gull River Formation (Carson, 1981). Below the escarpment the ground surface is at approximately 90 mASL, and the rock is mapped as Precambrian. On the escarpment itself, the rock is mapped as the middle member of the Gull River Formation, which contains buff and green siltstone, and which appears from the mapping to be approximately 20 m thick. The geology from Carson (1981) is approximately shown in plan view and section view on Figures 2 and 3, respectively, in Appendix A.

The MOECC water well database (Water Well Information System or WWIS, accessed June 2012) indicates overburden depths between 0.6 m to 1.8 m throughout the property, and limestone to at least 43 m depth on the northern side of the property and to at least 28 m depth on the western side of the property. The limestone is generally underlain directly by granite, but sometimes by sandstone being the arkosic sandstone, siltstone and shale of the Shadow Lake formation. The geology information from the WWIS is shown schematically on three cross-sections presented in Figures 4, 5, and 6 in Appendix A. The locations of the cross-section lines are shown on Figures 1 and 2 in Appendix A.

An HQ-sized rock core was collected to 36.4 m depth by Golder Associates Ltd. (2011) as part of an aggregate resource assessment for the expansion. The 100 mm diameter diamond-drilled borehole (DDH 10-01) was cased at surface, and left as an open hole. The rock was determined to be Gull River Formation micritic limestone. The borehole log is included in Appendix B.

Three boreholes were advanced in 2011 to 36 m depth by Golder Associates Ltd. (2011). These 152 mm diameter air-rotary (water well rig) boreholes (BH 11-02, BH 11-03, and BH 11-04) were cased at surface and left as an open hole. At the same time, two additional boreholes were advanced on the east side of the existing quarry (BH11-05 and BH11-06). No borehole logs were available for any of these.

#### 3.1.4 Hydrogeology

According to the WWIS, there are approximately 300 water wells in the study area. These vary in depth from approximately 5 m to 123 m, with an average depth of approximately 29 m. The static water levels vary from being at ground surface to approximately 42 m depth, with an average depth of approximately 11 m. Ninety percent of the wells were completed in limestone, seven percent in granite, and two percent in sandstone (Shadow Lake Formation). The final status of approximately 88% of the wells were reported to be for water supply, 5% were reported to have been abandoned for supply reasons, 2% were reported to have been abandoned for quality reasons, and the remaining 5% were reported as observation wells, test holes, or unreported. Furthermore, the water quality of approximately 75% of the wells

were reported as fresh water, with an average depth of approximately 28 m. The water quality of approximately 10% of the wells were reported to contain salt (4%), sulphur (9.5%), and/or minerals (0.75%), with average depths of approximately 49 m, 28 m, and 75 m respectively. Based on this, a water quality trend is observed with deeper wells exhibiting higher salt and mineral content. Summary of wells identified in the WWIS is included in Appendix C.

The locations of all houses/businesses observed in satellite imagery or in the area reconnaissance within 500 m of the existing or proposed extraction area are shown on Figure 1 in Appendix A, along with their municipal addresses on Burbrook, Cordukes, or Unity Roads. The closest houses to the expansion area are 2467 Unity Road, where the proposed extraction area is set back further from Unity Road, and 2528 Unity Road, across Unity Road and slightly west of the quarry boundary. An attempt was made to correlate these locations with the WWIS water wells. No WWIS water well could be attributed to the house at 2528 Unity Road. A 32 m deep well in limestone and an abandoned 28 m well in limestone could both be attributed to the house at 2467 Unity Road. No water quality or supply information was available for either well in the database.

One-to-one correlation between specific houses/businesses and specific wells was not possible in a wider area basis, but clusters of houses/businesses could be correlated to clusters of wells in the WWIS.

WWIS water well #2205740 in the northwest corner of the proposed extraction area (see Appendix C and Figure 5 in Appendix A), can be correlated to the houses on Unity Road west of the proposed extraction area. This well was drilled to approximately 44 m depth, through less than a metre of clay overburden and then through limestone. Salty water was found at approximately 23 m depth, and the static level was less than 2 m below ground. Other WWIS wells in this area include #2214366 and #2218761, further to the northwest, completed less than 7 mBGS in limestone. A notable fact from the inspection of the WWIS is that of the six wells in the WWIS at locations within 300 m of the quarry expansion lands frontage on Unity Road, five have status "Abandoned" (for either quality or supply), and one has status "Water Supply" but is known to have been abandoned. This indicates that the limestone in this particularly area (on the north side of the quarry) is of particularly low permeability or is particularly devoid of water bearing fractures.

WWIS water well #2215473 on the east side of Cordukes Road, midway between Unity Road and Bur Brook Road (see Appendix C and Figure 4 in Appendix A), is representative of wells in this area. This well was drilled to approximately 40 m depth through less than a metre of clay soils, underlain by shale and limestone. Fresh water was found at 11 m and 27 m depth, and the static water level was at 9 m depth.

It is noted some of the wells in this area were drilled to over 100 m depth, completed in the underlying granite.

The hydrogeology of the existing quarry site is described in both the Gorrell Resource Investigations (GRI, 1995) and the MH (2012) reports. In 1994, four 6 inch diameter wells were drilled to between 86 to 98 mASL, and water levels were measured and rising head tests were performed in open holes and installed piezometers. The well logs from the GRI Hydrogeological Investigation (1995) are provided in Appendix B. Hydraulic conductivities estimated from recovery data (i.e., rising head test, Hvorslev method of analysis) for the existing quarry open holes and piezometers are summarized in Table 1.

| ID               | Hydraulic Conductivity (m/sec) |
|------------------|--------------------------------|
| MW-1 (Open Hole) | 2% recovery in one month       |
| MW-2-1           | 1 x 10 <sup>-8</sup>           |
| MW-2-2           | 3% recovery in one hour        |
| MW-2-3           | 1% recovery in one hour        |
| MW-3-1           | 1 x 10 <sup>-5</sup>           |
| MW-3-2           | 4 x 10 <sup>-6</sup>           |
| MW-4-1           | 7 x 10⁻ <sup>6</sup>           |
| MW-4-2           | 1 x 10 <sup>-5</sup>           |

#### Table 1: Hydraulic Conductivities - Existing Quarry

These data suggest a very low rock permeability in and around the existing north extraction area, and a higher rock permeability in and around the south extraction area. This conceptual model is supported by the groundwater levels measured between 2007 and 2013 in the existing quarry monitoring wells, and in the residential wells approximately 150 m (2309 Unity Road) and 250 m (2296 Unity Road) east of the existing quarry. The time-series of these data (Figure 7) indicates that only piezometers in MW-3, which is in the centre of the south extraction area, have been affected by rock extraction and dewatering.

All in all, the existing hydrogeological data, including the water well records and the information from the existing on-site monitoring wells suggest that groundwater availability in the rock mass is highly dependent on the presence of fracture flow, and local recharge. The area surrounding the northern extraction area of the existing quarry and expansion area appears to be of particularly low permeability, with very few water bearing fractures.

#### 3.1.5 Existing Permit to Take Water

The existing Elginburg Quarry is dewatered under PTTW 2172-92HR7T, which allows takings as shown in Table 2.

| Dewatering                | Allowable Taking (Million Litres Per Day, MLD) |                            |  |
|---------------------------|------------------------------------------------|----------------------------|--|
| Situation                 | North Quarry                                   | South Quarry               |  |
| Dewatering in Spring etc. | 6.5 MLD, 118 days per<br>year                  | 13.1 MLD, 58 days per year |  |
| Maintenance<br>Dewatering | 3.9 MLD, 247 days per<br>year                  | 6.2 MLD, 307 days per year |  |

#### Table 2: Takings Allowable Under the Existing PTTW

Relevant conditions of the PTTW include establishment of a monitoring program as follows:

- 1. Monitor the water levels in monitoring wells MW-1, MW-2, MW-3 and MW-4 as well as the residential wells designated as #2309 and #2296 quarterly.
- 2. The data collected under this monitoring program shall be analyzed and interpreted and summarized in an annual report. The report should provide recommendations on the need for changes to monitoring locations and frequency, pumping patterns and/or the need for mitigation.

The support document for the PTTW application included the following groundwater inflow estimates: 1,362 m<sup>3</sup>/day for the north quarry at full extraction, and 2,622 m<sup>3</sup>/day for the south quarry at full extraction. These estimates were made using a simple analytical model, and the geometric mean of measured rock permeabilities. It is noted however, that the rock permeabilities available for the north quarry were too low to be used for this purpose, and the rock permeability was assumed to be one order of magnitude lower than the rock permeability for the south quarry.

The total allowable taking of 13 million litres per day allows for two 6 inch pumps to run continuously, which may be required in the spring to remove snow melt. The value also corresponds to the amount of water which will enter the quarry should 2.5 cm of rainfall occur over a 24 hour period.

## 3.2 Site Inspection

Site inspections were carried out on November 25, 2013, January 10, 2013, and May 29, 2014 (for surface water). The temperature was below freezing on both 2013 days, and frozen discharged groundwater could be observed at various point locations on the quarry walls. An apparently water-bearing fracture was observed at approximately 128 mASL in both the north and south extraction areas. Photographs from the site inspection are included in Appendix D.

# 3.3 Subsurface Investigation

### 3.3.1 Diamond Drilling, Core Recovery, Core Logging

Diamond drilling was completed on December 9<sup>th</sup> and 10<sup>th</sup>, 2013 by George Downing Estate Drilling Ltd., under the supervision of MH staff. A single core hole named BH 13-01 was drilled to 35.05 m depth in the northwest corner of the property. The coring bit was HQ sized, leaving a 96 mm diameter borehole, and returning a 63 mm diameter core.

A total of twenty-four (24) core runs of between 0.5 m and 1.5 m were collected into 15 core boxes. Micritic limestone of the Gull River Formation was encountered that was generally medium-grained, moderately bedded, and moderately hard. Above 12.5 m depth, the limestone was occasionally interbedded with lime mudstone. Between 12.5 and 19 m depth the lime mudstone beds increased in frequency and thickness (up to 10 cm). Grey-green argillaceous lime mudstone was noted below 25 m depth.

Horizontal clay/shale filled fractures were noted in every core run, while vertical fractures were noted only twice: near the surface, and at approximately 21 m depth. Borehole logs are provided in Appendix B.

### 3.3.2 Rock Drilling and Rock Chip Logging

Rock drilling was carried out at BH 12-01 to BH 12-03 by Cruickshank Construction Ltd. using a Furukawa HCR1200 track mounted Rock Drill on December 14th, 2012 under the supervision of MH staff.

All three boreholes were terminated at approximately 40.2 m depth. Light to dark grey limestone was encountered in all three boreholes, underlain at various depths by light to greenish grey limestone. Borehole logs are provided in Appendix B.

### 3.3.3 Downhole Geophysical Logging

Downhole geophysics was carried out by Notra Inc. of Ottawa in DDH 10-01, BH 11-02, BH 11-03, BH 11-04, BH 12-01, BH 12-02, BH 12-03, and BH 13-01. The geophysical logging on all but BH 13-01 and on BH 13-01 was carried out on December 18th, 2012 and December 10, 2013, respectively. Natural gamma rays, temperature and resistivity were measured in the 2012 investigation, while only natural gamma rays were measured in the 2013 investigation.

Correlation of the natural gamma between all eight boreholes was conducted by NOTRA Inc., and the elevation of a marker location was determined in each borehole. The best fit plane through the marker locations, determined using a solver, dips 3.6 m per kilometre to the north, and 2.2 m per kilometre to the east. This provides a useful sense of the strike and dip of the strata, which is shown in cross-section in Figures 3, 4, 5, and 6. The results of the geophysical testing are provided in Appendix E.

## 3.4 Water Investigation

### 3.4.1 Groundwater Level and Hydraulic Testing of Open Holes

Ground water levels were measured and rising head tests were carried out in BH 13-01 and in the existing open holes between December 11 and 18, 2013. The results of the water level monitoring are presented in Table F2 in Appendix F, while the results of the rising head tests are presented in Appendix G and summarized in Table 3 below.

| BH        | Hydraulic Conductivity (m/sec) |
|-----------|--------------------------------|
| DDH 10-01 | 1 x 10 <sup>-8</sup>           |
| BH 11-02  | 3 x 10⁻ <sup>8</sup>           |
| BH 11-03  | 4 x 10 <sup>-11</sup>          |
| BH 11-04  | 3 x 10 <sup>-6</sup>           |
| BH 12-01  | 1 x 10 <sup>-7</sup>           |
| BH 12-02  | 2 x 10 <sup>-5</sup>           |
| BH 12-03  | 4 x 10 <sup>-7</sup>           |
| BH 13-01  | 6 x 10 <sup>-8</sup>           |

#### Table 3: Hydraulic Conductivities Measured in Open Holes

These hydraulic conductivity results indicate that the highest hydraulic conductivities were measured in the open holes closest to the escarpment (BH 12-02 and BH 11-04), and that the hydraulic conductivity can be said to decrease with distance northwards away from the escarpment. These results are consistent with the findings in the GRI (1995) report.

Packer testing was carried out in BH 13-01 in 2.74 m (9 ft) intervals with no overlap from 33.64 m depth to 3.46 m depth and again from 4.26 m depth to 1.52 m depth. Gauge pressures of approximately 50 psi were measured in all tests, while injection flow rates in all tests but one were too small to be measurable (i.e., "no-flow"). All tests were performed with approximately five minutes duration.

In the test interval from 30.9 m to 28.16 m, a flow rate of 2.9 litres per minute was measured, which translates to a hydraulic conductivity of  $4x10^{-8}$  m/sec. This is consistent with the hydraulic conductivity measured in the open hole. The results of the packer testing are presented on the borehole log for BH 13-01 in Appendix B.

## 3.4.2 Piezometer Installation

Based on the result of the open-hole hydraulic testing, it was decided to install three piezometers in each of BH 11-02, BH 12-02, BH 12-03, and BH

13-01. Piezometers were constructed as designed except at BH 12-02, where the uppermost piezometer could not be installed due to a plug of bentonite pellets in the upper part of the hole. Details of the piezometer installations are included in Appendix B and summarized in Table F1 in Appendix F.

### 3.4.3 Groundwater Level and Hydraulic Testing of Piezometers

Groundwater levels were measured and rising head tests were carried out on all but one of the newly installed piezometers between December 18 and 19, 2013. Piezometer BH 11-02C had become flooded to the top of its casing during installation (a sign of impermeable rock), and had frozen solid before the water level could be measured or the rising head test performed. The results of the water level monitoring are presented in Table F2 in Appendix F, while the results of the rising head tests are presented in Appendix G and summarized in Table 4 below.

| ВН        | Hydraulic Conductivity<br>(m/sec) |
|-----------|-----------------------------------|
| BH 11-02A | 3 x 10 <sup>-9</sup>              |
| BH 11-02B | 1 x 10 <sup>-7</sup>              |
| BH 11-02C | n/a (dry)                         |
| BH 12-02A | 8 x 10 <sup>-7</sup>              |
| BH 12-02B | 4 x 10 <sup>-10</sup>             |
| BH 12-02C | n/a (dry)                         |
| BH 12-03A | 6 x 10 <sup>-12</sup>             |
| BH 12-03B | 8 x 10 <sup>-10</sup>             |
| BH 13-01A | 2 x 10 <sup>-7</sup>              |
| BH 13-01B | 1 x 10 <sup>-9</sup>              |

#### Table 4: Hydraulic Conductivities Measured in Piezometers

It is noted that the hydraulic conductivities of the piezometers installed in BH 12-2 and BH 12-3 are lower than those measured in the respective open holes. The difference may be attributed to sealing of permeable zones with bentonite during installation of the piezometers, or to leakage of surface water through the bottom of the ungrouted casing during the open-hole recovery test (unlikely for BH 12-2 since the static level is several metres below the casing), or to some sort of wellbore storage mechanism unaccounted for in the Hvorslev analysis method. No specific water bearing zone was noted in either borehole during drilling, and the hydraulic conductivity measured in the open holes (especially BH 12-2) seems anomalously high relative to all other evidence.

### 3.4.4 Monthly Groundwater Monitoring / Static Water Levels

In order to determine static water levels in the newly installed piezometers, and to observe seasonal variations in groundwater level, monthly groundwater level monitoring was carried out from late 2013 onwards (with a

break during the coldest winter months). The results of the water level monitoring are summarized in Table F2 in Appendix F and shown as a timeseries on Figure 8 in Appendix A. Seasonality and other temporal trends are difficult to discern in the data, and the levels tend to fluctuate by less than one metre. Based on inspection, the water levels from December 4, 2015 were chosen for further presentation on borehole logs in Appendix B, and on plan view drawings and cross-sections in Appendix A.

The data indicate high groundwater levels (i.e., close to ground surface) and low vertical hydraulic gradients in the wells furthest north of the escarpment (BH 11-02 and BH 13-01). Along with the hydraulic conductivity results, this data tends to support the supposition that the bedrock rock mass contains no significant hydrostratigraphy, is of low permeability, and is not under-drained by the escarpment.

The data indicate reasonably high groundwater levels (i.e., close to ground surface) in the upper piezometers in the wells closest to the escarpment (BH 12-02 and BH 12-03), and much lower groundwater elevations in the lower piezometers. These strong gradients, and the hydraulic conductivity results imply that there is a permeable zone at depth which is drained by the escarpment.

#### 3.4.5 Groundwater Sampling Results

Based on the results of the hydraulic testing, the following open holes and piezometers were selected for analytical testing of groundwater: BH 11-02B, BH 11-04, BH 12-02A, BH 12-03A, and BH 13-01A. The sampling was carried out on December 19, 2013. Table H1 in Appendix H presents the results from the groundwater chemistry analysis, and highlights exceedances of ODWQS or PWQO criteria limits.

The water quality results indicate quality typical of water from a limestone aquifer, with several general or inorganic parameters (hardness, chloride, sulphate, dissolved organic carbon, turbidity, sodium, and iron) exceeding operational or aesthetic ODWQS, and several parameters (typically metals) exceeding PWQO. Dissolved metals in mineralized groundwater are natural, and the metals concentrations (aluminum, boron, cadmium, cobalt, copper, iron and zinc) above PWQO are expected. In a natural setting, these concentrations would be diluted below PWQO upon mixing of the discharging groundwater with surface water. The groundwater quality results indicate that metals concentrations should be monitored in the quarry discharge.

#### 3.4.6 Domestic Well Survey and Sampling Results

The domestic well survey was carried out in two rounds. Round One was intended to assess only wells within 500 m of the westernmost part of the expansion area, and was carried out from February 12 to March 24, 2015. Round Two was intended to assess all wells within 500 m of the existing quarry and proposed expansion, and was carried out from May 5 to May 7, 2015. The results of both rounds of well survey are reported in this section.

Thirty-seven property parcels with buildings were identified within 500 m of the existing quarry and proposed expansion. The locations are shown on Figure 1 in Appendix A and are listed here:

- 2440, 2506, 2514, 2630, 2643, and 2659 Burbrook Road;
- 1985, 1986 ,1989 ,1995,1998, 2003-2005, 2034, 2039, 2075, 2085, 2130, 2147, 2150, 2166, 2217, 2242, 2243, and 2250 Cordukes Road;
- 2257, 2260, 2265, 2271, 2295, 2296, 2309, 2467, 2528, 2559, 2604, 2610, and 2611 Unity Road

It is noted that 2130 Cordukes Road was surveyed twice on request of the resident. In addition to the above locations, 2196 Unity Road was also surveyed on request of the resident. The results of the survey including the distances of the identified wells from the quarry are included in Appendix I.

All thirty-eight locations were visited over the two rounds of well survey carried out. The following addresses declined to participate in the survey or were unavailable at the time of the survey:

- 2659 Burbrook Road;
- 1995 and 2034 Cordukes Road;
- 2295, 2528 and 2610 Unity Road

Based on the survey of the remaining properties, the following nine properties were reported to not have a well in use on the property:

- 1985 and 2039 Cordukes Road;
- 2257, 2260, 2265, 2271, 2467, 2559, and 2611 Unity Road

Of the remaining twenty-three locations with wells, a total of twenty-nine wells were identified (six locations had two wells on their property). All wells but one were bedrock wells. Four of the twenty-nine wells were reported to be dug wells and the remaining were all drilled. The depth and static water level in each well were either measured with owner's permission or reported by the owner. The well depths for dug wells ranged from approximately 3 m to 6 m below top of casing (mBTOC) with the static water level ranging between approximately less than 1 mBTOC and up to 2 mBTOC. The well depths for drilled wells ranged from approximately 12 mBTOC to 74 mBTOC with the static water levels ranging between approximately 4 mBTOC and 27 mBTOC.

The water quality in all twenty nine wells were reported to have high hardness with 2 wells reported to be salty (with depths of 36.8 mBTOC and 46.5 mBTOC) and 4 wells reported to have sulphur odour from time to time (with depths between 3.4 and 30.5 mBTOC). Two residents, both on Unity Road, reported slow recharge observed in their wells with one of the wells no longer being used. None of the remaining residents had any issue with quantity of water in their wells.

A total of twenty-five groundwater samples were collected and submitted to lab for analysis. This included any duplicate sampling on resident's request. Some wells could not be sampled as they were no longer in use. The results were compared to the Ontario Drinking Water Quality Standards (ODWQS). All wells tested had hardness (as CaCO<sub>3</sub>) outside the operational guideline range in the ODWQS. Bacteria (E.coli and/or total coliforms) were detected in fourteen wells and the owners were notified immediately by phone. Four wells were observed to have sodium and chloride concentrations exceeding the ODWQS aesthetic objectives, with sulphate concentrations also exceeding the aesthetic objectives in one of the four wells. Sodium, turbidity, and field temperature readings were also observed to exceed the aesthetic objective at three separate wells. No metal exceedances were observed in any well tested. The lab results are included in Appendix H Table H2a for metals and Table H2b for general chemistry.

The results of the domestic well survey suggest that the area bedrock does not produce abundant groundwater. It is inferred that the availability of groundwater is highly dependent on wells intersecting water-bearing fractures. Generally the best water supplies are found when drillers are fortunate enough to intersect a significant water bearing fracture at shallow depth, leading to a fresh, locally recharged water source.

#### 3.4.7 Surface Water Inspection and Sampling Results

The surface water inspection was carried out on May 29, 2014. Drainage of the existing north quarry was observed to be via a pump with its inlet set in a sump established in southeast corner. A sample of the discharge from this sump was collected, with sample ID "E-SW1". The discharge line runs southward through a culvert which traverses beneath the pipeline corridor and discharges into a drainage ditch established by Cruickshank.

Drainage of the existing south quarry has historically been via pumping and/or gravity drainage through a channel cut in the rock in the south east corner. On the day of the inspection there was no flow through this channel, although a sample was collected from the standing water, with sample ID, "E-SW-3". There have been recent changes in the quarry which have changed the use and discharge of surface water in the south part of the quarry.

The first recent change to quarry operations was that the wash plant was moved from the north quarry to the south quarry. Two sedimentation ponds have been established for the wash plant with a pump for removal of excess water during storm events. The discharge from the pump is directed towards an overflow sedimentation pond which flows by gravity into the aforementioned drainage ditch on the east side of the quarry. On the day of the inspection, there was no water being pumped from the wash plant sedimentation ponds and no water flowing out of the overflow sedimentation pond, but a sample of ponded water from the drainage channel was collected, with sample ID "E-SW2". The second recent change to quarry operations was extraction of rock towards the southwest, creating a new low point below the level of the wash plant in the southwest corner of the quarry. This low point is below the level required for gravity drainage. There was no pump in this area on the day of the site inspection, and there was standing water at the low point of the quarry floor.

The drainage ditch which receives water from both the north and south quarries crosses the south east corner of the south quarry and continues southward over the escarpment. It crosses below the K&P trail (a former rail line) through a culvert (Culvert 1 in Figure 1 in Appendix A), before being joined by the tributary of Collins Creek which drains the Elginburg village area. On the day of the inspection there was no flow in the culvert.

The only defined drainage feature of the expansion area is a very shallow ditch which appears to drain the most northerly part of the expansion area, and to convey water from the municipal ditch on the south side of Unity Road. The drainage ditch appears to flow to the south, but becomes undefined approximately 160 m south of Unity Road. The land in this area is very flat, but the regional topographic gradient is towards the southwest.

The surface water quality results from the three collected samples are included in Table H3a (metals) and H3b (PHC and general chemistry) in Appendix H. The results indicate much lower concentration of general and inorganic parameters than in the groundwater. Only aluminum (E-SW1 and E-SW3), boron (E-SW1) and zinc (E-SW1) were present in concentrations marginally above the PWQO.

## 3.5 Calculations

### 3.5.1 Results of the Conceptual Modelling

The bedrock potentially affected by the quarry operation, through extraction or through dewatering, is the upper and middle units of the Gull River Formation. The results of the study support the definition of a north- and eastdipping layer-cake hydrostratigraphic model for the bedrock.

Based on the evidence, an aquitard exists from ground surface to approximately 7 m below the bottom of the grey-green argillaceous lime mudstone in the middle member of the Gull River Formation, as shown in the cross sections of Figures 3, 4 and 5 in Appendix A. The bulk hydraulic conductivity of this aquitard is presented as  $6x10^{-9}$  m/s, which is the geometric mean of those measured in open holes DDH 10-01, BH 11-03, and BH 12-01, and in piezometers BH 11-02A and B, BH 12-02B, BH12-03B, and BH13-01A and B).

The December, 2015 groundwater elevations in the aquitard are shown in cross section on Figures 4, 5, and 6 and the water table is shown in plan view on Figure 9 in Appendix A. Strong vertical hydraulic gradients of 0.69 and 1.3 are observed within the aquitard between the deep (A) and intermediate (B)

piezometers at BH 12-02 and BH12-03, respectively. Strong horizontal hydraulic gradients of 0.1 and 0.2 are observed within the aquitard between the shallow interval and the quarry floor at MW-2 and DDH 10-01, respectively.

Groundwater flow within the aquitard is most likely to be downwards towards any underlying aquifer (i.e., over a distance of less than 100 m) rather than horizontally towards the escarpment or quarry. Very localized quarry-related influence has been inferred for the drawing of the water table in Figure 9, and quarry-related drawdown has been noted at MW-3 which is less than 30 m from the extraction area. Other than that, the minimal quarry-related influences observed in the groundwater level monitoring data for the existing quarry (see Figures 7 and 8 in Appendix A) supports this supposition.

Below the aquitard, a confined aquifer is identified in the southern part of the expansion lands which appears to extend westward to an area of reliable water supply on Cordukes Road (2130, 2150, and 2166 Cordukes Road). The depth of the confined aquifer within the geological sequence (see cross sections) is based mainly on the observation of higher permeability *and* lower groundwater elevations in the deep (A) interval at BH 12-02 and in the open hole at BH 11-04, and lower groundwater elevation (in the absence of higher permeability) in the deep (A) interval at BH 12-03. The fact that open holes BH 12-01, DDH 10-01 and piezometer BH 12-03A penetrate this hydrostratigraphic zone, but show no to only a slightly enhanced permeability indicates the fracture-dependency of this aquifer and/or the lack of escarpment-related weathering.

The December, 2015 groundwater elevations in the confined aquifer are shown in plan view on Figure 10 in Appendix A. A horizontal hydraulic gradient of 0.04 is observed between the on-site monitoring wells and the residences on the east side of Cordukes Road. Groundwater flow within the confined aquifer is towards to escarpment.

The confined aquifer has not been proven anywhere but in the area of potentiometric lines shown in Figure 10 of Appendix A. North of the expansion lands, the confined aquifer has not been proven due to its depth, although some supply of salty water is known to exist at depth in this area.

#### 3.5.2 Estimated Drawdown During Quarry Operation

Based on the conceptual model, it is recommended that the part of the quarry expansion in Lot 12 be contained vertically within the confines of the aquitard, and that it not extent into the confined aquifer. To that end, the floor of the quarry is assumed to be no lower than 115 mASL in Lot 12 in all calculations.

A measure of the radius of influence of the quarry when fully contained within the aquitard was determined as 7 m using the method of Sichart and Kyrieleis (Equation 2 in Section 2.5), based on a maximum drawdown,  $s_{qry}$ , of 30 m at the quarry wall and using the geometric mean of the aquitard (6x10<sup>-9</sup> m/s) as *K*. This is an underestimation due to the influence of discrete water bearing

fractures being intersected by the quarry, and because of other factors not considered in the method such as the large size of the excavation

Another method to estimate the radius of influence is to assume that future horizontal hydraulic gradients will be similar to those observed in proximity to the existing quarry. In this case each metre of drawdown at the quarry wall can be roughly translated to a 10 m radius of influence. At the Lot 11/12 boundary where 18 m of drawdown is anticipated within the aquitard, a 180 m radius of influence can be inferred.

Based on the above, a radius of influence of 300 m was assumed for the three lift part of the quarry (floor of 103 mASL), and a radius of influence of 180 m was assumed for the two lift part of the quarry (floor of 115 mASL). Using Equation 3 in Section 2.5.1 to calculate the distance to intermediate drawdown contours, the results of this assessment are presented on Figure 9.

Inspection of the cross sections in Figures 4 and 5 in Appendix A indicates that the three lift part of the quarry floor (103 mASL) would extend below the bottom of the aquitard, as estimated, south and west of BH12-01. At BH12-02, where the potentiometric surface is approximately 110 mASL, a dewatered quarry with floor elevation of 103 mASL would translate to a drawdown of approximately 7 m in the aquifer. This amount of drawdown is not considered to have a radius of influence greater than that conservatively estimated for the quarry fully contained in the aquitard for the following reasons:

- 1. The westerly edge of the three lift part of the quarry is almost 400 m east of the westerly edge of the two lift part of the quarry (that is it is almost 400 m further from the receptors);
- The aquifer does not appear to have a high bulk hydraulic conductivity (e.g., BH12-03A has very low permeability, and the only high permeabilities, being BH12-02A, and BH11-04 appear escarpmentrelated);
- 3. The "bottom of aquitard", as shown in the cross sections, and being 7 m below the bottom of the grey-green argillaceous limestone, is an upper bound (e.g., the high permeability in BH12-02A was measured below 101 m ASL).

#### 3.5.3 Estimated Inflow During Quarry Operation

The rate of groundwater inflow to the existing south quarry was very approximately estimated to be less than 1 m<sup>3</sup> per day based on visual observations of ice build-up between November 25, 2013 and January 10, 2014, as described in Section 2.5.2. The analytical method described in Section 2.5.2 could not be used to calculate a comparable inflow rate because the inflowing groundwater was judged to be locally and very recently recharged groundwater from the unsaturated zone, whereas the model is applicable to steady state flow below the water table. For comparison

however, a groundwater inflow rate for the existing north quarry was calculated using the analytical method described in Section 2.5.2 as  $0.6 \text{ m}^3$  per day (this value was calculated using the aquitard geometric mean hydraulic conductivity of  $6 \times 10^{-9} \text{ m/s}$ ).

A groundwater inflow rate for the fully expanded quarry at full extraction was calculated using the analytical method described in Section 2.5.2, using the parameters shown in Table 5. To provide an estimate for the entire quarry the hydraulic conductivity was calculated as the geometric mean of the hydraulic conductivities identified in each open hole and all piezometers (presented in Table 1, Table 3 and Table 4). The highest observed head and a 250 m predicted radius of influence were used to obtain a groundwater inflow rate of 260 m<sup>3</sup>/day. Approximately half of this flow would enter the north quarry and half the south, but an amount must be included to account for seasonal inflow from the unsaturated zone (as has been seen in the quarry, and which is shown in photographs in Appendix D).

| Parameter          | Value                                  |  |
|--------------------|----------------------------------------|--|
| K                  | 6x10 <sup>-8</sup> m/sec               |  |
| Aquifer Thickness  | 100 m                                  |  |
| Т                  | 6x10 <sup>-6</sup> m <sup>2</sup> /sec |  |
| h <sub>inner</sub> | 103 m                                  |  |
| h <sub>outer</sub> | 133 m                                  |  |
| ſ <sub>inner</sub> | 600 m                                  |  |
| r <sub>outer</sub> | 850 m                                  |  |
| Inflow Rate        | 260 m <sup>3</sup> /day                |  |

#### Table 5: Groundwater Inflow Calculation

It is noted that the calculated groundwater inflow rate is lower than the rates previously calculated for the PTTW application (see Section 3.1.5), which is a result of the lower bedrock permeabilities included in the updated geometric mean hydraulic conductivity value. This serves to highlight the uncertainty surrounding the actual inflow rates. All other evidence suggests that the rock in the area is of very low hydraulic conductivity and the groundwater inflow rates to the quarry will be low relative to other quarries of similar size. For lake filling calculations, 260 m<sup>3</sup>/day flowing into each of the north and south quarry is assumed.

#### 3.5.4 Estimated Lake Levels Following Rehabilitation

The level in the lake north of the pipeline was estimated to be 125 mASL. This is the approximate elevation of the culvert which presently traverses beneath the pipeline on the east side of the quarry, and is approximately 5 m below the low point of the quarry rim. Even if the culvert becomes blocked, it is difficult to imagine the lake level rising above this level due to the presence of fractures and weathered rock in the upper part of the rock pillar holding up the pipeline which will separate the north and south quarries. Water from the

north lake will flow through the culvert and/or the shallow weathered rock and into the south lake.

The level in the lake south of the pipeline was estimated to be 110 mASL. This is approximately equal to the present day water table elevation at the south end of the quarry. According to this estimate, the water in the south lake will flow as groundwater through the pillar of bedrock which will remain between the quarry and the escarpment, and will discharge to the tributary of Collins Creek at the toe of the slope.

#### 3.5.5 Water Balance and Lake Filling Time

Lake filling times for both the north and south quarry were calculated using the method described in Section 2.5.4 and the parameters and outputs shown in Table 6. The filling time and groundwater proportion for the north quarry was estimated at 28 years and 41%, respectively and the filling time and groundwater proportion for the south quarry was estimated at 13 years and 31%, respectively. In these calculations, the lake evaporation rate was assumed to be lower than typical values seen in the Atlas of Canada as the lake will be shaded much more than a typical lake.

| Parameter or Output                  | North Quarry |                      | South Quarry |                      |
|--------------------------------------|--------------|----------------------|--------------|----------------------|
| Precipitation Rate                   | 960          | mm/year              | 960          | mm/year              |
| Catchment Area                       | 52           | hectares             | 82           | hectares             |
| Precipitation Input                  | 499,200      | m <sup>3</sup> /year | 787,200      | m <sup>3</sup> /year |
| Evaporation Rate                     | 650          | mm/year              | 650          | mm/year              |
| Evaporation Area                     | 41           | hectares             | 74           | hectares             |
| Evaporation Output                   | 266,500      | m <sup>3</sup> /year | 481,000      | m <sup>3</sup> /year |
| Groundwater Inflow Rate              | 260          | m <sup>3</sup> /day  | 260          | m <sup>3</sup> /day  |
| Filling Rate                         | 327,665      | m <sup>3</sup> /year | 401,165      | m <sup>3</sup> /year |
| Lake Depth                           | 22           | m                    | 7            | m                    |
| Lake Volume                          | 9,020,000    | m <sup>3</sup>       | 5,180,000    | m <sup>3</sup>       |
| Filling Time                         | 28           | years                | 13           | years                |
| Proportion of H <sub>2</sub> 0 as GW | 29           | %                    | 24           | %                    |

#### **Table 6: Lake Filling Calculations**

As a sensitivity analysis due to the uncertainty associated with inflow rates, a value of 2,000 m<sup>3</sup>/day was substituted for the 260 m<sup>3</sup>/day specified in Table 6. This reduced the north and south lake filling times to 9 years and 5 years, respectively, and increased the groundwater proportions to 76% and 70%, respectively.

## 3.6 Stormwater Management Considerations

Based on discussions with Cruickshank, the following stormwater management options are proposed:

- A berm will be constructed in the 30 m offset south of Unity Road where the northerly part of the expansion area abuts Unity Road. This berm will prevent the southwards flow of water from the municipally-owned ditch (there is presently a very shallow southwards-running ditch on the expansion lands, see Section 3.4.7), and will force the water to flow either west or east. Ideally, the berm and ditching would be adjusted to encourage the water to flow westwards, which will allow it to discharge to a southwards-running ditch on the south side of Unity Road approximately 260 m west of the western property line of the expansion area. This ditch connects to the tributary of Collins Creek, effectively routing the drainage the same point that it currently arrives at, via a different route.
- 2) The berm around the south end of 2467 Unity Road will prevent southerly drainage of water from this property. Gravity drainage of this water can only occur into the quarry expansion lands, through a culvert or break in the berm designed for such a purpose.
- 3) Stormwater from the northern quarry will continue to be directed to a sump in the southeast corner of the existing quarry, where it will drain via gravity or by pumping through the culvert below the pipeline and into the drainage ditch. Depending on the levels of the quarry floor, an intermediate pumping step may be required. Expansion of the quarry footprint is not anticipated to change the quality of the water being discharged to the ditch. The taking from the northern quarry allowable under the existing PTTW will likely be sufficient until expiry of the PTTW in 2022.
- 4) Stormwater from the southern quarry will continue to be discharged via gravity drainage or pumping. The taking from the southern quarry allowable under the existing PTTW will likely be sufficient until expiry of the PTTW in 2022.
- 5) Cruickshank has submitted an application for Environmental Compliance Approval (ECA) for a large self-draining sump in the southwest corner of the existing quarry. The design includes an excavation in the rock down to approximately 110 mASL with sufficient volume to capture storm flows of a specified size/return period. The sump will be self-draining over extended periods as the water table in this area will be approximately coincident with the elevation of the sump floor. The sump will provide a location for sedimentation, and the discharge from the sump will travel briefly southward through the rock before discharging to the surface water feature at the toe of the escarpment. The monitoring system proposed for the sump includes collection and analysis of surface water samples during periods of direct discharge, and collection and analysis of groundwater samples from down-gradient of the sump.

# 4. IMPACT ASSESSMENT

# 4.1 Impact on Wells and Aquifers

Impacts on wells are assessed on an individual basis or group basis in Table 7. Refer to Figure 1 in Appendix A for locations. Note that there is no well at 2467 Unity Road, and the house at 2559 Unity Road is abandoned. A cistern visible in the front yard indicates that there is no well at this property.

| Well                                | Distance from<br>Proposed Limits<br>of Extraction | Depth   | Impact                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------|---------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2528 Unity More than 70 m U<br>Road |                                                   | Unknown | This is the closest well to the quarry. Little is known<br>about the well as the owner chose not to participate in<br>the well survey. There is no evidence of a well in the<br>front yard, however, which suggests that the well is at<br>least 70 m and, unless it is inside the basement, likely<br>more than 100 m from the proposed northerly edge of<br>extraction. |
|                                     |                                                   |         | The water supply from the well, if it is fresh, is likely<br>derived from a local source of recharge and is taken from<br>a shallow fracture in the rock. If the water supply is salty,<br>then it likely is derived from a deeper water bearing zone.                                                                                                                    |
|                                     |                                                   |         | The low permeability of the rock in this area suggests<br>that, in the absence of a water-bearing fracture,<br>drawdown from the quarry will not propagate to the well.<br>If a very shallow water bearing fracture connects the well<br>and the quarry, then a well impact is theoretically<br>possible.                                                                 |
|                                     |                                                   |         | The recommended seepage monitoring during quarrying<br>in the final 250 m towards Unity Road in the western half<br>of Lot 13 is designed to provide empirical data<br>concerning any change in groundwater elevation over<br>time.                                                                                                                                       |
|                                     |                                                   |         | To address the possibility of quarry-related drawdown affecting this well, no extraction of the third lift (i.e., below 115 mASL) should occur within 250 m of this well.                                                                                                                                                                                                 |
|                                     |                                                   |         | The grouting-based contingency plan is designed to mitigate the unlikely event of a well impact.                                                                                                                                                                                                                                                                          |
| 2604 Unity<br>Road                  | 440 m                                             | 5.5 m   | This is a shallow dug well for outdoor use only. Given the rock permeability and the distance from the extraction area, the risk of impact is negligible.                                                                                                                                                                                                                 |

#### Table 7: Impacts on Local Wells

| Well                                                                      | Distance from<br>Proposed Limits<br>of Extraction | Depth   | Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------|---------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2610 and<br>2611 Unity<br>Road                                            | 430 m                                             | Unknown | One of these two properties is on a cistern, while nothing<br>is known of the depth of the well at the other. Given the<br>rock permeability and the distance from the extraction<br>area, the risk of impact is negligible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2075,<br>2085,<br>2147,<br>2243,<br>2242, and<br>2250<br>Cordukes<br>Road | 465-500 m                                         | 21-44 m | These wells all show similar characteristics, with no<br>major issues to the homeowner. Given the rock<br>permeability and the distance from the extraction area,<br>the risk of impact is negligible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2130,<br>2150, and<br>2166<br>Cordukes<br>Road                            | 300-400 m                                         | 27 m    | These wells all show similar characteristics, with no<br>major issues to the homeowner. These are the closest<br>wells to the westernmost limit of the quarry, and appear<br>to take water from the same confined aquifer identified<br>below the southern part of the expansion lands. To<br>address the possibility of quarry-related drawdown<br>affecting these wells, no extraction of the third lift (i.e.,<br>below 115 mASL) should occur west of the Lot 12/Lot 13<br>lot line. Given that they are presently more than 1 km<br>from the closest area of existing extraction, there will<br>likely be several decades of water level monitoring data<br>available to discern any problematic water level lowering<br>prior to the quarry expansion's approach to these wells.<br>The recommended seepage monitoring during quarrying<br>in Lot 12 (it alone is approximately 400 m in width) is<br>designed to provide empirical data concerning any<br>change in groundwater elevation over time. |
| 2034<br>Cordukes<br>Road                                                  | ~150 - 350 m                                      | Unknown | Little is known about the well as the owner chose not to participate in the well survey. Impacts to this well are assessed as being similar to those at 2130, 2150, and 2166 Cordukes Road.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1986 and<br>1998<br>Cordukes<br>Road                                      | 360 m                                             | 19-37 m | These wells all show similar characteristics, with no<br>major issues to the homeowner. These wells are<br>intrinsically less susceptible to impacts than wells further<br>to the north due to the lower ground surface. Given this<br>fact, the rock permeability and the distance from the<br>extraction area, the risk of impact is negligible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1985,<br>1989,<br>1995,<br>2003-2005,<br>2039<br>Cordukes<br>Road         | 450-500 m                                         |         | Some of these properties had dry wells or no well, while<br>the rest had typical bedrock wells, with no issues<br>reported. Given the rock permeability and the distance<br>from the extraction area, the risk of impact is negligible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Well                                                               | Distance from<br>Proposed Limits<br>of Extraction | Depth | Impact                                                                                                                                                                                              |
|--------------------------------------------------------------------|---------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2440,<br>2506,<br>2514,<br>2630,<br>2643, 2659<br>Burbrook<br>Road | 300-500 m                                         |       | By virtue of the ground surface elevation being below or<br>just above the proposed quarry floor, and by virtue of<br>their distance from the proposed quarry, the risk of<br>impact is negligible. |

In summary, due to the separation distances and the low permeability of the rock, the risk to well impacts is considered negligible in all wells except at 2528 Unity Road and at 2034, 2130, 2150, and 2166 Cordukes Road. To address the possibility of quarry-related drawdown affecting these wells, modifications to the quarry design are recommended, as is a monthly groundwater level monitoring program designed to discern problematic groundwater level lowering prior to well impacts.

Industrial use of the expansion lands presents a risk of accidental release of fuel, and/or other potential contaminants. There will be no run-off from the quarry, and all waters will be collected in the quarry sump where they may be treated in the event of a contaminant spill within the quarry. Water quality monitoring of groundwater down-gradient of a self-draining sump will be carried out as a condition of an applied-for ECA. It is concluded that the risk of contamination of aquifers and local water wells due to spilled fuel is negligible.

### 4.2 Impact on Surface Water

#### 4.2.1 Flow Routing

A berm will be constructed in the 30 m offset south of Unity Road where the northerly part of the expansion area abuts Unity Road. This berm will prevent the southwards flow of water from the municipally-owned ditch (there is presently a very shallow southwards-running ditch on the expansion lands, see Section 3.4.6), and will force the water to flow either west or east. Ideally, the ditching would be adjusted to encourage the water to flow westwards, which will allow it to discharge to a southwards-running ditch on the south side of Unity Road approximately 260 m west of the western property line of the expansion area. This ditch connects to the tributary of Collins Creek, effectively taking the drainage the same point that it currently arrives at, via a different route.

In consultation with the property owner, drainage from 2467 Unity Road must be allowed to discharge at the southern end of this property by way of a culvert(s) or break(s) in the berm.

#### 4.2.2 Flow Volumes

The very low permeability of the bedrock ensures that the upland portions (i.e., above the escarpment) of the two north-to-south flowing tributaries of Collin's Creek flows are not significantly fed by groundwater, and thus will not experience reductions in baseflow due to operation of the quarry sump. Groundwater discharge at the base of the escarpment may be reduced by the quarrying and pumping of the quarry sump, although the pumped water will be discharged back into the same ultimate receiver. Conversely, if a self-draining sump is incorporated into the design of the quarry, this will enhance groundwater discharge to the receiver at the base of the escarpment. No impacts in terms of the quantity of water present in surface water features are anticipated.

#### 4.2.3 Water Quality

The quarry is currently dewatered using sumps and sedimentation ponds, and the water quality was acceptable on the day of the inspection. The expansion of the quarry is not anticipated to change the quality of the water being discharged, and no impacts to the surface water quality are anticipated. Cruickshank is considering options for a self-draining sump at the southwest corner of the existing quarry that will allow for pump-free discharge of storm water from the south quarry through a natural bedrock filter.

Industrial use of the expansion lands presents a risk of accidental release of fuel, and/or other potential contaminants. Spilled contaminants may migrate to the quarry sump, where there is potential for them to be discharged to surface water. This risk is low, and is mitigated by implementing prevention measures discussed in Section 5.

An Environmental Compliance Approval (ECA) for the treatment and disposal of industrial process wastewater from the quarry has been applied for by Cruickshank. Conditions of the ECA will almost certainly include a requirement for ongoing monitoring of contaminant levels in the discharge.

#### 4.3 Impact on Existing Contamination

There are no existing groundwater contamination issues within the radius of influence of dewatering. No impacts to existing contamination are identified.

#### 4.4 Impact on Anthropogenic Structures

Dewatering of the bedrock is not anticipated to result in significant consolidation of soils or bedrock. No impact to structures is anticipated.

### 4.5 Impact on Ecology

According to the natural environment technical report for the quarry expansion (Ecological Services, 2012), ecological receptors include a Sugar Maple dominated woodland and a potential reptile hibernacula (fractured exposed bedrock on a south facing slope, with field habitat further south), both on the escarpment.

It was confirmed by Rob Snetsinger of Ecological Services (personal communication, February 24, 2014) that neither of these receptors will be impacted by any potential changes in volume of groundwater discharge resulting from the operational plan. Therefore, no impacts to ecological receptors are anticipated.

## 5. ENVIRONMENTAL PROTECTION / MITIGATION

### 5.1 Recommended Monitoring Plan

The monitoring plan, with monitoring locations, depths, and frequencies, are shown on Figure 11 in Appendix A.

Monthly groundwater level monitoring is recommended in DDH 10-01. BH 11-02, BH 11-03, BH 11-04, BH 12-01, BH 12-02, BH 12-03, BH 13-01, the domestic well at 2528 Unity Road, and in the following three additional monitoring wells:

- Future Monitoring Well 1 (FMW-1) on the Lot 12-Lot 13 boundary, approximately 60 m south of BH 13-01, to be drilled prior to extraction within the western half of Lot 13,
- FMW-2 on the Lot 11-Lot 12 boundary at the northwest corner of the part of the expansion lands in Lot 12, to be drilled prior to extraction within Lot 12.
- FMW-3 on the Lot 11-Lot 12 boundary at the southwest corner of the part of the expansion lands in Lot 12, to be drilled prior to extraction within Lot 12.

Annual winter photographic seepage face monitoring is recommended on all available extraction faces within 250 m of Unity Road in the western half of Lot 13 and also in Lot 12. This would consist of taking one or more photographs of the rock face from static viewpoints, where possible based on quarry operations. The information will provide a record of seepage into the quarry in the winter when ice will form at key seepage locations.

This monitoring will provide data to verify the predicted groundwater drawdown; will provide useful data to address water well interference complaints, if any; and will allow for mitigation of impacts to receptors in case groundwater drawdown is greater than estimated. The groundwater level and seepage face monitoring will provide critical data to ensure the success of the grouting-based contingency plan, if enacted.

### 5.2 Recommended Contingency Plan

The impact assessment found that it is highly unlikely that the key receptors will be negatively impacted by the quarry dewatering. Notwithstanding this finding, groundwater level monitoring is recommended in strategically-located monitoring wells to observe any changes in groundwater level as quarrying progresses. This section provides a contingency plan to respond to specific events.

#### 5.2.1 A Water Well Interference Complaint

If a water well interference complaint is received by Cruickshank, either directly or through other channels (i.e., the Ministry of Natural Resources or MOECC), and the complaint concerns a water well within 500 m of the licensed area, Cruickshank will:

- 1. Immediately provide an interim potable water supply (within 12 hours);
- 2. Notify the MOECC of the complaint (if they are not already aware);
- 3. Retain a qualified professional to conduct a site investigation, determine the cause of the interference, and provide recommendations to remedy the problem; and,
- 4. If it is found that the water well interference resulted from Cruickshank dewatering and quarry operations, the water supply will be restored to its original condition or replaced with an equivalent water supply. In the context of the monthly groundwater level monitoring program and annual seepage face monitoring, the unlikely event of a quarry-related water well interference will almost certainly be associated with a sudden event such as inadvertent extraction-related drainage of a discrete fracture zone tapped by a water well. That is the well interference will be correlated to a discrete inflow at the quarry wall.

Several options are available for restoration of an affected water supply. These may include adjustment to the well such as lowering the pump inlet; deepening an existing well; or drilling a replacement well. In the event that these methods are unsuccessful, a method will be chosen to seal up the inflow into the quarry which has caused the well interference. The most likely viable option to accomplish this will be to grout the discrete fracture zone using standard techniques used for this purpose in mines and open pits around the world. More information on the suitability of rock grouting as a contingency measure and the terms of reference for a pilot study are included in Appendix J. Another method for sealing the identified inflow may include backfilling the quarry wall with a suitable quantity of low-permeability soil. The final decision on method will be determined as in Point 3 of the list above, in consultation with MOECC, and all affected parties.

#### 5.2.2 Monitoring Data Which Suggests a Potential Impact to a Receptor

If groundwater level monitoring data suggests greater-than-expected groundwater drawdown which is quarry-related; and if, based on the judgment of a qualified professional, there is a potential for this lowering to impact a receptor, Cruickshank will:

- 1. Modify quarry operations;
- 2. Consult with the potentially affected party;
- 3. Make provisions to mitigate the potential impact.

## 6. SUMMARY OF RECOMMENDATIONS

The following is a summary of recommendations made:

- Monthly groundwater level monitoring is recommended in DDH 10-01. BH 11-02, BH 11-03, BH 11-04, BH 12-01, BH 12-02, BH 12-03, BH 13-01, the domestic well at 2528 Unity Road, and in the following three additional monitoring wells:
  - Future Monitoring Well 1 (FMW-1) on the Lot 12-Lot 13 boundary, approximately 60 m south of BH 13-01, to be drilled prior to extraction within the western half of Lot 13,
  - FMW-2 on the Lot 11-Lot 12 boundary at the northwest corner of the part of the expansion lands in Lot 12, to be drilled prior to extraction within Lot 12.
  - FMW-3 on the Lot 11-Lot 12 boundary at the southwest corner of the part of the expansion lands in Lot 12, to be drilled prior to extraction within Lot 12.
- 2. Annual winter photographic seepage face monitoring is recommended on all available extraction faces within 250 m of Unity Road in the western half of Lot 13 and also in Lot 12. This would consist of taking one or more photographs of the rock face from static viewpoints, where possible based on quarry operations. The information will provide a record of seepage into the quarry in the winter when ice will form at key seepage locations.
- 3. No extraction of the third lift (i.e., below 115 mASL) should occur within 250 m of the property at 2528 Unity Road, and west of the Lot 12/Lot 13 lot line.
- 4. A grouting pilot study may be considered during extraction of Lift 3 in Lot 13, if suitable conditions exist. The terms of reference for the study are included in Appendix J.
- 5. In consultation with the property owner, drainage from 2467 Unity Road must be allowed to discharge at the southern end of this property by way of a culvert(s) or break(s) in the berm.
- 6. The existing PTTW will be sufficient for dewatering of the existing quarry and the expansion area until its expiry in 2022. Upon renewal, it is recommended to combine the monitoring programs proposed in this report for the quarry expansion with the monitoring program for the existing quarry.

## 7. CLOSURE

We trust the information presented in this report meets your requirements. If you have any further questions or need addition details, please do not hesitate to contact our office.

Morrison Hershfield Limited

Anthony West

Anthony (Ant) West, Ph.D., P.Eng. Senior Geo-Environmental Engineer / Practice Leader <u>awest@morrisonhershfield.com</u> 613-739-2910 Ext. 1022424

Fourtfrom

Forest Pearson, P.Eng. Senior Geological Engineer <u>FPearson@morrisonhershfield.com</u> 867-456-4747

## 8. LIMITATIONS AND USE

This report has been prepared for the exclusive use of Cruickshank Construction Limited, by Morrison Hershfield Limited (Morrison Hershfield). Morrison Hershfield hereby disclaims any liability or responsibility to any person or party, other than Cruickshank Construction Limited, for any loss, damage, expense, fines, or penalties which may arise from the use of any information or recommendations contained in this report by a third party.

The report, which specifically includes all tables, figures and appendices is based on data and information collected during investigations conducted by Morrison Hershfield and is based solely on the conditions of the site at the time of the investigation, supplemented by historical information and data obtained by Morrison Hershfield as described in this report.

Morrison Hershfield has exercised professional judgment in collecting and analyzing the information and formulating recommendations based on the results of the study. The services performed as described in this report were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to this study. No other warranty or representation, either expressed or implied, as to the accuracy of the information or recommendations included or intended in this report.

## 9. **REFERENCES**

Carson, D.M., 1981. Paleozoic Geology of the Tichborne-Sydenham Area, Southern Ontario; Ontario Geological Survey Preliminary Map P. 2413, Geological Series. Scale 1:50,000, Geology, 1980.

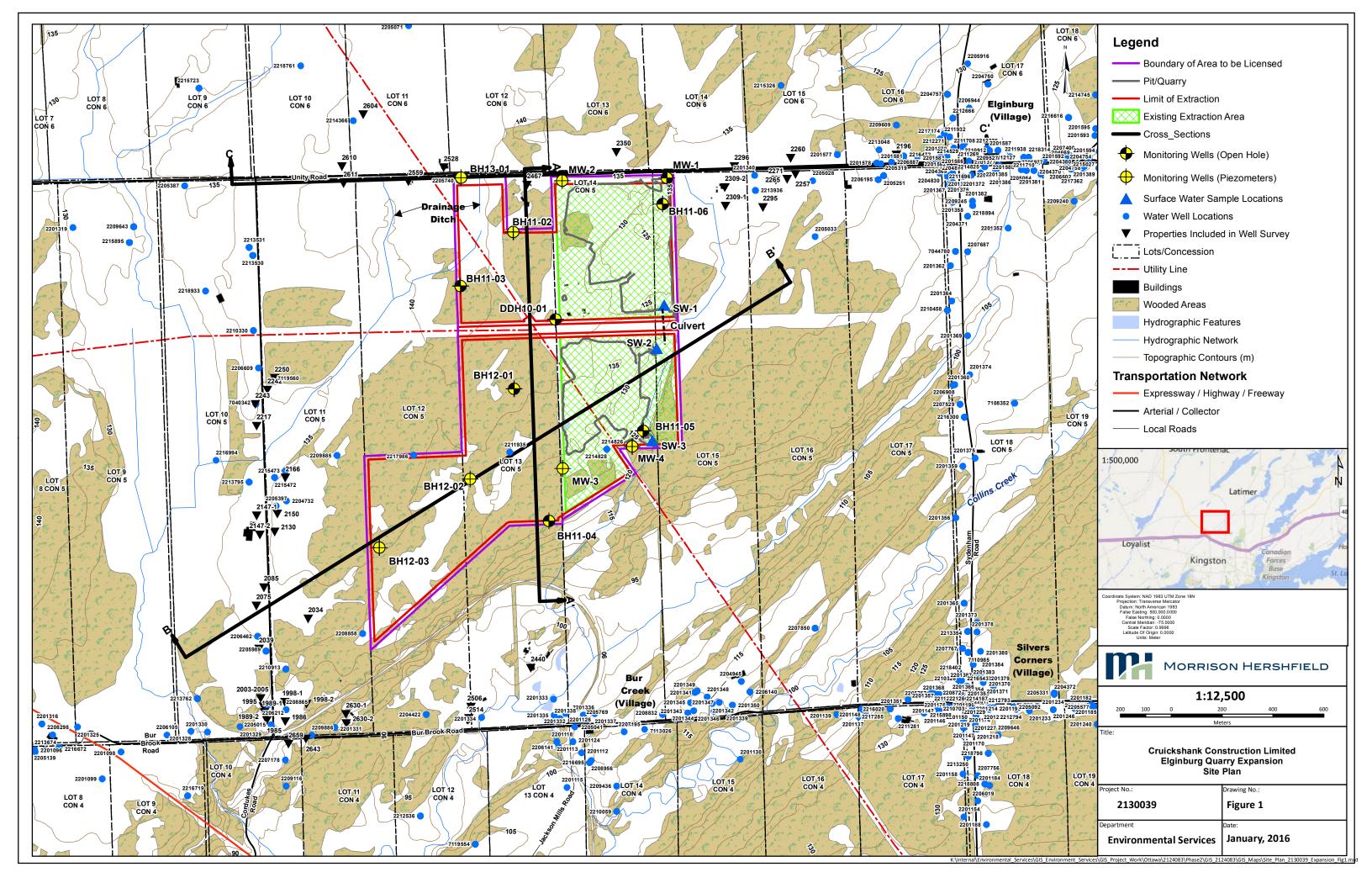
Chapman, L.J. and Putnam, D.F., 1984. The Physiography of Southern Ontario, Ontario Geological Survey, Special Volume 2.

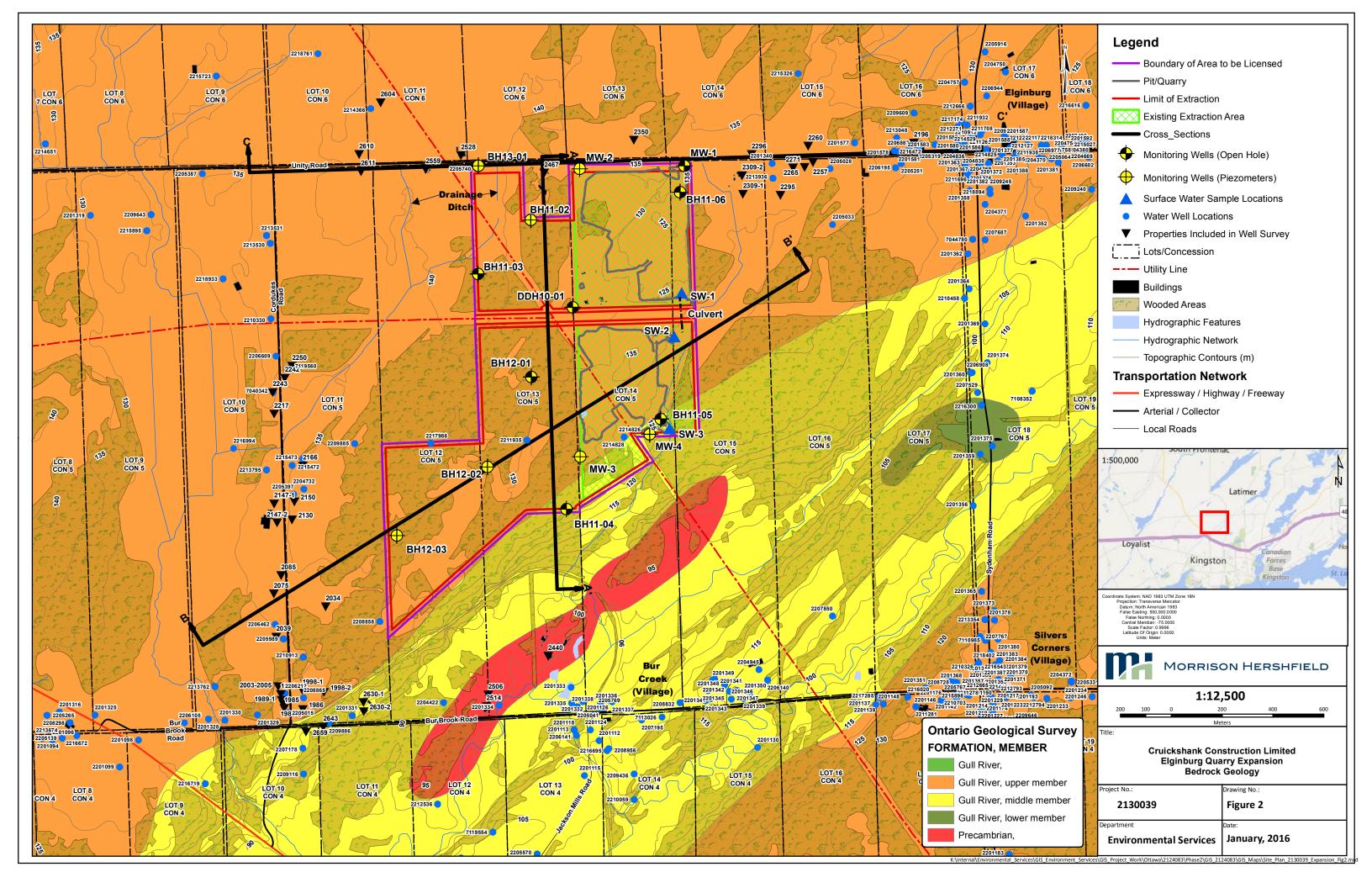
Ecological Services, 2012. Natural Environment, Technical Report: Level I And II, Elginburg Quarry, City Of Kingston, dated October.

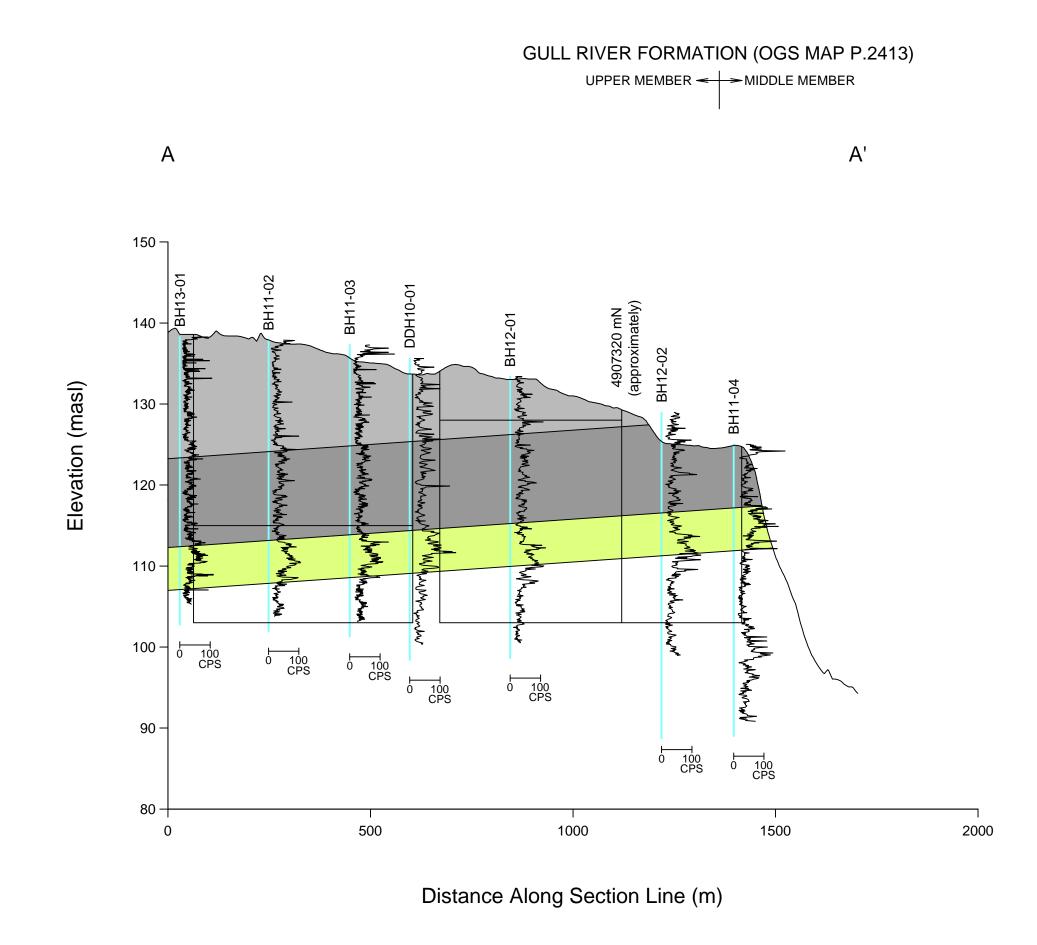
Golder Associates Ltd., 2011. Preliminary Aggregate Resource Evaluation, Cruickshank Construction Limited, Proposed Expansion of Elginburg Quarry, Elginburg, Ontario, June 20.

Gorrell Resource Investigations, 1995. Hydrogeological Investigation of Elginburg Quarry, Part Lots 14 & 15, Conc. V, Township of Kingston, County of Frontenac. Report No. 934000.

Morrison Hershfield, 2012. Hydrogeological Investigation of the Cruickshank Elginburg Quarry, Lot 14 and 15, Concession V, City of Kingston, County of Frontenac, September.

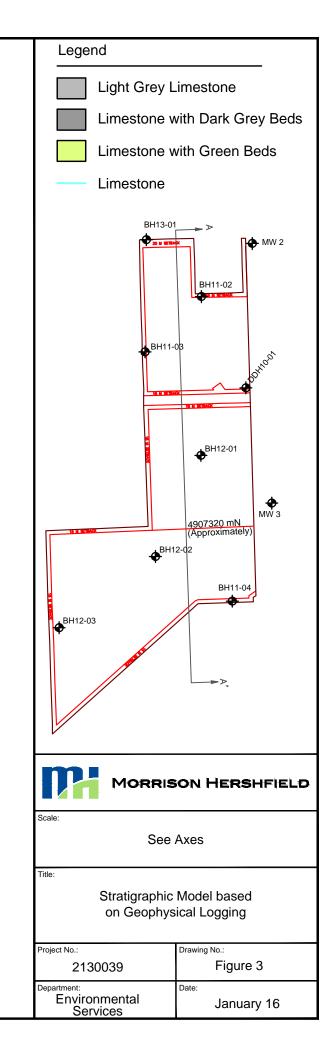

Ontario Geological Survey 2010. Surficial geology of Southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 128-REV

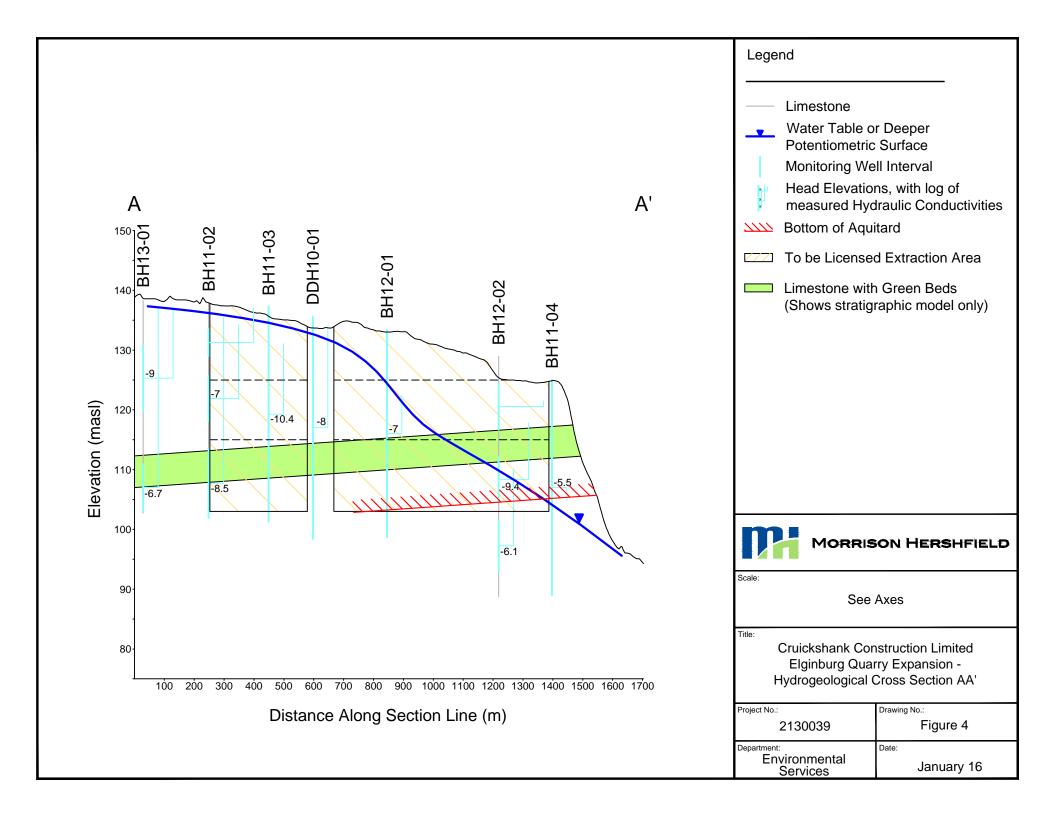

Ontario Ministry of the Environment, 2012. Well Record Data, downloaded in June 2012, Queen's Printer.

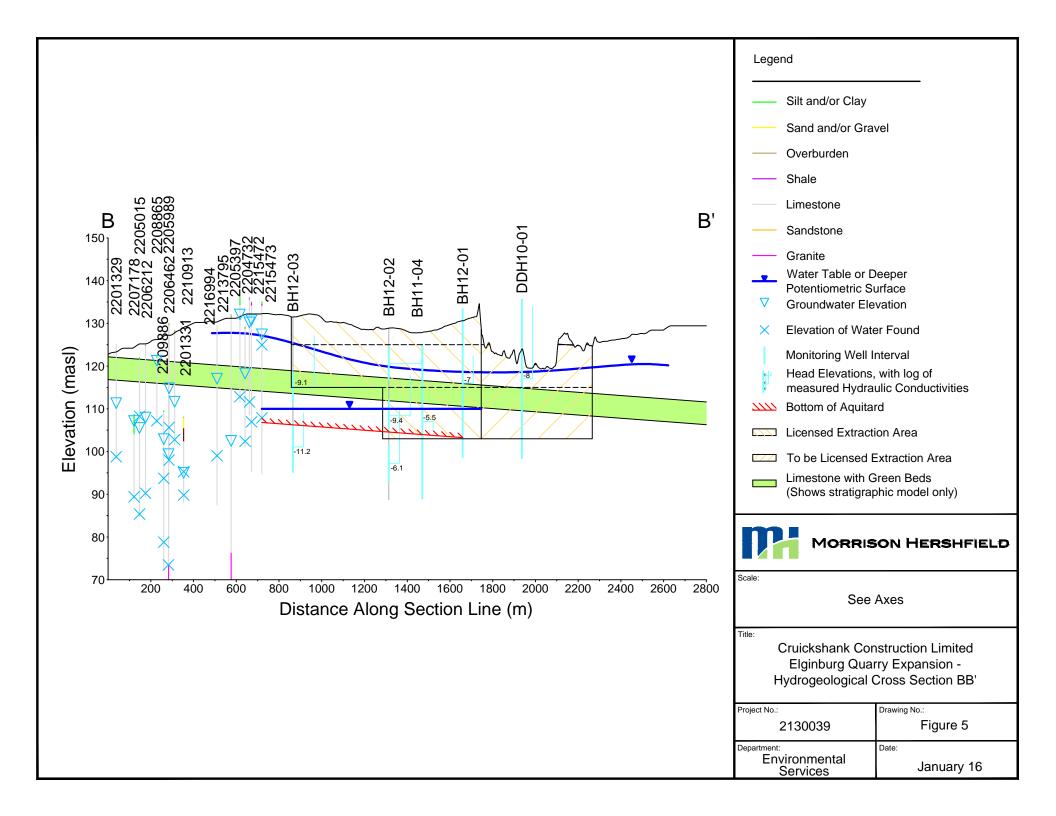

Powers, J.P., Corwin, A.B., Schmall, P.C. and Kaeck, W.E., 2007. Construction Dewatering and Groundwater Control, John Wiley and Sons.

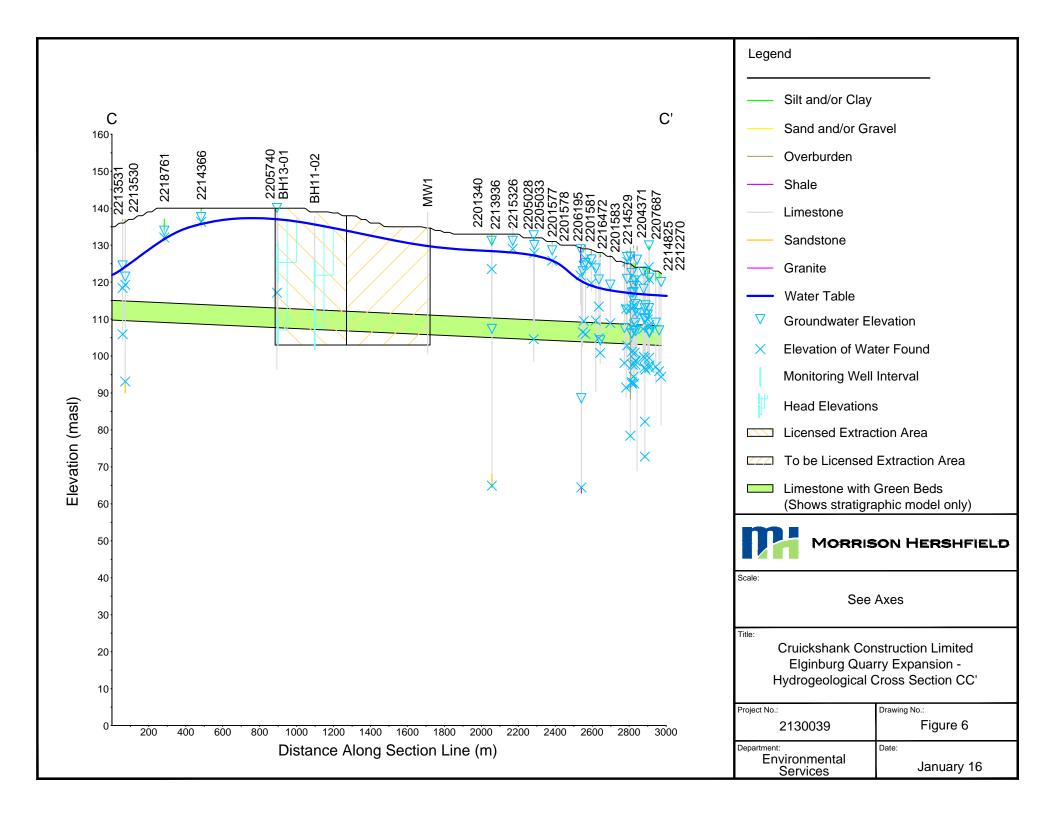
Snetsinger, Rob, 2014. Verbal communication regarding water needs of woodlot and potential reptile hibernacula, February 24.

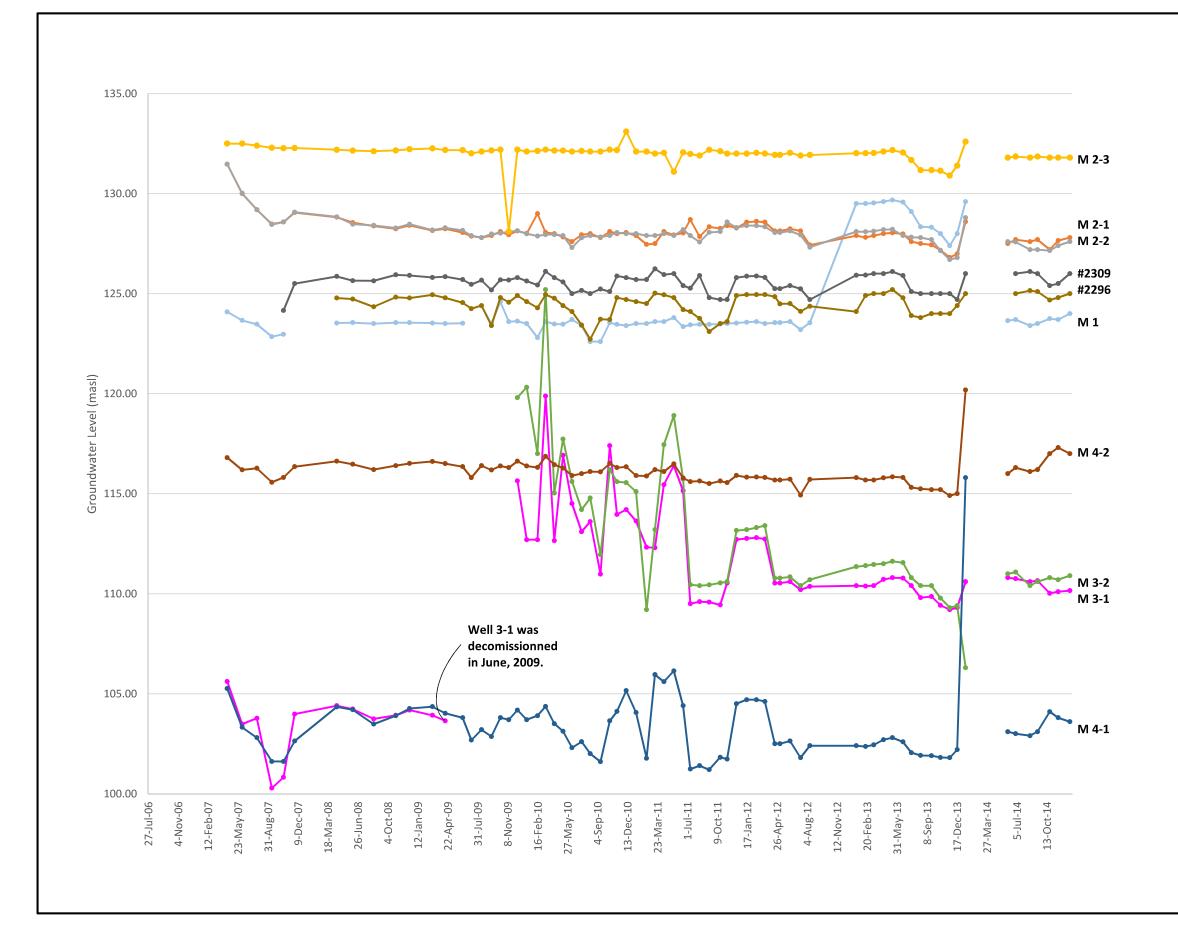
**APPENDIX A: Figures** 



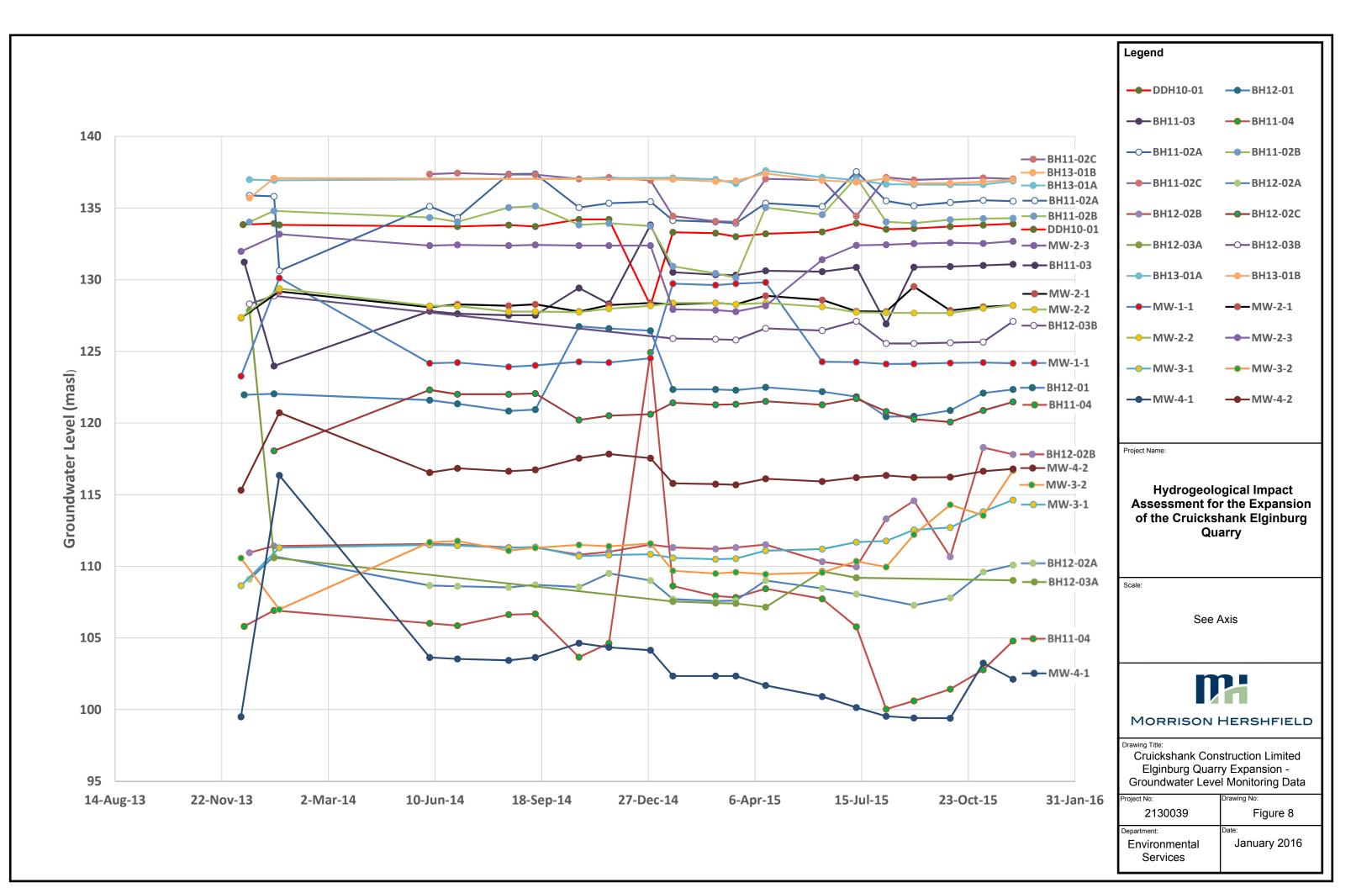



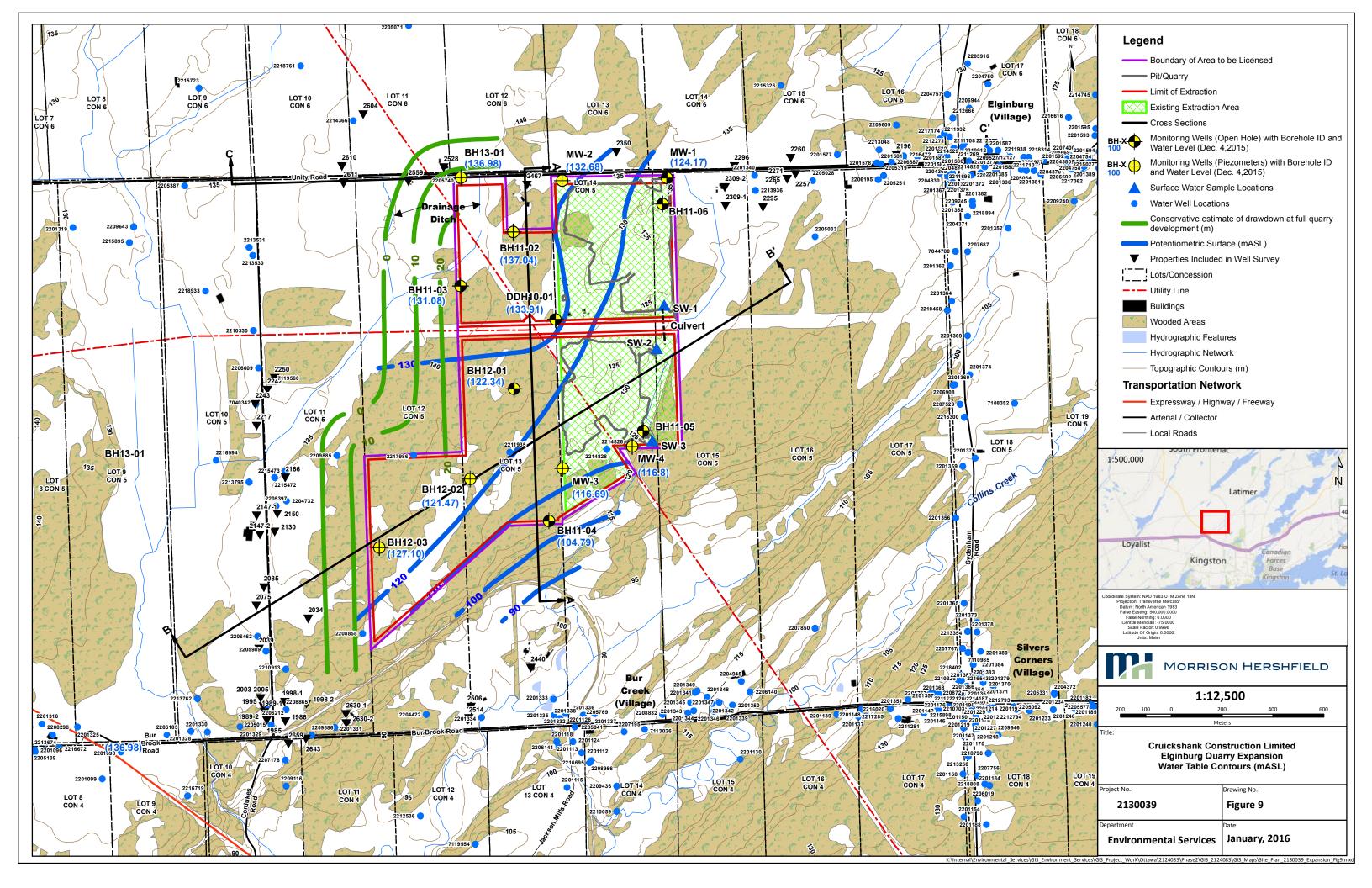



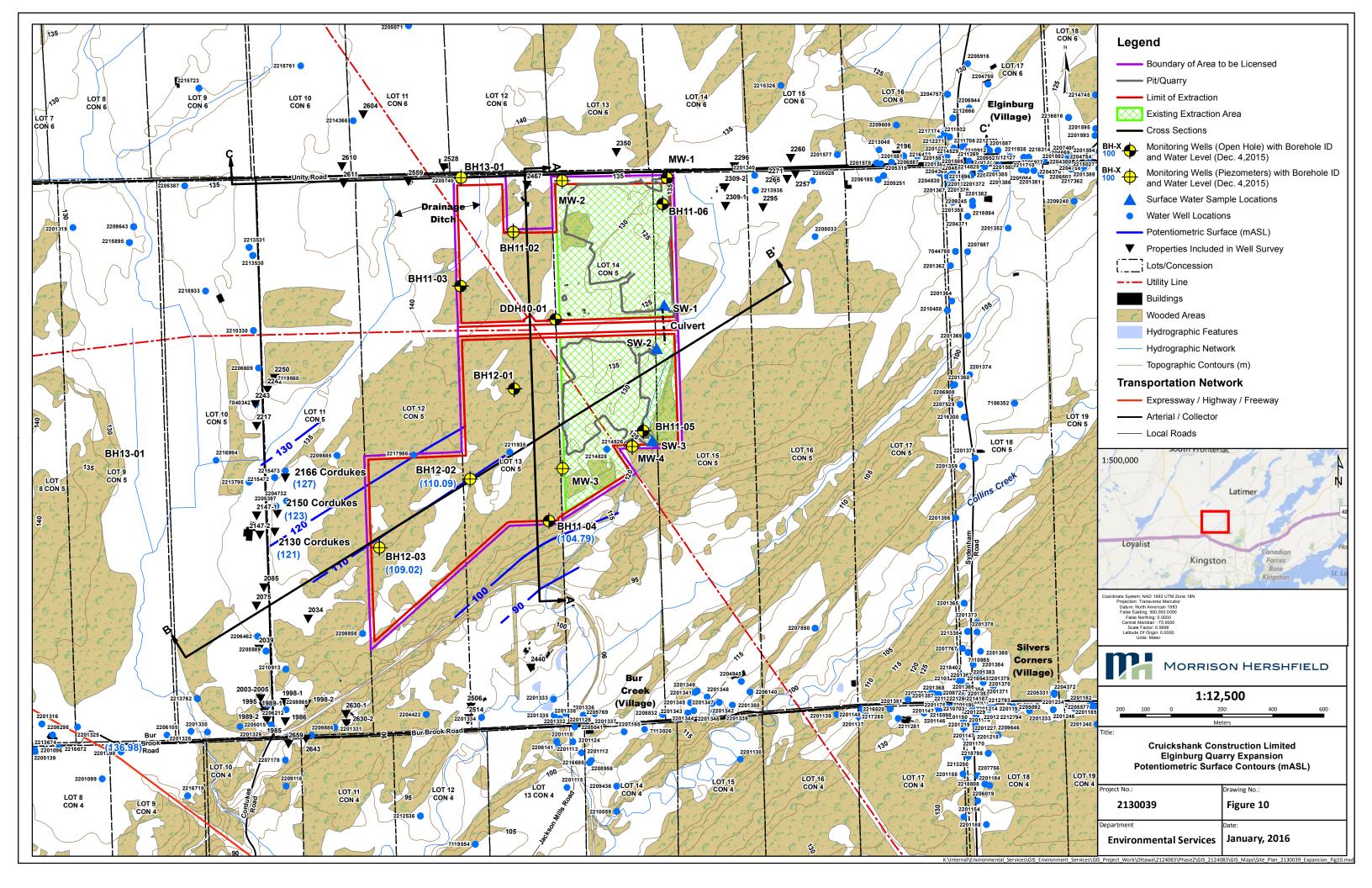


oj'2130039/200 - Working Files\Hydrogeology and Aggregates\Cross Sections\elginburg\_expansion\_All\_x-section.dwg

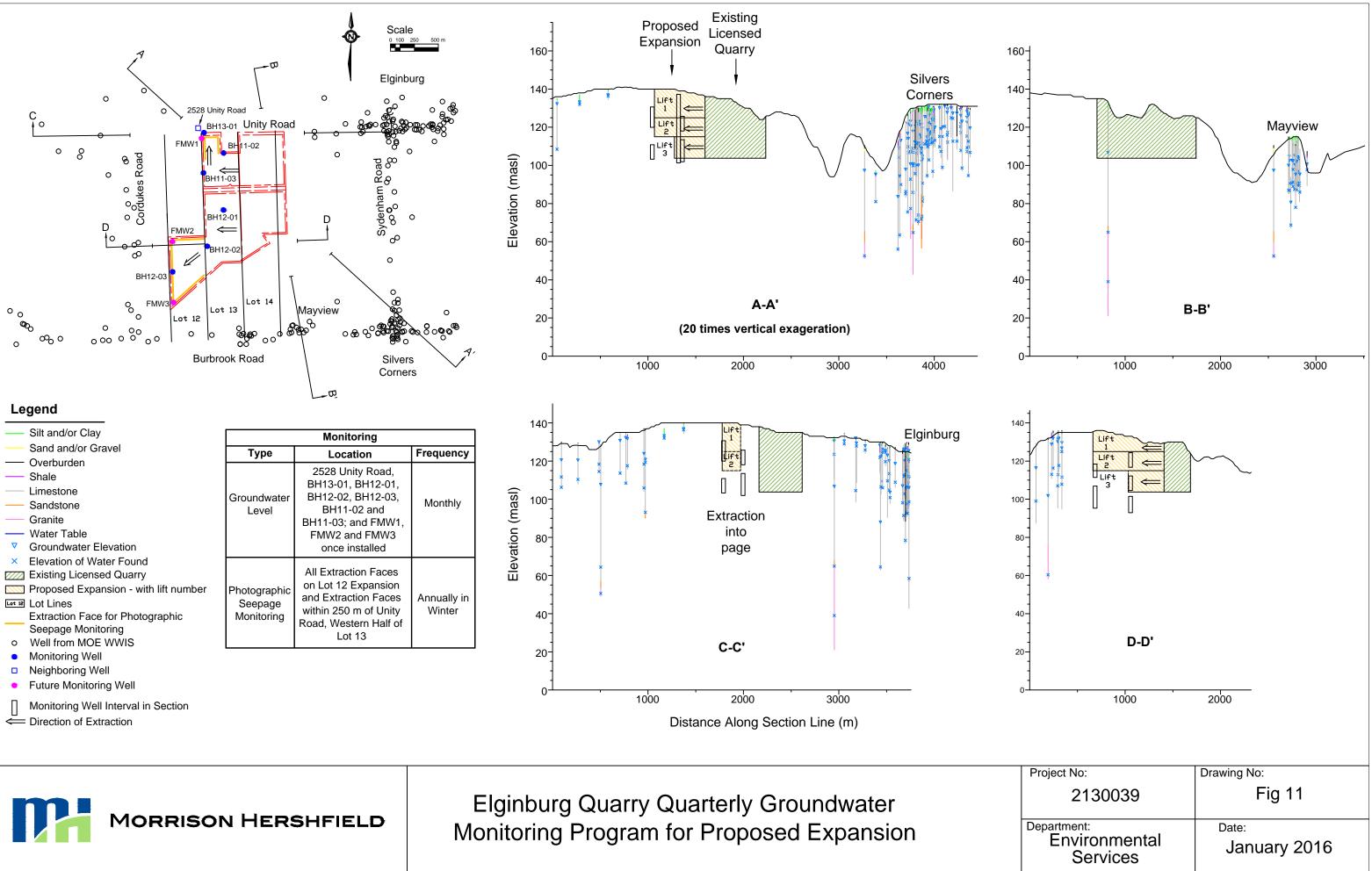

\_\_\_\_\_






| Legend                                            |                                                                        |
|---------------------------------------------------|------------------------------------------------------------------------|
| M 1                                               | M 2-1                                                                  |
| —— M 2-2                                          | — M 2-3                                                                |
| M 3-1                                             | <b>→</b> M 3-2                                                         |
| <b>→</b> M 4-1                                    | <b>→</b> M 4-2                                                         |
| ─ <b>─</b> Rahmel #2309                           | ── Martin #2296                                                        |
|                                                   | Hershfield                                                             |
|                                                   |                                                                        |
| Scale:                                            | e Axes                                                                 |
| See<br>Title:<br>Cruickshank Con<br>Elginburg Qua | e Axes<br>Instruction Limited<br>rry Expansion -<br>el Monitoring Data |
| See<br>Title:<br>Cruickshank Con<br>Elginburg Qua | nstruction Limited<br>rry Expansion -                                  |









APPENDIX B: Well Logs and Well Completions

HOLE NUMBER: 1

DATE: June 2, 1994

LOCATION: northeast corner of site, just east of old access road

| DEPTH<br>(m) | STRATIGRAPHIC<br>SECTION | PIEZ. | ELEVATION<br>(m asl) | Major<br>Bedding<br>Plane | Estimated<br>Cumulative<br>Yield<br>(L/min) | MATERIAL DESCRIPTION                                                                                                                                                                                                         |
|--------------|--------------------------|-------|----------------------|---------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.           |                          |       | 131.2                |                           |                                             | 0 to 9.75 UPPER GULL RIVER FORMATION                                                                                                                                                                                         |
| 5            |                          |       |                      | 2.44, 3.66                | 0                                           | -dark grey, fine crystalline limestones,<br>thinly bedded (5 to 10 cm) with shale<br>between limestones<br>-noticable drops at 2.44, 3.66, 8.53, and 9.75<br>-no water present                                               |
| 10           |                          |       | 121.45               | 8.53<br>9.75              |                                             |                                                                                                                                                                                                                              |
| 15           |                          |       |                      |                           | 0                                           | 9.75 TO 38.10 m - LOWER GULL RIVER<br>FORMATION<br>-interbedded limestone, silty dolostone,<br>quartz sandstone and shale<br>-first thick green dolostone bed which<br>was noticed was at 20.73 m                            |
| 20           |                          |       |                      |                           | 0                                           | -small drops at 27.13 to 28.04, 29.87, 30.18 and 35.97<br>-calcite-rich areas which may be the characteristic<br>vugs of the Formation were encountered at<br>27.13 to 28.04 m<br>-below 35.97 the amount of green dolostone |
|              |                          |       |                      |                           | 0                                           | appears to increase                                                                                                                                                                                                          |
| 25           |                          |       |                      | 27.13<br>28.04            |                                             | -there is virtually no water in well, after 5 days<br>the static water level was greater than 36 m below<br>the surface<br>-what water there is in the well appears to<br>be mineralized                                     |
| 30           |                          |       |                      | 29.87<br>30.18            | 0                                           | after 1 month there was less than 0.7 m of water in                                                                                                                                                                          |
| 35           |                          |       | <u>92.89</u>         | 36.97                     | 0                                           | after 1 month there was less than 0.7 m of water in the drill hole                                                                                                                                                           |
| 40           |                          |       |                      |                           |                                             |                                                                                                                                                                                                                              |
|              |                          |       |                      |                           |                                             |                                                                                                                                                                                                                              |

#### HOLE NUMBER: 2

### DATE: June 2, 1994

#### LOCATION: northwest corner of property, where new office is to be constructed

| DEPTH<br>(m) | STRATIGRAPHIC<br>SECTION | PIEZ. | ELEVATION<br>(m asl) | Major<br>Bedding<br>Plane  | Estimated<br>Cumulative<br>Yield<br>(L/min) | MATERIAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                      |
|--------------|--------------------------|-------|----------------------|----------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            |                          |       | 136.8                | 3.66<br>4.57<br>5.49, 5.79 |                                             | 0 to 8.53 UPPER GULL RIVER FORMATION<br>-dark grey to black, fine crystalline<br>limestones,<br>-thinly bedded ( 5 to 10 cm) with shale<br>between limestones<br>- noticable drops at 3.66, 4.57, 5.49, 5.79 and 8.53<br>- very black cuttings; shale<br>-no water present                                                                                                |
| 10           |                          |       | 129.31<br>128.27 _   | - 8,53 to-9,75             |                                             |                                                                                                                                                                                                                                                                                                                                                                           |
| 10           |                          |       |                      | 11.58                      | 0                                           | 8.53 TO 38.10 m - LOWER GULL RIVER<br>FORMATION                                                                                                                                                                                                                                                                                                                           |
| 15           |                          |       |                      | 19.51                      | 0                                           | -interbedded limestone, silty dolostone,<br>quartz sandstone and shale<br>-first thick green dolostone bed which<br>was noticed was at 25.6 to 26.21 m<br>-small drops at 8.53 to 9.75, 11.58, 19.51, 20.73 to<br>21.34, 25.60 to 26.21 and 32.0<br>-calcite-rich areas which may be the characteristic<br>vugs of the Formation were encountered at<br>18.29 and 23.32 m |
| 20           |                          |       | 117.24               | 20.73 to 21.34             |                                             | -below 14.63 m the colour of the limestone<br>changed to light grey to fine grained; changed to<br>dark grey to black at 23.32<br>-below 32 m started to encounter very fine grained<br>grey/brown thinly bedded limestones                                                                                                                                               |
| 25           |                          |       |                      | 25.60 to 26.21             | 0                                           | -there is virtually no water in well, the static in the<br>well after 5 days was 8.80 m and appears to be                                                                                                                                                                                                                                                                 |
| 30           |                          |       |                      | 32.0                       | 0                                           | entering at the base of the casing                                                                                                                                                                                                                                                                                                                                        |
| 35           |                          |       |                      |                            |                                             |                                                                                                                                                                                                                                                                                                                                                                           |
| 40           |                          | 0     | 98.55                |                            | 0                                           |                                                                                                                                                                                                                                                                                                                                                                           |
|              |                          |       |                      |                            |                                             |                                                                                                                                                                                                                                                                                                                                                                           |
|              |                          |       |                      |                            |                                             |                                                                                                                                                                                                                                                                                                                                                                           |
|              |                          |       |                      |                            |                                             | ,<br>,                                                                                                                                                                                                                                                                                                                                                                    |

#### HOLE NUMBER: 3

#### DATE: June 2, 1994

# LOCATION: southwest corner of property, in area of small test quarry

| DEPTH<br>(m) | STRATIGRAPHIC<br>SECTION | PIEZ. | ELEVATION<br>(m asl) | Major<br>Bedding<br>Plane | Estimated<br>Cumulative<br>Yield<br>(L/min) | MATERIAL DESCRIPTION                                                                                                                                                                                                           |
|--------------|--------------------------|-------|----------------------|---------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            |                          |       | 128.4                | 0.91<br>2.44              |                                             | 0 to 7.92 UPPER GULL RIVER FORMATION<br>-dark grey to black, fine crystalline<br>limestones,                                                                                                                                   |
| 5            |                          |       | 120.48               | 3.66<br>4.88, 5.19        | 0                                           | <ul> <li>-thinly bedded (5 to 10 cm) with shale<br/>between limestones</li> <li>- noticable drops at 0.91, 2.44, 3.66, 4.88 and 5.19 m <ul> <li>- very black cuttings; shale</li> <li>-no water present</li> </ul> </li> </ul> |
| 10           |                          |       |                      | 8.53                      | 18.18                                       | 7.92 TO 38.10 m - LOWER GULL RIVER<br>FORMATION<br>-interbedded limestone, silty dolostone,<br>quartz sandstone and shale                                                                                                      |
| 15           |                          |       |                      |                           |                                             | -first thick green dolostone bed which<br>was noticed was at 11.28 to 12.19 m<br>-small drops at 8.53, 10.36 to 14.63, 21.95,<br>23.77, 26.21 and 28.04 m<br>-calcite-rich areas which may be the characteristic               |
| 20           |                          |       | 109.50               |                           | 18.18                                       | vugs of the Formation were encountered at<br>10.36 to 12.19 and 21.95<br>-below 15.24 m the colour of the limestone<br>changed to light grey to fine grained;                                                                  |
| 25           |                          | 2000  |                      | 21.95<br>23.77<br>26.21   | 20.45**                                     | -below 23.77 m started to encounter very fine<br>grained grey/brown thinly bedded limestones<br>-occurance of greenish dolostone increases below<br>26.21 m                                                                    |
| 30           |                          |       |                      | 28.04                     | 29.54**                                     | -the well has a yield estimated to be on the order of<br>40.9 L/min<br>-all of this water is from the 10.36 to 14.63 m zone<br>and cascading was noted until the static water level<br>rose above this level                   |
| 35           |                          |       | 90.17                |                           | 40,90** _                                   |                                                                                                                                                                                                                                |
| 40           |                          |       |                      |                           |                                             |                                                                                                                                                                                                                                |
|              |                          |       |                      |                           |                                             | ** the increase was due to the development of the<br>11.28 to 14.63 zone and does not reflect the<br>interception of additional water bearing zones                                                                            |

,

#### HOLE NUMBER: 4

#### DATE: June 3, 1994

# LOCATION: southeast corner of property, east of hydro-line and just south of existing quarry; between quarry and berm

| DEPTH<br>(m) | STRATIGRAPHIC<br>SECTION                        | PIEZ. | ELEVATION<br>(m asl) | Major<br>Bedding<br>Plane | Estimated<br>Cumulative<br>Yield<br>(L/min) | MATERIAL DESCRIPTION                                                                                                                                                                                                |
|--------------|-------------------------------------------------|-------|----------------------|---------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            |                                                 |       | 124.8                | 1.23, 1.83                |                                             | 0 to 8.23 UPPER GULL RIVER FORMATION                                                                                                                                                                                |
| 5            |                                                 |       |                      | 2.44                      | 0                                           | -dark grey to black, fine crystalline<br>limestones,<br>-thinly bedded ( 5 to 10 cm) with shale<br>between limestones<br>- noticable drops at 1.22, 1.83, 2.44 and 8.23 m<br>- very black cuttings; shale           |
| 10           |                                                 |       | 116.57               | 8.23                      |                                             | -no water present<br>78.23 TO 38.10 m - LOWER GULL RIVER                                                                                                                                                            |
| 15           |                                                 |       |                      |                           | 0                                           | -interbedded limestone, silty dolostone,<br>quartz sandstone and shale<br>-first thick green dolostone bed which<br>was noticed was at 17.98 m<br>-small drops at 8.23, 17.98, 28.04,<br>35.97 and 37.19 to 37.49 m |
|              |                                                 |       |                      | 17.23                     | 9.09                                        | -calcite-rich areas which may be the characteristic<br>vugs of the Formation were encountered at<br>35.97 m<br>-below 35.97 m started to encounter very fine                                                        |
| 20           |                                                 |       |                      |                           | 9,09                                        | grained grey/brown thinly bedded limestones                                                                                                                                                                         |
| 25           |                                                 |       |                      | 28.04                     | 9.09                                        | 26.21 m<br>- there is less than 9 L/min (2 IGPM) cumulative<br>from the well, all this water was being derived<br>from the 17.98 m level                                                                            |
| 30           |                                                 |       |                      |                           | 9.09                                        |                                                                                                                                                                                                                     |
| 35           |                                                 |       | 86.45                | 35.97<br>37.19 to 37.49   | 0.00                                        |                                                                                                                                                                                                                     |
| 40           | 200 BOORDOOL GODDOOL BOORDOOL BOORDOOL BOORDOOL |       |                      |                           | 9_09                                        |                                                                                                                                                                                                                     |
|              |                                                 |       |                      |                           |                                             |                                                                                                                                                                                                                     |

#### **LIST OF ABBREVIATIONS**

Ш.

The abbreviations commonly employed on Records of Boreholes, on figures and in the text of the report are as follows:

#### I. SAMPLE TYPE

#### SOIL DESCRIPTION

| AS      | Auger sample                                            |                | (a)                         | Cohesionless Soils               |
|---------|---------------------------------------------------------|----------------|-----------------------------|----------------------------------|
| BS      | Block sample                                            |                |                             |                                  |
| CS      | Chunk sample                                            | Density In     | dex                         | N                                |
| DO      | Drive open                                              | (Relative l    |                             | Blows/300 mm                     |
| DS      | Denison type sample                                     | <b>、</b>       |                             | Or Blows/ft.                     |
| FS      | Foil sample                                             | Very loose     | ·                           | 0 to 4                           |
| RC      | Rock core                                               | Loose          |                             | 4 to 10                          |
| SC      | Soil core                                               | Compact        |                             | 10 to 30                         |
| ST      | Slotted tube                                            | Dense          |                             | 30 to 50                         |
| TO      | Thin-walled, open                                       | Very dense     |                             | over 50                          |
| TP      | Thin-walled, piston                                     | v cry ucrist   | 2                           | 0401 50                          |
|         |                                                         |                |                             | Cabasius Soils                   |
| WS      | Wash sample                                             | <b>.</b>       | (b)                         | Cohesive Soils                   |
| DT      | Dual Tube sample                                        | Consistend     | сy                          | C <sub>u</sub> or S <sub>u</sub> |
| П.      | PENETRATION RESISTANCE                                  |                | <u>Kpa</u>                  | <u>Psf</u>                       |
|         |                                                         | Very soft      | 0 to 12                     | 0 to 250                         |
| Standar | d Penetration Resistance (SPT), N:                      | Soft           | 12 to 25                    | 250 to 500                       |
|         | The number of blows by a 63.5 kg. (140 lb.)             | Firm           | 25 to 50                    | 500 to 1,000                     |
|         | hammer dropped 760 mm (30 in.) required                 | Stiff          | 50 to 100                   | 1,000 to 2,000                   |
|         | to drive a 50 mm (2 in.) drive open                     | Very stiff     | 100 to 200                  | 2,000 to 4,000                   |
|         | Sampler for a distance of 300 mm (12 in.)               | Hard           | Over 200                    | Over 4,000                       |
|         | DD- Diamond Drilling                                    |                |                             |                                  |
| Dynami  | c Penetration Resistance; N <sub>d</sub> :              | IV.            | SOIL TESTS                  |                                  |
| Dynami  | The number of blows by a 63.5 kg (140 lb.)              | •••            |                             |                                  |
|         | hammer dropped 760 mm (30 in.) to drive                 | w              | water content               |                                  |
|         | Uncased a 50 mm (2 in.) diameter, $60^{\circ}$ cone     | w <sub>p</sub> | plastic limited             |                                  |
|         | attached to "A" size drill rods for a distance          |                | liquid limit                |                                  |
|         | of 300 mm (12 in.).                                     | WI<br>C        | consolidaiton (oedomete     | r) test                          |
|         | or 500 min (12 m.).                                     | CHEM           | chemical analysis (refer t  |                                  |
| BH      |                                                         | CID            | consolidated isotropically  |                                  |
| PH:     | Sampler advanced by hydraulic pressure                  |                |                             |                                  |
| PM:     | Sampler advanced by manual pressure                     | CIU            | consolidated isotropically  |                                  |
| WH:     | Sampler advanced by static weight of hammer             | ***            | with porewater pressure i   |                                  |
| WR:     | Sampler advanced by weight of sampler and               | $D_R$          | relative density (specific  | gravity, G <sub>s</sub> )        |
|         | rod                                                     | DS             | direct shear test           |                                  |
|         |                                                         | М              | sieve analysis for particle | e size                           |
| Peizo-C | one Penetration Test (CPT):                             | MH             | combined sieve and hydr     |                                  |
|         | An electronic cone penetrometer with                    | MPC            | modified Proctor compac     |                                  |
|         | a 60 <sup>0</sup> conical tip and a projected end area  | SPC            | standard Proctor compac     | tion test                        |
|         | of 10 cm <sup>2</sup> pushed through ground             | OC             | organic content test        |                                  |
|         | at a penetration rate of 2 cm/s. Measurements           | $SO_4$         | concentration of water-so   | oluble sulphates                 |
|         | of tip resistance (Q <sub>i</sub> ), porewater pressure | UC             | unconfined compression      | test                             |
|         | (PWP) and friction along a sleeve are recorded          | UU             | unconsolidated undrained    |                                  |
|         | Electronically at 25 mm penetration intervals.          | V              | field vane test (LV-labor   |                                  |
|         |                                                         | γ              | unit weight                 | - , <i>'</i>                     |
|         |                                                         | ş              |                             |                                  |

Note:

1. Tests which are anisotropically consolidated prior shear are shown as CAD, CAU.

۶

X

Unless otherwise stated, the symbols employed in the report are as follows:

#### GENERAL I. = 3.1416water content π w In x, natural logarithm of x $\log_{10} x$ or $\log x$ logarithm of x to base 10 Acceleration due to gravity g time 1 F factor of safety V volume W weight STRESS AND STRAIN П. shear strain γ Δ change in, e.g. in stress: $\Delta \sigma'$ linear strain 3 volumetric strain $\varepsilon_v$ coefficient of viscosity η Poisson's ratio ν total stress σ effective stress ( $\sigma' = \sigma''$ -u) $\sigma'$ initial effective overburden stress $\sigma'_{vo}$ principal stresses (major, intermediate, $\sigma_1 \sigma_2 \sigma_3$ minor) mean stress or octahedral stress $\sigma_{oci}$ $= (\sigma_1 + \sigma_2 + \sigma_3)/3$ shear stress porewater pressure u E modulus of deformation G shear modulus of deformation K bulk modulus of compressibility III. SOIL PROPERTIES 1 ¢ (a) Index Properties bulk density (bulk unit weight\*) $\rho(\gamma)$ dry density (dry unit weight) $\rho_d(\gamma_d)$ density (unit weight) of water $\rho_{w}(\gamma_{w})$ τ density (unit weight) of solid particles $\rho_s(\gamma_s)$ d unit weight of submerged soil ( $\gamma'=\gamma-\gamma_w$ ) δ . D<sub>R</sub> relative density (specific gravity) of solid particles ( $D_R = p_s/p_w$ ) formerly ( $G_s$ ) ¢ void ratio с porosity р degree of saturation р q Density symbol is p. Unit weight q<sub>u</sub> symbol is $\gamma$ where $\gamma = pg(i.e. mass)$ S, sensitivity density x acceleration due to gravity)

τ

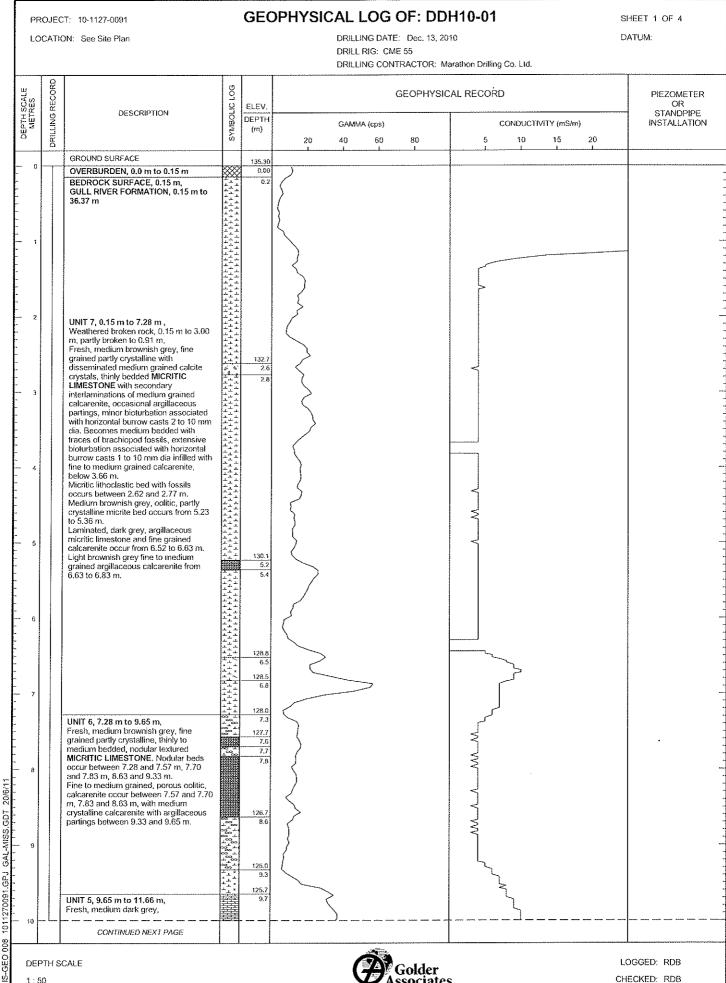
γ'

e

n

S

\*


#### (a) Index Properties (cont'd.)

| liquid limit<br>plastic limit<br>plasticity Index= $(w_1 - w_p)$<br>shrinkage limit<br>liquidity index= $(w - w_p)/I_p$<br>consistency index= $(w_1 - w)/I_p$<br>void ratio in loosest state<br>void ratio in densest state<br>density index- $(e_{max} - e)/(e_{max} - e_{min})$<br>(formerly relative density)                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) Hydraulic Properties                                                                                                                                                                                                                                                                                                                                                           |
| hydraulic head or potential<br>rate of flow<br>velocity of flow<br>hydraulic gradient<br>hydraulic conductivity (coefficient of permeability)<br>seepage force per unit volume                                                                                                                                                                                                     |
| (c) Consolidation (one-dimensional)                                                                                                                                                                                                                                                                                                                                                |
| compression index (normally consolidated range)<br>recompression index (overconsolidated range)<br>swelling index<br>coefficient of secondary consolidation<br>coefficient of volume change<br>coefficient of consolidation<br>time factor (vertical direction)<br>degree of consolidation<br>pre-consolidation pressure<br>Overconsolidation ratio= $\sigma'_p/\sigma'_{vo}$      |
| (d) Shear Strength                                                                                                                                                                                                                                                                                                                                                                 |
| peak and residual shear strength<br>effective angle of internal friction<br>angle of interface friction<br>coefficient of friction=tan $\delta$<br>effective cohesion<br>undrained shear strength ( $\phi=0$ analysis)<br>mean total stress ( $\sigma_1+\sigma_3$ )/2<br>mean effective stress ( $\sigma_1+\sigma_3$ )/2<br>( $\sigma_1-\sigma_3$ )/2 or ( $\sigma_1-\sigma_3$ )/2 |
|                                                                                                                                                                                                                                                                                                                                                                                    |

compressive strength ( $\sigma_1$ - $\sigma_3$ )

Notes: 1.  $\tau = c'\sigma' \tan \beta'$ 

2. Shear strength=(Compressive strength)/2



ssociates

1011270091.GPJ 008 GEO

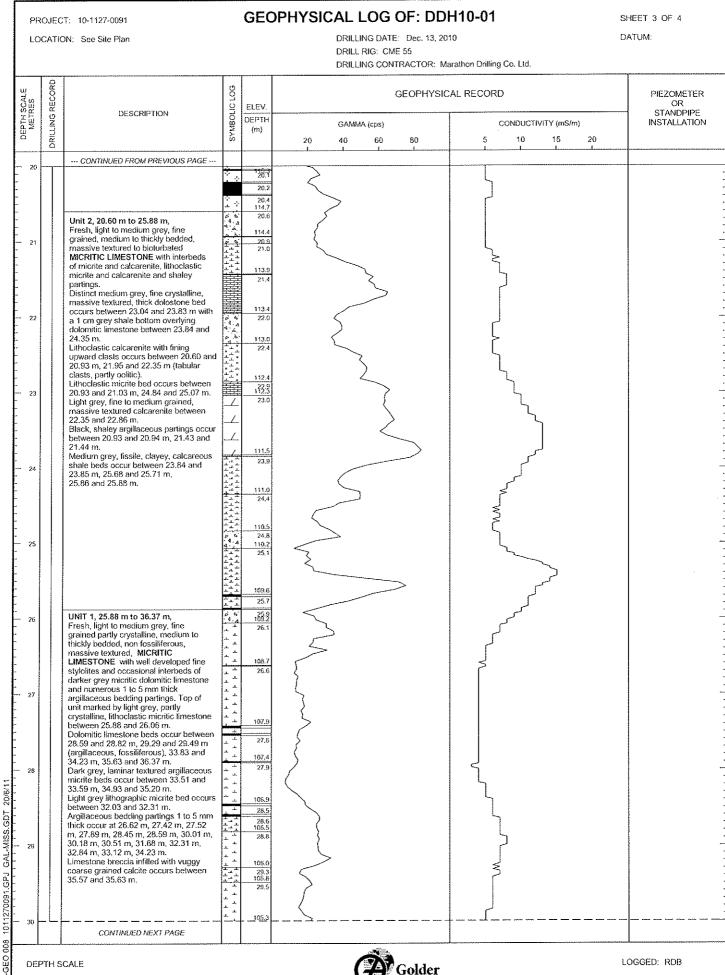
1:50

#### PROJECT: 10-1127-0091

LOCATION: See Site Plan

#### **GEOPHYSICAL LOG OF: DDH10-01**

SHEET 2 OF 4


DATUM:

DRILLING DATE: Dec. 13, 2010

DRILL RIG: CME 55 DRILLING CONTRACTOR: Marathon Drilling Co. Ltd.

| B         B         Phi         Paint Point Picture                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                             | DRILLING CONTRACTOR: Marathon Drilling Co. Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RES    |                                                                                                                                                                                                                                                                                             | geophysical record       geophysical record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OR           |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DEPTH  |                                                                                                                                                                                                                                                                                             | Opential         GAMMA (cps)         CONDUCTIVITY (mS/m)           (m)         20         40         60         80         5         10         15         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INSTALLATION |
| 10     Interformated to very fixely       11     Interformated to very fixely       12     Interformated to very fixely       13     Interformated to very fixely       14     Interformated to very fixely       15     Porty crysteline calls: reacts better       16     Porty fixely       17     Interformated to very fixely       18     Porty crysteline calls: reacts better       19     Porty fixely       10     Interformated to very fixely       11     Porty fixely       12     Porty fixely       13     References       14     Porty fixely       15     Porty fixely       16     Porty fixely       17     Porty fixely       18     Porty fixely       19     Porty fixely       10     Porty fixely       10     Porty fixely       11     Porty fixely       12     Porty fixely       13     Porty fixely       14     Porty fixely       15     Porty fixely       16     Porty fixely       17     Porty fixely       18     Porty fixely       19     Porty fixely       19     Porty fixely       19     Porty fixely    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| 11     Production of the set                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~ 10   | interlaminated to very thinly<br>interbedded very fine to medium<br>grained micritic and calcarentitic<br>LIMESTONE with argillaceous partings<br>and minor bioturbation,<br>Partly crystalline colitic micrite beds                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| 10     UNT 4, 11.66 m to 15.80 m,<br>interbeddel sequence of line to<br>method agreed, meaning the optimum<br>testional contact with overlying unit<br>testured MCRITIC LIMESTONE,<br>testured MCRITIC LIMESTONE,<br>testured MCRITIC LIMESTONE,<br>testured MCRITIC LIMESTONE,<br>testured models to calculate<br>testured models calculate<br>completed of to 10 mm da,<br>testured models calculate<br>matrix occur between 11.77 and 12.10<br>(first well developed file), 13.01 and 13.21 m, 13.41<br>discussed to 13.22 m (blockbar),<br>13.27 m (blockbar), 13.21 and 13.41<br>discussed to 13.22 m (blockbar),<br>13.27 m (blockbar), 13.21 and 13.41<br>discussed to 13.22 m (blockbar),<br>13.27 m (blockbar), 13.21 and 13.41<br>discussed to 13.22 m (blockbar),<br>13.27 m (blockbar), 13.21 and 13.41<br>discussed to 13.22 m (blockbar),<br>13.27 m (blockbar), 13.22 and 14.20 m<br>(blockbar), 13.27 and 14.02 m (blockbar),<br>13.27 m (blockbar), 13.22 and 14.20 m<br>(blockbar), 13.27 and 14.02 m (blockbar),<br>13.27 m (blockbar), 13.27 and 14.02 m (blockbar),<br>14.27 m, 15.20 m (clockbar),<br>15.27 m (blockbar), 13.27 and 14.02 m (blockbar),<br>15.77 m (blockbar), 13.27 and 14.02 m (blockbar),<br>15.77 m (blockbar), 13.27 and 14.02 m (blockbar),<br>15.77 m (blockbar), 13.27 and 15.00 m (blockbar),<br>15.77 m (blockbar), 13.27 and 14.02 m (blockbar),<br>15.77 m (blockbar), 13.72 m (blockbar),<br>15.77 m (bloc                                                                                                                                                                                                                                                                                 | ~ 11   | and 10.87 m,<br>Poorly developed lithoclastic<br>argillaceous micritic limestone bed                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| Headler and Nuclei C. Barton S. Ovec, and the set of                                                                                                                                                                                                                                                                                                                                                                                                                | - 12   | Fresh, light to medium brownish grey,<br>interbedded sequence of fine to<br>medium grained, medium bedded<br>lithoclastic CALCARENITIC<br>LIMESTONE and medium bedded<br>argillaceous, laminar to nodular                                                                                   | $\begin{array}{c} \frac{100}{5} & 0 & 11.7 \\ 4 & -4 & -4 \\ -4 & -4 & -123.2 \\ 4 & +-4 & -123.0 \\ +++ & -123.0 \\ -7 & -8 & -123 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| 14 Instant during of the du                                                                                                                                                                                                                                                                                                                                                                                                                | - 13   | transitional contact with overlying unit<br>marked by change from argillaceous<br>micrite to laminated micrite and<br>calcarenite. Lithoclastic calcarenite beds<br>comprised of 1 to 10 mm dia,<br>subrounded micrite clasts in calcarenite<br>matrix occur between 11.77 and 12.10 m      | 1.4.     122.5       1.4.     122.5       1.4.     122.8       1.4.     122.3       1.4.     122.3       1.4.     122.1       1.4.     122.1       1.4.     122.1       1.4.     122.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| <ul> <li>ooliiic), 12.50 and 12.80 m (partly collic). Argillaceous, laminar to nodular textured micrite beds occur between 11.66 and 11.77 m, 13.21 and 13.41 m (lithoclastic), 13.72 and 14.02 m (daular, bioturbated), 14.77 and 15.00 m (nodular, particle). 15.77 and 15.00 m (medium to daik grey with Lithoclastic), 16.16 and 16.50 (bioturbated), Elaok argillaceous to shaley bedding partings occur between 14.76 and 14.77 m, 15.32 and 15.33 m.</li> <li>16</li> <li>17</li> <li>17</li> <li>17</li> <li>17</li> <li>17</li> <li>18</li> <li>18</li> <li>18</li> <li>19</li> <li>19</li> <li>10</li> <li>10</li> <li>10</li> <li>110</li> <li>110</li> <li>110</li> <li>110</li> <li>111</li> <li>110</li> <li>111</li> <li>1111</li> <li>111</li> <li>111<td>~ 14</td><td>12.34 and 12.50 m (argillaceous calcarenite), 13.01 and 13.21 m, 13.41 and 13.59 m (fossillerous), 13.59 and 13.72 m (biolurbated), 14.02 and 14.23 m (argillaceous calcarenite), 14.60 and 14.76 m, 16.00 and 16.16 m. Argillaceous calcarente beds occur</td><td>2     0     13.6       13     13.7       13     121.3       2     6       14.0       14.1       14.2</td><td></td></li></ul> | ~ 14   | 12.34 and 12.50 m (argillaceous calcarenite), 13.01 and 13.21 m, 13.41 and 13.59 m (fossillerous), 13.59 and 13.72 m (biolurbated), 14.02 and 14.23 m (argillaceous calcarenite), 14.60 and 14.76 m, 16.00 and 16.16 m. Argillaceous calcarente beds occur                                  | 2     0     13.6       13     13.7       13     121.3       2     6       14.0       14.1       14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| <ul> <li>fine stylolites and burrow casts), 15.33<br/>and 15.77 m (nodular, bioturbated),<br/>15.77 and 16.00 m (medium to dark grey<br/>with Lithoclasts), 16.16 and 16.50<br/>(bioturbated), Black argillaceous to<br/>shaley bedding partings occur between<br/>14.76 and 14.77 m, 15.32 and 15.33 m.</li> <li>Unit 3, 16.50 m to 20.60 m,<br/>Fresh, medium torkickly bedded,<br/>massive textured LITHOGRAPHIC<br/>LIMESTONE with black argillaceous to<br/>shaley bedding partings and interbedded<br/>layers of lithoclastic calcarenite and<br/>argillaceous micritic limestone.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 15   | oolitic), 12.50 and 12.80 m (partly<br>oolitic). Argillaceous, laminar to nodular<br>textured micrite beds occur between<br>11.66 and 11.77 m, 13.21 and 13.41 m<br>(lithoclastic), 13.72 and 14.02 m (dark<br>grey), 14.23 and 14.60 m (nodular,<br>bioturbated), 14.77 and 15.00 m, 15.00 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| Unit 3, 16.50 m to 20.60 m,<br>Fresh, medium brownish grey, very fine<br>to fine grained with disseminated calcite<br>crystals, medium to thickly bedded,<br>massive textured LITHOGRAPHIC<br>LIMESTONE with black argillaceous to<br>shaley bedding partings and interbedded<br>layers of lithoclastic calcarenite and<br>argillaceous micritic limestone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 16   | fine stylolites and burrow casts), 15.33<br>and 15.77 m (noclular, bioturbated),<br>15.77 and 16.00 m (medium to dark grey<br>with Lithoclasts), 16.16 and 16.50<br>(bioturbated), Black argillaceous to<br>shaley bedding partings occur between                                           | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \end{array} $ $ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| arguaceous micrae innestone. [4, ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • 17   | Fresh, medium brownish grey, very fine<br>to fine grained with disseminated calcite<br>crystals, medium to thickly bedded,<br>massive textured LITHOGRAPHIC<br>LIMESTONE with black argillaceous to<br>shaley bedding partings and interbedded<br>layers of lithoclastic calcarenite and    | $\begin{array}{c} \begin{array}{c} \begin{array}{c} 1 \\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \begin{array}{c} 1 \\ - \end{array} \\ - \end{array} \\ \begin{array}{c} 18.5 \\ - \end{array} \\ - \end{array} \\ \begin{array}{c} 18.3 \\ - \end{array} \\ - \end{array} \\ \begin{array}{c} 17.1 \\ - \end{array} \\ - \end{array} \\ \begin{array}{c} 17.1 \\ - \end{array} \\ \begin{array}{c} 117.9 \\ - \end{array} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 18   | Individual lithographic beds occur<br>between 16.50 and 16.76 m, 17.07 and<br>17.43 m, 18.23 and 19.06 m, 19.42 and<br>20.60 m.<br>Lithoclastic calcarenite beds with shaley<br>partings occur between 17.52 and 18.23                                                                      | $\begin{array}{c c} 4 & A \\ \phi & A \\ \phi & A \\ \hline \phi & h \\ \phi & h \\ \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ \phi & h \\ A & 117,2 \\ \hline \phi & h \\ A & 117,2 \\ \hline \phi & h \\ \phi & h$ |              |
| Lithoclastic micrite beds occur between<br>17.45 and 17.52 m, 19.08 and 19.20 m, 116.6<br>19.20 and 19.40 (argillaceous).<br>Dark grey laminar textured, argillaceous<br>to shaley micrite bed occurs between<br>16.76 and 17.02 m.<br>Black, very thin shaley bedding partings<br>black between the shaley bedding black between the shale between the shal                                                                                                                                                                                                                                                                                                                                           | 19     | Lithoclastic micrite beds occur between<br>17.45 and 17.52 m, 19.08 and 19.20 m,<br>19.20 and 19.40 (argillaceous).<br>Dark grey laminar textured, argillaceous<br>to shaley micrite bed occurs between<br>16.76 and 17.02 m.<br>Black, very thin shaley bedding partings                   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| and .45 m, 17.88 and .90 m, 18.11 and $2 \div 116.7$<br>.13 m, 18.75 and .76 m, 19.40 and .42, $3 \div 116.7$<br>.19.61 and .62 m, 20.04 and .06 m, 20.21 $2 \div 19.61$<br>and .23 m, 20.37 and 39 m. $2 \div 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20     | and .45 m, 17.88 and .90 m, 18.11 and<br>.13 m, 18.75 and .76 m, 19.40 and .42,<br>19.61 and .62 m, 20.04 and .06 m, 20.21<br>and .23 m, 20.37 and 39 m.                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | GONTINUED NEXT PAGE                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| DEPTH SCALE LOGGED: RDB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DEPTI  | H SCALE                                                                                                                                                                                                                                                                                     | Colder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOGGED: RDB  |
| 1:50 Golder CHECKED: RDB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 : 50 |                                                                                                                                                                                                                                                                                             | Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CHECKED: RD8 |

MIS-GEO 008 1011270091.GPJ GAL-MISS.GDT 20/6/11



Associates

1:50

1011270091.GPJ

008 Cuc

CHECKED: RDB

|                                                                                    |                 | T: 10-1127-0091<br>IN: See Site Plan | GEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DPHYSICAL LOG OF: DDH10-01<br>DRILLING DATE: Dec. 13, 2010<br>DRILL RIG: CME 55<br>DRILLING CONTRACTOR: Marathon Drilling Co. Ltd. | SHEET 4 OF 4<br>DATUM:                        |
|------------------------------------------------------------------------------------|-----------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| DEPTH SCALE<br>METRES                                                              | DRILLING RECORD | DESCRIPTION                          | ELEV,<br>DEPTH<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GEOPHYSICAL RECORD                                                                                                                 | PIEZOMETER<br>OR<br>STANDPIPE<br>INSTALLATION |
|                                                                                    | <u>ة</u>        | ··· CONTINUED FROM PREVIOUS PAGE ··· |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 40 60 80 5 10 15 20                                                                                                             |                                               |
| 30 -<br>31<br>32<br>33<br>33<br>34<br>35<br>35<br>36<br>37<br>38<br>38<br>38<br>40 |                 | 36.37 m, End Of Borehole.            | $\begin{array}{c} \pm \pm & 30.0 \\ \pm \pm & 30.0 \\ \pm \pm & 30.2 \\ \pm \pm & 104.8 \\ \pm & \pm & 30.5 \\ \pm & \pm & 30.5 \\ \pm & \pm & 30.5 \\ \pm & \pm & -1 \\ \pm & $ |                                                                                                                                    |                                               |
| DEP<br>1:5                                                                         | TH SC           | CALE                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Golder                                                                                                                             | LOGGED: RDB<br>CHECKED: RDB                   |



Morrison Hershfield 2440 Don Reid Drive Ottawa, ON K1H 1E1

Hole Size 6 inch

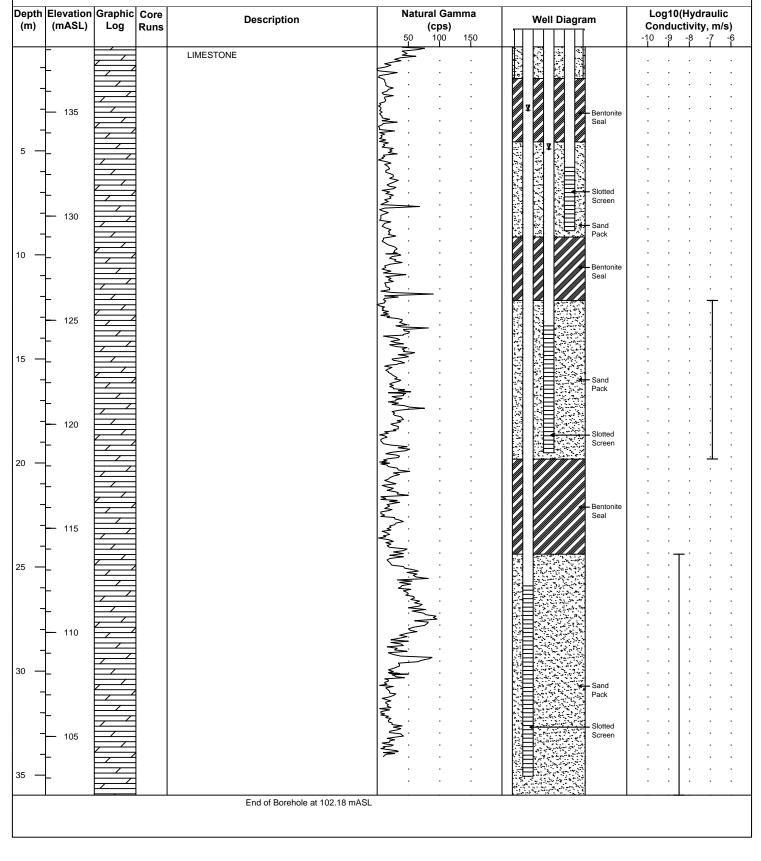
# **BORING NUMBER BH11-02**

Client Cruickshank Construction Limited

 Project Number
 2130039.00

 Well Location
 375321 mE, 4908199 mN
 (UTM Zone 18 NAD 83)

 Date Completed
 12/12/2013
 (UTM Zone 18 NAD 83)


 Project Name
 Elginburg Quarry Expansion ARA Application

 Project Location
 Elginburg Quarry

 Ground Surface Elevation
 138.14 mASL

 Casing Top Elevation
 138.94 mASL

Static Water Level See Well Diagram





Morrison Hershfield 2440 Don Reid Drive Ottawa, ON K1H 1E1

# **BORING NUMBER BH11-03**

Client Cruickshank Construction Limited
Project Number 2130039.00

 Well Location
 \_375109 mE, 4907991 mN
 (UTM Zone 18 NAD 83)

 Date Completed
 \_2011

 Hole Size
 \_6 inch

Project Name Elginburg Quarry Expansion ARA Application

Project Location Elginburg Quarry Ground Surface Elevation 137.72 mASL

Casing Top Elevation \_138.52 mASL

Static Water Level See Well Diagram

Glatic Water Level \_\_\_\_\_\_Bugid

| 50 100 150 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Log10(Hydraulic<br>Conductivity, m/s)<br>-10 -9 -8 -7 -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (cps)      | Image: Constraint of the second state of the second sta | -10       -9       -8       -7       -6         .       .       .       .       .       .         .       .       .       .       .       .         .       .       .       .       .       .         .       .       .       .       .       .         .       .       .       .       .       .         .       .       .       .       .       .         .       .       .       .       .       .         .       .       .       .       .       .         .       .       .       .       .       .         .       .       .       .       .       .         .       .       .       .       .       .         .       .       .       .       .       .         .       .       .       .       .       .         .       .       .       .       .       .         .       .       .       .       .       .         .       .       .       .       .       . |



Morrison Hershfield 2440 Don Reid Drive Ottawa, ON K1H 1E1

# **BORING NUMBER BH11-04**

Client <u>Cruickshank Construction Limited</u> Project Number <u>2130039.00</u> Well Location <u>375437 mE, 4907054 mN</u> (UTM Zone 18 NAD 83)

Date Completed \_2011 Hole Size \_6 inch 
 Project Name
 Elginburg Quarry Expansion ARA Application

 Project Location
 Elginburg Quarry

 Ground Surface Elevation
 125.69 mASL

 Casing Top Elevation
 126.63 mASL

Static Water Level See Well Diagram

| oth<br>I) | Elevation<br>(mASL) | Graphic<br>Log      | Core<br>Runs | Description                 | Natural Gamma<br>(cps)<br>50 100 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Well Diagram | Log<br>Con<br>-10 | 10(H<br>ducti<br>-9 |   | aulic<br>m/s<br>7 |
|-----------|---------------------|---------------------|--------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|---------------------|---|-------------------|
|           | 405                 | <u> </u>            |              | LIMESTONE                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | +                 | Ĺ                   | Ĺ | Ĺ                 |
| -         | — 125               | =                   |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| ŀ         | -                   | $ \longrightarrow $ |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| 1         |                     |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| ┢         | -                   | $\models$           |              |                             | <u>F</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Open Hole    |                   |                     |   |                   |
| ٦         |                     |                     |              |                             | Maria Mind Mind Mind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                   |                     |   |                   |
| ╧         | -                   |                     |              |                             | E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                   |                     |   |                   |
|           | _                   |                     |              |                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                   |                     |   |                   |
| -         | -                   |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     | • |                   |
| ł         | - 120               |                     |              |                             | $\mathbf{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                   |                     |   |                   |
| 1         |                     |                     |              |                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                   |                     |   |                   |
| ┟         | -                   |                     |              |                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                   |                     |   |                   |
|           |                     |                     |              |                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                   |                     |   |                   |
| ┦         | -                   |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
|           | -                   |                     |              |                             | E .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |                     |   |                   |
| ┥         |                     |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| ┢         | -                   |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| 1         |                     |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| ł         | - 115               |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| I         |                     | $\vdash$            |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| ł         | -                   |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| ļ         | -                   | <u> </u>            |              |                             | $\leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                   |                     |   |                   |
| 1         |                     | <u> </u>            |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| ł         | -                   |                     |              |                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                   |                     |   |                   |
| 1         |                     | $\vdash$            |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| ł         | -                   | $\models$           |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| l         | — 110               |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| ſ         | - 110               |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   | •                   | • | •                 |
|           | _                   | $ \longrightarrow $ |              |                             | $\mathbf{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | · ·               | •                   | • | •                 |
| ł         |                     | <b></b>             |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   | •                   | • | •                 |
| ┝         | -                   |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   | •                   | • | •                 |
| 1         |                     |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   | •                   | • | •                 |
| ł         | -                   |                     |              |                             | E · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                   | •                   | • | •                 |
| L         | _                   |                     |              |                             | ≩ · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                   | •                   | • | •                 |
| ł         |                     |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   | •                   | • |                   |
| ŀ         | - 105               |                     |              |                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                   |                     |   |                   |
| 1         |                     |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| ŀ         | -                   |                     |              |                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                   |                     |   |                   |
|           |                     |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| ſ         | -                   |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| ļ         | -                   |                     |              |                             | Mary All Mary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                   |                     |   |                   |
| ł         |                     |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| ł         | -                   |                     |              |                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                   |                     |   |                   |
| 1         |                     |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| ł         | - 100               | $\overline{}$       |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| L         | _                   |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| ſ         | -                   |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
| ļ         | -                   | <u> </u>            |              |                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                   | •                   | • |                   |
| ł         |                     | <u> </u>            |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   | •                   | • |                   |
| ┝         | -                   |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   | •                   | • |                   |
| 1         |                     |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   | •                   | • | •                 |
| t         | -                   | É                   |              |                             | how how have a second sec |              | ·                 |                     |   |                   |
| l         | - 95                |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | ·                 |                     |   |                   |
| ſ         | . 90                | $\vdash$            |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | ·                 |                     |   |                   |
| ŀ         | -                   | $\vdash$            | 1            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | ·                 |                     |   |                   |
| 1         |                     | Ĺ                   |              |                             | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | ·                 |                     |   |                   |
| ┟         | -                   | $\models$           |              |                             | IS .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | ·                 |                     |   |                   |
| 1         |                     |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | ·                 | •                   | • | •                 |
| ╞         | -                   |                     |              |                             | $\mathbf{z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | ·                 | •                   | • | •                 |
|           | _                   |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 1 .               | •                   | • | •                 |
| ┦         | -                   |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 1 .               | •                   | • | •                 |
| Ļ         | - 90                |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 1 .               | •                   | • | •                 |
| -         |                     | ·                   | 1            | End of Borehole at 89.69 mA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |
|           |                     |                     |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |                     |   |                   |



# **BORING NUMBER BH12-01**

Client <u>Cruickshank Construction Limited</u> Project Number <u>2130039.00</u> Well Location <u>375319 mE, 4907602 mN</u> (UTM zc

 Well Location
 \_375319 mE, 4907602 mN
 (UTM Zone 18 NAD 83)

 Date Completed
 \_12/14/2012

Hole Size 4 inch

 Project Name
 Elginburg Quarry Expansion ARA Application

 Project Location
 Elginburg Quarry

 Ground Surface Elevation
 133.20 mASL

 Casing Top Elevation
 133.84 mASL

 Static Water Level
 See Well Diagram

Depth Elevation Graphic Core Natural Gamma Log10(Hydraulic Description Well Diagram (mASL) Conductivity, m/s) (m) Log (cps) Runs 50 100 150 -10 -9 -8 -6 LIMESTONE Ē Open Hole 130 5 125 MANA WIN MAN MININA MANA 10 120 15 115 20 110 25 105 30 Pw A . 100 End of Borehole at 98.50 mASL



# **BORING NUMBER BH12-02**

Client Cruickshank Construction Limited
Project Number 2130039.00

Hole Size 6 inch

 Project Name
 Elginburg Quarry Expansion ARA Application

 Project Location
 Elginburg Quarry

 Ground Surface Elevation
 128.90 mASL

 Casing Top Elevation
 129.51 mASL

Static Water Level See Well Diagram

| Depth<br>(m)           | Elevation<br>(mASL)        | Graphic<br>Log | Core<br>Runs | Description                   | Natural Gamma           (cps)           50         100         150                                                                                                                                                                                                                                                                                                                                                    | Well Diagram                                           | Log10(Hydraulic<br>Conductivity, m/s)<br>-10 -9 -8 -7 -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|----------------------------|----------------|--------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -<br>-<br>5 —          | -<br>-<br>125<br>          |                |              | LIMESTONE                     | Wind May Min Mining                                                                                                                                                                                                                                                                                                                                                                                                   | Bentonite<br>Seal                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -<br>-<br>10 —<br>-    | -<br>-<br>- 120<br>-<br>-  |                |              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -<br>15 —<br>-<br>-    | 115<br><br><br>            |                |              |                               | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                 | Pack<br>Pack<br>Slotted<br>Screen<br>Bentonite<br>Seal |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20 —                   | - 110<br><br><br><br>- 105 |                |              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                       | Sand<br>Pack                                           | ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·       ·       ·         ·       ·       · <t< td=""></t<> |
| 25 —<br>-<br>-<br>-    | -<br>-<br>-<br>-<br>- 100  |                |              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                       | Bentonite<br>Seal                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 30 —<br>-<br>-<br>35 — | <br><br><br>95<br>         |                |              |                               | N         .         .           .         .         .           .         .         .           .         .         .           .         .         .           .         .         .           .         .         .           .         .         .           .         .         .           .         .         .           .         .         .           .         .         .           .         .         . | Sand<br>Pack<br>Slotted<br>Screen                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | L                          |                | 1            | End of Borehole at 92.94 mASL | 1                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        | <u>I</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



# **BORING NUMBER BH12-03**

Client Cruickshank Construction Limited
Project Number 2130039.00

 Well Location
 374786 mE, 4906954 mN
 (UTM Zone 18 NAD 83)

 Date Completed
 12/12/2013

 Hole Size
 6 inch

 Project Name
 Elginburg Quarry Expansion ARA Application

 Project Location
 Elginburg Quarry

 Ground Surface Elevation
 131.30 mASL

 Casing Top Elevation
 131.80 mASL

Static Water Level See Well Diagram

| (m) (m) (mASL) Log Runs Description (m) |
|-----------------------------------------------------------------------------|
| End of Borehole at 95.34 mASL                                               |



# **BORING NUMBER BH13-01**

Client Cruickshank Construction Limited
Project Number 2130039.00

Hole Size 6 inch

 Project Name
 Elginburg Quarry Expansion ARA Application

 Project Location
 Elginburg Quarry

 Ground Surface Elevation
 138.15 mASL

 Casing Top Elevation
 138.61 mASL

 Static Water Level
 See Well Diagram

| n)  | (mASL)           | Graphic<br>Log | Core<br>Runs | Description                                                                            |                 | ral Gamma<br>(cps)<br>100 150 | Well Diagram      | Log10(Hydraulic<br>Conductivity, m/s)<br>-11 -10 -9 -8 -7 -(                                                                                    |
|-----|------------------|----------------|--------------|----------------------------------------------------------------------------------------|-----------------|-------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|     | _                |                |              | TOPSOIL                                                                                | 50              | 100 150                       |                   |                                                                                                                                                 |
| _   |                  |                | 1            |                                                                                        |                 | <b>-</b>                      |                   |                                                                                                                                                 |
| ſ   | -                |                |              | LIMESTONE. Light to dark blue grey. Solid,<br>medium soft to hard, micritic to medium  | - ·             | • •                           |                   |                                                                                                                                                 |
| -   | -                |                | 2            | grained. Blocky to fractured with smooth to                                            |                 | • •                           |                   |                                                                                                                                                 |
| _   |                  | <u> </u>       |              | rough fractures. Occasionally interbedded with                                         | <u> </u>        | • •                           | Benton<br>Seal    |                                                                                                                                                 |
|     | - 135            |                | 3            | lime mudstone.                                                                         | <u> </u>        | _ · ·                         |                   |                                                                                                                                                 |
| _   | _                | =              |              |                                                                                        | <b>E</b>        |                               | Benton<br>Seal    | ite                                                                                                                                             |
|     |                  | <u> </u>       |              |                                                                                        |                 |                               | Seal              |                                                                                                                                                 |
| 5 — | -                | , /            | 4            |                                                                                        | 5               |                               |                   |                                                                                                                                                 |
| _   |                  | $\vdash$       |              |                                                                                        |                 | <u> </u>                      |                   |                                                                                                                                                 |
|     | _                |                | 5            |                                                                                        | ζ.              |                               |                   |                                                                                                                                                 |
| -   | _                |                |              |                                                                                        | <u>₹</u> .      |                               |                   |                                                                                                                                                 |
|     |                  |                | 6            |                                                                                        | ₹.              |                               |                   | · T· Piezometer                                                                                                                                 |
|     | <del>-</del> 130 |                | 0            |                                                                                        | 2               | • •                           |                   |                                                                                                                                                 |
| -   | _                |                |              |                                                                                        | ₹.              | • •                           |                   |                                                                                                                                                 |
|     |                  |                | 7            |                                                                                        | <u>ج</u> :      | • •                           |                   |                                                                                                                                                 |
| _   | -                |                |              |                                                                                        |                 | • •                           | Slotted<br>Screen |                                                                                                                                                 |
| 4   | _                |                | 8            |                                                                                        | ξ.              |                               |                   |                                                                                                                                                 |
|     |                  |                |              |                                                                                        | 2               |                               |                   |                                                                                                                                                 |
| ┥   | _                |                |              |                                                                                        | 3               |                               | Sand              |                                                                                                                                                 |
|     | 105              | $\models$      | 9            | LIMESTONE. Light to dark blue grey. Solid,                                             | <b>N</b> .      |                               | Sand              |                                                                                                                                                 |
| Ì   | - 125            | $ \leq $       |              | medium soft to hard, micritic to medium<br>grained. Blocky to fractured with smooth to | <del>°</del> ∼. |                               |                   |                                                                                                                                                 |
| 4   | _                | $\models$      | 10           | rough fractures. Extensive lime mudstone                                               | <u>≥</u> .      |                               |                   |                                                                                                                                                 |
|     |                  | É              |              | bedding (up to 10 cm in thickness).                                                    | 2               | • •                           |                   |                                                                                                                                                 |
| t   | -                | $\vdash$       |              |                                                                                        | 3               |                               |                   |                                                                                                                                                 |
| 4   | _                | É              | 11           |                                                                                        | 4               | • •                           |                   |                                                                                                                                                 |
| ſ   |                  |                |              |                                                                                        | <b> </b>        |                               |                   |                                                                                                                                                 |
| ┥   | -                | É              | 12           |                                                                                        | <u> </u>        | • •                           |                   |                                                                                                                                                 |
|     | 400              | $\vdash$       |              |                                                                                        | 5               | • •                           |                   |                                                                                                                                                 |
| 1   | - 120            | Éz             | 13           |                                                                                        | E.              |                               |                   |                                                                                                                                                 |
| 4   | _                |                | 13           |                                                                                        | 2               |                               |                   |                                                                                                                                                 |
|     |                  | É              |              | LIMESTONE. Light to dark blue grey. Solid,                                             | Ę               |                               |                   |                                                                                                                                                 |
| ŀ   | -                |                | 14           | medium soft to hard, micritic to medium<br>grained. Blocky to fractured with smooth to | 2               |                               |                   |                                                                                                                                                 |
| 4   | _                |                |              | rough fractures. Occasional lime mudstone                                              | 5               |                               |                   |                                                                                                                                                 |
|     |                  |                | 15           | interbedding (up to 3 cm in thickness).                                                | 5               | • •                           |                   |                                                                                                                                                 |
| +   | -                |                |              |                                                                                        | <b>7</b>        |                               | Bentoni<br>Seel   | ite · · · ·                                                                                                                                     |
|     | 145              |                |              |                                                                                        | 2               |                               | Seal              | $  \cdot + \cdot \cdot$                                                                                                                         |
| ľ   | - 115            |                | 16           |                                                                                        | <u> </u>        | • •                           |                   |                                                                                                                                                 |
| +   | -                |                |              |                                                                                        | <u></u>         | • •                           |                   |                                                                                                                                                 |
|     |                  | $\vdash$       | 17           |                                                                                        | $\geq$          |                               |                   |                                                                                                                                                 |
| 7   | -                |                |              | Dark grey silty clay layer present between 24.69 m and 24.89 m.                        | - E             |                               |                   |                                                                                                                                                 |
| 4   | _                | <b>—</b> ——    | 18           | 21.00 m and 27.00 m.                                                                   | 2               |                               |                   |                                                                                                                                                 |
|     |                  | $\leq$         | 18           |                                                                                        | 5               |                               |                   |                                                                                                                                                 |
| Ŧ   | -                | $\vdash$       |              | LIMESTONE. Light to dark blue grey. Solid,                                             | 🗲               | <u> </u>                      |                   | · · · ·                                                                                                                                         |
| _   | - 110            | É              | 19           | medium soft to hard, micritic to medium<br>grained. Blocky to fractured with smooth to | Ē               |                               |                   |                                                                                                                                                 |
| ſ   | 110              | $\vdash =$     |              | rough fractures. Contains grey-green                                                   |                 |                               |                   | $   \cdot \cdot \cdot \cdot   T \cdot $                                                                                                         |
| +   | -                |                | 20           | argillaceous lime mudstone interbedding.                                               | ١Ž              |                               |                   |                                                                                                                                                 |
|     | _                | É              |              |                                                                                        |                 |                               |                   |                                                                                                                                                 |
| 1   | _                |                | 21           | LIMESTONE. Light to dark blue grey. Solid,                                             | 5               | • •                           | Sand              |                                                                                                                                                 |
| +   | -                |                | 21           | medium soft to hard, micritic to medium                                                | 2               |                               | Pack              |                                                                                                                                                 |
|     |                  |                |              | grained. Blocky to fractured with smooth to<br>rough fractures.                        | 3               | <b>-</b>                      |                   |                                                                                                                                                 |
| 7   | -                |                | 22           |                                                                                        | <b>?</b> .      |                               | Slotted           |                                                                                                                                                 |
| 4   | - 105            |                |              |                                                                                        | 3               |                               | Screen            |                                                                                                                                                 |
|     |                  |                | 23           |                                                                                        | <b>`</b> ·      |                               |                   |                                                                                                                                                 |
| +   | -                |                |              |                                                                                        | ·               | • •                           |                   |                                                                                                                                                 |
|     |                  |                | 24           |                                                                                        |                 |                               |                   |                                                                                                                                                 |
|     |                  |                |              | End of Borehole at 103.10 mASL                                                         |                 |                               |                   | Hydraulic Conductivity are from<br>Packer Test unless noted<br>otherwise.<br>Packer Test: No flow assumed<br>equal to 1 x 10 <sup>-10</sup> m/s |

APPENDIX C: Water Well Information System (Well Records)

| BH ID   | Easting | Northing | Ground<br>Surface<br>(masl) |       | # of<br>Form-<br>ation | Form-ation<br>Mat1 Codes* | Formation Contact Elevations (masl) | #<br>Water<br>Found | Water Found<br>Elevations (masl) | Heads<br>(masl) |
|---------|---------|----------|-----------------------------|-------|------------------------|---------------------------|-------------------------------------|---------------------|----------------------------------|-----------------|
| 2201087 | 373135  | 4906139  | 128.66                      | 20.73 | 2                      | 5 15                      | 128.66 127.44 107.94                | 1                   | 108.55                           | 111.9           |
| 2201088 | 373224  | 4906048  | 125.66                      | 20.73 | 2                      | 5 15                      | 125.66 124.45 104.94                | 1                   | 107.38                           | 123.84          |
| 2201090 | 373290  | 4906137  | 126                         | 43.28 | 3                      | 2 5 15                    | 126.00 125.70 125.09 82.72          | 3                   | 119.90 103.14 83.94              | 119.6           |
| 2201094 | 373401  | 4906161  | 126                         | 14.02 | 3                      | 2 5 15                    | 126.00 125.70 123.56 111.98         | 2                   | 114.42 113.20                    | 115.03          |
| 2201096 | 373441  | 4906155  | 126.87                      | 19.81 | 2                      | 17 15                     | 126.87 122.29 107.05                | 1                   | 113.76                           | 122.29          |
| 2201098 | 373779  | 4906155  | 125.03                      | 18.29 | 2                      | 2 15                      | 125.03 124.42 106.74                | 1                   | 109.79                           | 122.9           |
| 2201099 | 373705  | 4906049  | 126.98                      | 35.36 | 1                      | 15                        | 126.98 91.62                        | 3                   | 116.31 102.59 94.97              | 116.31          |
| 2201103 | 374778  | 4905199  | 90                          | 29.87 | 2                      | 17 15                     | 90.00 83.29 60.13                   | 1                   | 66.84                            | 77.81           |
| 2201105 | 374974  | 4905641  | 95.48                       | 12.8  | 2                      | 5 15                      | 95.48 93.65 82.68                   | 1                   | 85.73                            | 90              |
| 2201106 | 375035  | 4905253  | 93.04                       | 27.13 | 2                      | 5 15                      | 93.04 89.99 65.92                   | 1                   | 70.18                            | 85.73           |
| 2201108 | 375172  | 4905371  | 90.41                       | 12.5  | 1                      | 15                        | 90.41 77.91                         | 1                   | 78.22                            | 87.06           |
| 2201112 | 375591  | 4906152  | 101.6                       | 22.86 | 2                      | 5 15                      | 101.60 100.99 78.74                 | 1                   | 83.32                            | 86.36           |
| 2201113 | 375494  | 4906196  | 90.37                       | 24.69 | 2                      | 17 15                     | 90.37 87.33 65.68                   | 1                   | 65.99                            | 83.97           |
| 2201115 | 375534  | 4906015  | 96.36                       | 23.47 | 2                      | 5 15                      | 96.36 94.53 72.89                   | 1                   | 74.72                            | 82.95           |
| 2201118 | 375494  | 4906194  | 90.39                       | 19.81 | 3                      | 2 17 15                   | 90.39 89.78 83.38 70.58             | 1                   | 72.1                             | 78.2            |
| 2201124 | 375557  | 4906195  | 95.93                       | 15.24 | 3                      | 2 15 15                   | 95.93 95.01 89.53 80.69             | 1                   | 82.52                            | 85.87           |
| 2201126 | 375565  | 4906253  | 93.43                       | 14.63 | 1                      | 15                        | 93.43 78.80                         | 1                   | 83.98                            | 83.98           |
| 2201130 | 376215  | 4906126  | 97.32                       | 18.29 | 1                      | 15                        | 97.32 79.03                         | 1                   | 82.08                            | 86.65           |
| 2201137 | 376680  | 4906294  | 115.77                      | 28.65 | 1                      | 15                        | 115.77 87.12                        | 1                   | 104.19                           | 108.46          |
| 2201139 | 376595  | 4906302  | 107.4                       | 17.98 | 3                      | 2 17 15                   | 107.40 104.96 103.74 89.41          | 1                   | 97.64                            | 100.08          |
| 2201142 | 376998  | 4906316  | 130                         | 23.47 | 2                      | 5 15                      | 130.00 128.48 106.53                | 1                   | 116.28                           | 120.86          |
| 2201146 | 376938  | 4906307  | 130                         | 43.59 | 1                      | 15                        | 130.00 86.41                        | 1                   | 111.71                           | 111.71          |
| 2201147 | 377094  | 4906249  | 130                         | 14.02 | 2                      | 5 15                      | 130.00 126.95 115.98                | 1                   | 117.81                           | 128.17          |
| 2201148 | 376710  | 4906296  | 117.35                      | 31.7  | 2                      | 9 15                      | 117.35 116.75 85.66                 | 1                   | 89.92                            | 112.48          |
| 2201150 | 377088  | 4906262  | 130                         | 16.76 | 2                      | 5 15                      | 130.00 126.34 113.24                | 1                   | 116.89                           | 116.89          |
| 2201154 | 377095  | 4905900  | 130                         | 13.41 | 1                      | 15                        | 130.00 116.59                       | 1                   | 117.81                           | 127.56          |
| 2201158 | 377092  | 4906068  | 130                         | 12.8  | 2                      | 2 15                      | 130.00 129.70 117.20                | 1                   | 118.42                           | 126.65          |
| 2201170 | 377092  | 4906218  | 130                         | 19.81 | 2                      | 5 15                      | 130.00 128.78 110.19                | 1                   | 118.42                           | 119.03          |



| BH ID   | Easting | Northing | Ground<br>Surface<br>(masl) |       | # of<br>Form-<br>ation | Form-ation<br>Mat1 Codes* | Formation Contact Elevations (masl) | #<br>Water<br>Found | Water Found<br>Elevations (masl) | Heads<br>(masl) |
|---------|---------|----------|-----------------------------|-------|------------------------|---------------------------|-------------------------------------|---------------------|----------------------------------|-----------------|
| 2201174 | 377093  | 4906280  | 130                         | 21.95 | 2                      | 5 15                      | 130.00 128.17 108.05                | 1                   | 111.1                            | 114.76          |
| 2201176 | 376939  | 4906311  | 130                         | 59.74 | 3                      | 5 15 21                   | 130.00 128.17 71.48 70.26           | 1                   | 71.48                            | 99.52           |
| 2201182 | 377598  | 4906338  | 131                         | 15.24 | 2                      | 5 15                      | 131.00 130.39 115.76                | 1                   | 117.28                           | 121.25          |
| 2201183 | 377205  | 4905705  | 130                         | 19.51 | 2                      | 9 15                      | 130.00 128.78 110.49                | 1                   | 112.32                           | 120.25          |
| 2201184 | 377196  | 4906023  | 130                         | 23.47 | 2                      | 17 15                     | 130.00 126.95 106.53                | 1                   | 108.66                           | 122.38          |
| 2201185 | 377596  | 4906341  | 131                         | 15.24 | 1                      | 15                        | 131.00 115.76                       | 1                   | 120.33                           | 128.56          |
| 2201188 | 377184  | 4905869  | 130                         | 26.82 | 2                      | 17 15                     | 130.00 127.87 103.18                | 1                   | 107.14                           | 122.99          |
| 2201190 | 377031  | 4906334  | 130                         | 25.91 | 2                      | 5 15                      | 130.00 126.95 104.09                | 1                   | 114.76                           | 114.76          |
| 2201193 | 377212  | 4906331  | 131                         | 20.42 | 2                      | 17 15                     | 131.00 125.82 110.58                | 1                   | 124.6                            | 124.6           |
| 2201214 | 377142  | 4906295  | 130                         | 19.51 | 2                      | 5 15                      | 130.00 128.48 110.49                | 1                   | 111.71                           | 120.86          |
| 2201217 | 377135  | 4906323  | 130.21                      | 21.03 | 2                      | 5 15                      | 130.21 129.30 109.18                | 1                   | 113.45                           | 125.64          |
| 2201218 | 377147  | 4906245  | 130.02                      | 20.42 | 2                      | 5 15                      | 130.02 129.10 109.60                | 1                   | 113.25                           | 119.35          |
| 2201219 | 377140  | 4906262  | 130                         | 20.73 | 2                      | 5 15                      | 130.00 128.78 109.27                | 1                   | 117.81                           | 118.11          |
| 2201223 | 377194  | 4906322  | 131                         | 20.12 | 2                      | 1 15                      | 131.00 130.39 110.88                | 1                   | 123.68                           | 127.95          |
| 2201226 | 377183  | 4905220  | 130                         | 15.24 | 3                      | 2 15 15                   | 130.00 129.39 123.90 114.76         | 2                   | 126.95 119.33                    | 129.09          |
| 2201227 | 377137  | 4906279  | 130                         | 17.37 | 2                      | 5 15                      | 130.00 128.48 112.63                | 1                   | 114.15                           | 123.6           |
| 2201229 | 377095  | 4906282  | 130                         | 28.04 | 2                      | 2 15                      | 130.00 129.70 101.96                | 1                   | 102.87                           | 116.28          |
| 2201232 | 377171  | 4905353  | 130                         | 9.75  | 2                      | 2 15                      | 130.00 129.70 120.25                | 1                   | 124.21                           | 128.48          |
| 2201233 | 377352  | 4906318  | 132                         | 13.11 | 3                      | 2 17 15                   | 132.00 131.09 129.87 118.89         | 1                   | 120.42                           | 130.48          |
| 2201234 | 377446  | 4906321  | 132                         | 17.37 | 2                      | 17 15                     | 132.00 129.26 114.63                | 1                   | 124.99                           | 129.56          |
| 2201235 | 377185  | 4905242  | 130                         | 20.73 | 1                      | 15                        | 130.00 109.27                       | 1                   | 110.49                           | 120.86          |
| 2201237 | 377179  | 4905498  | 130                         | 20.42 | 2                      | 24 15                     | 130.00 116.28 109.58                | 1                   | 112.32                           | 124.51          |
| 2201238 | 377165  | 4905217  | 130                         | 22.86 | 2                      | 17 15                     | 130.00 124.21 107.14                | 1                   | 108.36                           | 117.5           |
| 2201240 | 377620  | 4906264  | 131                         | 24.99 | 3                      | 2 17 15                   | 131.00 130.70 129.78 106.01         | 1                   | 107.23                           | 121.86          |
| 2201241 | 377777  | 4906328  | 129.41                      | 22.56 | 3                      | 2 17 15                   | 129.41 128.80 126.97 106.86         | 1                   | 108.69                           | 125.15          |
| 2201244 | 377598  | 4906338  | 131                         | 24.38 | 3                      | 2 17 15                   | 131.00 130.39 129.48 106.62         | 1                   | 107.84                           | 125.51          |
| 2201246 | 377531  | 4906325  | 131                         | 22.56 | 2                      | 24 15                     | 131.00 115.15 108.44                | 1                   | 112.71                           | 126.73          |
| 2201316 | 373468  | 4906265  | 128                         | 22.25 | 2                      | 2 15                      | 128.00 127.70 105.75                | 1                   | 108.19                           | 118.86          |
| 2201317 | 373214  | 4906409  | 130.8                       | 20.42 | 2                      | 2 15                      | 130.80 129.89 110.38                | 1                   | 112.51                           | 126.53          |
| 2201318 | 373261  | 4906386  | 130                         | 67.06 | 3                      | 5 15 15                   | 130.00 129.09 127.26 62.94          | 1                   | 62.94                            | 76.66           |



| BH ID   | Easting | Northing | Ground<br>Surface<br>(masl) | Total<br>Depth<br>(m) | # of<br>Form-<br>ation | Form-ation<br>Mat1 Codes* | Formation Contact Elevations (masl) | #<br>Water<br>Found | Water Found<br>Elevations (masl) | Heads<br>(masl) |
|---------|---------|----------|-----------------------------|-----------------------|------------------------|---------------------------|-------------------------------------|---------------------|----------------------------------|-----------------|
| 2201319 | 373590  | 4908218  | 129.55                      | 21.64                 | 2                      | 2 15                      | 129.55 129.25 107.91                | 1                   | 110.35                           | 119.8           |
| 2201321 | 372988  | 4906537  | 135                         | 22.25                 | 2                      | 17 15                     | 135.00 133.17 112.75                | 1                   | 116.71                           | 120.67          |
| 2201324 | 373081  | 4906544  | 135.16                      | 15.85                 | 3                      | 2 17 15                   | 135.16 134.85 132.11 119.31         | 1                   | 130.89                           | 133.63          |
| 2201325 | 373608  | 4906253  | 128                         | 18.59                 | 2                      | 17 15                     | 128.00 127.39 109.41                | 1                   | 120.38                           | 125.56          |
| 2201326 | 372923  | 4906581  | 136                         | 15.24                 | 2                      | 5 15                      | 136.00 135.70 120.76                | 1                   | 126.55                           | 135.09          |
| 2201328 | 374054  | 4906237  | 116.14                      | 25.91                 | 3                      | 5 17 15                   | 116.14 115.83 113.70 90.23          | 1                   | 91.75                            | 112.48          |
| 2201329 | 374247  | 4906254  | 125                         | 26.82                 | 1                      | 15                        | 125.00 98.18                        | 1                   | 98.79                            | 110.06          |
| 2201330 | 374119  | 4906233  | 123.14                      | 30.48                 | 3                      | 2 17 15                   | 123.14 122.83 121.61 92.66          | 1                   | 113.99                           | 113.99          |
| 2201331 | 374620  | 4906251  | 108.1                       | 20.12                 | 4                      | 2 12 14 15                | 108.10 107.79 105.35 102.31 87.98   | 2                   | 95.30 89.81                      | 93.77           |
| 2201332 | 375528  | 4906306  | 89.17                       | 15.85                 | 2                      | 5 18                      | 89.17 75.75 73.32                   | 1                   | 73.93                            | 89.17           |
| 2201333 | 375481  | 4906362  | 89                          | 13.72                 | 2                      | 2 21                      | 89.00 87.17 75.28                   | 1                   | 76.81                            | 83.51           |
| 2201334 | 375197  | 4906291  | 89.05                       | 16.15                 | 2                      | 5 21                      | 89.05 88.13 72.89                   | 1                   | 74.42                            | 85.39           |
| 2201335 | 375483  | 4906299  | 89                          | 28.65                 | 2                      | 5 21                      | 89.00 66.75 60.35                   | 1                   | 61.87                            | 88.7            |
| 2201336 | 375598  | 4906300  | 91.89                       | 22.25                 | 2                      | 5 21                      | 91.89 73.60 69.64                   | 2                   | 72.08 70.55                      | 86.4            |
| 2201337 | 375643  | 4906305  | 93.76                       | 26.52                 | 1                      | 15                        | 93.76 67.24                         | 1                   | 68.76                            | 80.04           |
| 2201338 | 375505  | 4906286  | 89.08                       | 26.21                 | 3                      | 2 15 21                   | 89.08 88.16 64.70 62.87             | 1                   | 70.79                            | 79.94           |
| 2201339 | 376160  | 4906317  | 113.75                      | 23.47                 | 1                      | 15                        | 113.75 90.28                        | 1                   | 96.99                            | 103.09          |
| 2201340 | 376272  | 4908423  | 132.69                      | 21.95                 | 2                      | 5 15                      | 132.69 132.39 110.75                | 1                   | 123.55                           | 129.95          |
| 2201341 | 376046  | 4906394  | 114.43                      | 29.26                 | 2                      | 5 15                      | 114.43 114.13 85.17                 | 1                   | 87                               | 104.07          |
| 2201342 | 376105  | 4906346  | 114.86                      | 28.35                 | 2                      | 5 15                      | 114.86 113.64 86.52                 | 1                   | 87.43                            | 104.5           |
| 2201343 | 376009  | 4906309  | 115                         | 25.6                  | 2                      | 5 15                      | 115.00 113.78 89.40                 | 1                   | 90.62                            | 101.59          |
| 2201344 | 376032  | 4906317  | 115.6                       | 26.21                 | 2                      | 5 15                      | 115.60 114.38 89.38                 | 1                   | 90.6                             | 101.58          |
| 2201345 | 376020  | 4906349  | 115.49                      | 27.43                 | 2                      | 5 15                      | 115.49 113.96 88.05                 | 1                   | 88.97                            | 101.77          |
| 2201346 | 376112  | 4906315  | 115                         | 26.52                 | 2                      | 5 15                      | 115.00 113.78 88.48                 | 1                   | 89.7                             | 103.72          |
| 2201347 | 376133  | 4906350  | 115                         | 28.96                 | 2                      | 5 15                      | 115.00 113.48 86.04                 | 1                   | 87.57                            | 99.76           |
| 2201348 | 376085  | 4906371  | 114.18                      | 24.38                 | 2                      | 5 15                      | 114.18 112.96 89.79                 | 1                   | 90.71                            | 101.99          |
| 2201349 | 376038  | 4906389  | 114.99                      | 25.3                  | 2                      | 5 15                      | 114.99 113.46 89.69                 | 1                   | 90.6                             | 101.88          |
| 2201350 | 376185  | 4906339  | 112.83                      | 26.52                 | 2                      | 5 15                      | 112.83 111.61 86.31                 | 1                   | 87.23                            | 101.55          |
| 2201351 | 376875  | 4906360  | 125.64                      | 19.81                 | 1                      | 15                        | 125.64 105.83                       | 1                   | 106.75                           | 113.45          |
| 2201352 | 377269  | 4908216  | 116.93                      | 27.74                 | 2                      | 5 15                      | 116.93 115.11 89.20                 | 1                   | 98.65                            | 106.27          |



| BH ID   | Easting | Northing | Ground<br>Surface<br>(masl) |       | # of<br>Form-<br>ation | Form-ation<br>Mat1 Codes* | Formation Contact Elevations (masl) | #<br>Water<br>Found | Water Found<br>Elevations (masl) | Heads<br>(masl) |
|---------|---------|----------|-----------------------------|-------|------------------------|---------------------------|-------------------------------------|---------------------|----------------------------------|-----------------|
| 2201353 | 377124  | 4908424  | 123.9                       | 25.6  | 2                      | 5 15                      | 123.90 123.59 98.29                 | 2                   | 120.85 99.51                     | 111.71          |
| 2201354 | 377066  | 4906407  | 130                         | 20.73 | 2                      | 5 15                      | 130.00 128.78 109.27                | 1                   | 110.19                           | 122.38          |
| 2201355 | 377088  | 4906384  | 130                         | 22.86 | 2                      | 5 15                      | 130.00 129.09 107.14                | 1                   | 108.66                           | 120.86          |
| 2201356 | 377063  | 4907076  | 97.17                       | 17.07 | 3                      | 5 17 15                   | 97.17 95.95 94.12 80.10             | 1                   | 81.01                            | 94.73           |
| 2201357 | 376998  | 4906381  | 129.37                      | 21.03 | 2                      | 9 15                      | 129.37 128.46 108.34                | 1                   | 110.17                           | 119.92          |
| 2201358 | 377050  | 4908317  | 125                         | 25.6  | 2                      | 2 15                      | 125.00 124.09 99.40                 | 1                   | 100.92                           | 119.21          |
| 2201359 | 377091  | 4907279  | 109.52                      | 19.51 | 3                      | 5 17 15                   | 109.52 108.30 106.48 90.02          | 1                   | 92.76                            | 104.95          |
| 2201360 | 377053  | 4907598  | 105.34                      | 22.25 | 2                      | 5 15                      | 105.34 104.73 83.09                 | 1                   | 83.4                             | 96.81           |
| 2201362 | 377042  | 4908067  | 120                         | 29.26 | 2                      | 2 15                      | 120.00 119.39 90.74                 | 1                   | 92.57                            | 104.76          |
| 2201363 | 377032  | 4908420  | 125                         | 24.38 | 2                      | 5 15                      | 125.00 123.78 100.62                | 1                   | 112.81                           | 115.86          |
| 2201364 | 377047  | 4907929  | 115.1                       | 21.34 | 2                      | 17 15                     | 115.10 112.05 93.76                 | 1                   | 96.2                             | 112.35          |
| 2201365 | 377096  | 4906740  | 118.1                       | 56.08 | 3                      | 17 15 15                  | 118.10 114.44 65.07 62.02           | 1                   | 63.54                            | 93.72           |
| 2201366 | 377071  | 4906440  | 130.99                      | 26.21 | 2                      | 5 15                      | 130.99 129.77 104.78                | 1                   | 110.57                           | 121.85          |
| 2201367 | 377043  | 4908370  | 125                         | 17.37 | 3                      | 2 17 15                   | 125.00 124.39 122.56 107.63         | 1                   | 108.54                           | 117.68          |
| 2201368 | 376955  | 4906379  | 128.77                      | 43.59 | 2                      | 17 15                     | 128.77 123.28 85.18                 | 2                   | 108.95 85.79                     | 100.11          |
| 2201369 | 377110  | 4907792  | 105.3                       | 22.86 | 2                      | 5 15                      | 105.30 105.00 82.44                 | 1                   | 87.01                            | 99.21           |
| 2201370 | 377171  | 4906428  | 131                         | 22.56 | 2                      | 5 15                      | 131.00 128.56 108.44                | 1                   | 111.19                           | 124.9           |
| 2201371 | 377163  | 4906393  | 131                         | 21.34 | 2                      | 5 15                      | 131.00 127.95 109.66                | 1                   | 112.71                           | 124.9           |
| 2201372 | 377092  | 4908419  | 124.08                      | 26.52 | 2                      | 5 15                      | 124.08 122.86 97.56                 | 1                   | 107.32                           | 121.64          |
| 2201373 | 377147  | 4906664  | 127.12                      | 25.6  | 2                      | 5 15                      | 127.12 124.98 101.51                | 1                   | 109.74                           | 121.02          |
| 2201374 | 377118  | 4907639  | 108.27                      | 28.96 | 2                      | 5 15                      | 108.27 107.36 79.31                 | 1                   | 88.46                            | 105.22          |
| 2201375 | 377139  | 4907311  | 109.3                       | 31.39 | 3                      | 5 17 15                   | 109.30 108.39 107.17 77.91          | 1                   | 98.63                            | 105.03          |
| 2201376 | 377051  | 4908395  | 125                         | 27.13 | 2                      | 5 15                      | 125.00 122.87 97.87                 | 1                   | 98.79                            | 112.81          |
| 2201377 | 377220  | 4908445  | 121.08                      | 27.43 | 2                      | 2 15                      | 121.08 119.25 93.65                 | 1                   | 108.28                           | 112.24          |
| 2201378 | 377147  | 4906627  | 128.57                      | 28.96 | 3                      | 2 17 15                   | 128.57 127.96 126.44 99.61          | 1                   | 107.23                           | 122.47          |
| 2201379 | 377211  | 4906413  | 131.54                      | 15.24 | 2                      | 9 15                      | 131.54 129.10 116.30                | 1                   | 122.4                            | 130.02          |
| 2201380 | 377161  | 4906551  | 130.82                      | 27.13 | 1                      | 15                        | 130.82 103.69                       | 1                   | 106.43                           | 122.28          |
| 2201381 | 377398  | 4908427  | 123.85                      | 28.04 | 2                      | 5 15                      | 123.85 118.06 95.81                 | 1                   | 96.73                            | 104.35          |
| 2201382 | 377101  | 4908381  | 124                         | 27.74 | 3                      | 5 17 15                   | 124.00 123.39 122.48 96.26          | 1                   | 96.87                            | 108.76          |
| 2201383 | 377132  | 4906499  | 130.79                      | 22.86 | 2                      | 5 15                      | 130.79 129.57 107.93                | 1                   | 108.84                           | 121.03          |



| BH ID   | Easting | Northing | Ground<br>Surface<br>(masl) | Total<br>Depth<br>(m) | # of<br>Form-<br>ation | Form-ation<br>Mat1 Codes* | Formation Contact Elevations (masl) | #<br>Water<br>Found | Water Found<br>Elevations (masl) | Heads<br>(masl) |
|---------|---------|----------|-----------------------------|-----------------------|------------------------|---------------------------|-------------------------------------|---------------------|----------------------------------|-----------------|
| 2201384 | 377167  | 4906468  | 131                         | 20.73                 | 2                      | 5 15                      | 131.00 129.78 110.27                | 1                   | 111.49                           | 118.81          |
| 2201385 | 377160  | 4908433  | 123                         | 30.48                 | 2                      | 5 15                      | 123.00 120.26 92.52                 | 1                   | 97.09                            | 107.76          |
| 2201386 | 377195  | 4908425  | 122.07                      | 25.6                  | 2                      | 5 15                      | 122.07 119.02 96.47                 | 1                   | 97.69                            | 106.83          |
| 2201387 | 377149  | 4906451  | 131                         | 69.49                 | 3                      | 17 15 21                  | 131.00 124.90 73.39 61.51           | 1                   | 73.39                            | 101.43          |
| 2201388 | 377626  | 4908452  | 123.68                      | 18.59                 | 3                      | 2 17 15                   | 123.68 122.77 121.55 105.09         | 1                   | 115.15                           | 122.46          |
| 2201389 | 377568  | 4908458  | 125                         | 22.86                 | 2                      | 17 15                     | 125.00 120.12 102.14                | 1                   | 103.36                           | 118.9           |
| 2201390 | 377752  | 4906390  | 130                         | 21.64                 | 2                      | 2 15                      | 130.00 129.39 108.36                | 1                   | 109.58                           | 126.65          |
| 2201392 | 377730  | 4906388  | 130                         | 23.77                 | 2                      | 17 15                     | 130.00 128.78 106.23                | 1                   | 115.37                           | 124.51          |
| 2201577 | 376597  | 4908504  | 131                         | 7.01                  | 3                      | 2 15 15                   | 131.00 130.39 124.90 123.99         | 1                   | 125.82                           | 127.34          |
| 2201578 | 376752  | 4908472  | 129.45                      | 15.54                 | 2                      | 17 15                     | 129.45 124.57 113.90                | 1                   | 121.83                           | 127.62          |
| 2201580 | 377028  | 4908498  | 124.91                      | 25.91                 | 2                      | 2 15                      | 124.91 124.30 99.00                 | 1                   | 101.13                           | 121.25          |
| 2201581 | 376769  | 4908469  | 129.01                      | 0.91                  | 1                      | 5                         | 129.01 128.10                       | 1                   | 109.51                           | 123.22          |
| 2201582 | 377003  | 4908496  | 125.42                      | 24.08                 | 2                      | 17 15                     | 125.42 122.98 101.34                | 1                   | 102.87                           | 119.63          |
| 2201583 | 376912  | 4908497  | 127.21                      | 21.03                 | 2                      | 2 15                      | 127.21 126.30 106.18                | 1                   | 108.92                           | 118.07          |
| 2201586 | 377115  | 4908479  | 123.94                      | 27.43                 | 2                      | 5 15                      | 123.94 121.19 96.51                 | 1                   | 109.92                           | 109.92          |
| 2201587 | 377196  | 4908520  | 122.03                      | 30.48                 | 2                      | 5 15                      | 122.03 119.90 91.55                 | 1                   | 94.6                             | 109.84          |
| 2201588 | 377208  | 4908485  | 121.55                      | 18.59                 | 2                      | 17 15                     | 121.55 117.90 102.96                | 1                   | 104.49                           | 113.63          |
| 2201589 | 377182  | 4910014  | 125                         | 17.37                 | 2                      | 5 15                      | 125.00 120.43 107.63                | 1                   | 108.54                           | 120.12          |
| 2201590 | 377323  | 4910082  | 125                         | 13.11                 | 2                      | 12 15                     | 125.00 124.39 111.89                | 2                   | 115.25 113.42                    | 123.17          |
| 2201591 | 377256  | 4909612  | 125                         | 21.03                 | 3                      | 2 17 15                   | 125.00 124.39 121.65 103.97         | 1                   | 113.42                           | 118.29          |
| 2201592 | 377511  | 4908493  | 125                         | 14.02                 | 2                      | 5 15                      | 125.00 124.09 110.98                | 1                   | 112.81                           | 120.43          |
| 2201593 | 377610  | 4908580  | 125.92                      | 28.65                 | 1                      | 15                        | 125.92 97.27                        | 1                   | 103.06                           | 118.3           |
| 2201594 | 377589  | 4908492  | 125                         | 28.96                 | 1                      | 15                        | 125.00 96.04                        | 1                   | 103.66                           | 112.81          |
| 2201595 | 377613  | 4908607  | 126                         | 31.09                 | 2                      | 2 15                      | 126.00 125.39 94.91                 | 1                   | 96.43                            | 107.71          |
| 2201596 | 377694  | 4908664  | 127                         | 32                    | 2                      | 5 15                      | 127.00 124.56 95.00                 | 1                   | 95.61                            | 120.9           |
| 2201597 | 377719  | 4908676  | 127                         | 41.15                 | 2                      | 5 15                      | 127.00 125.17 85.85                 | 1                   | 85.85                            | 117.86          |
| 2203997 | 377705  | 4908534  | 122.89                      | 20.42                 | 3                      | 2 15 15                   | 122.89 122.28 120.76 102.47         | 1                   | 104.91                           | 114.36          |
| 2204369 | 377050  | 4908432  | 124.8                       | 28.65                 | 2                      | 5 15                      | 124.80 122.67 96.15                 | 1                   | 97.67                            | 107.73          |
| 2204370 | 377370  | 4908442  | 122.4                       | 18.29                 | 4                      | 2 5 9 15                  | 122.40 121.49 118.44 118.13 104.11  | 1                   | 118.44                           | 121.49          |
| 2204371 | 377110  | 4908262  | 123.14                      | 27.74                 | 2                      | 5 15                      | 123.14 121.92 95.40                 | 1                   | 96.32                            | 112.47          |



| BH ID   | Easting | Northing | Ground<br>Surface<br>(masl) |       | # of<br>Form-<br>ation | Form-ation<br>Mat1 Codes* | Formation Contact Elevations (masl)                 | #<br>Water<br>Found | Water Found<br>Elevations (masl) | Heads<br>(masl) |
|---------|---------|----------|-----------------------------|-------|------------------------|---------------------------|-----------------------------------------------------|---------------------|----------------------------------|-----------------|
| 2204372 | 377450  | 4906382  | 132                         | 29.26 | 2                      | 2 15                      | 132.00 131.39 102.74                                | 2                   | 117.37 112.19                    | 128.95          |
| 2204380 | 377410  | 4908482  | 124.47                      | 21.03 | 2                      | 5 15                      | 124.47 122.03 103.44                                | 1                   | 104.35                           | 110.45          |
| 2204422 | 374980  | 4906302  | 89.23                       | 10.67 | 3                      | 5 17 15                   | 89.23 87.40 86.18 78.56                             | 1                   | 82.53                            | 87.71           |
| 2204668 | 372990  | 4908302  | 131.89                      | 14.02 | 3                      | 2 17 15                   | 131.89 130.98 126.41 117.87                         | 1                   | 125.8                            | 128.24          |
| 2204669 | 377470  | 4908482  | 125                         | 41.15 | 2                      | 5 15                      | 125.00 122.56 83.85                                 | 1                   | 84.16                            | 97.57           |
| 2204732 | 374430  | 4907142  | 136                         | 27.43 | 3                      | 2 15 15                   | 136.00 135.39 133.56 108.57                         | 1                   | 111.62                           | 128.99          |
| 2204750 | 377190  | 4908782  | 129.16                      | 14.02 | 6                      | 2 5 9 15 15 15            | 129.16 127.64 125.50 121.84 116.05<br>115.44 115.14 | 1                   | 115.44                           | 122.15          |
| 2204754 | 377490  | 4908502  | 125                         | 22.86 | 2                      | 9 15                      | 125.00 122.26 102.14                                | 2                   | 114.03 103.97                    | 117.68          |
| 2204757 | 377030  | 4908742  | 129.78                      | 35.66 | 6                      | 2 15 15 15 15 15 15       | 129.78 129.17 113.62 112.71 95.03<br>94.42 94.12    | 2                   | 113.62 94.42                     | 116.06          |
| 2204758 | 377470  | 4908482  | 125                         | 17.07 | 2                      | 5 15                      | 125.00 123.78 107.93                                | 1                   | 117.99                           | 121.34          |
| 2204761 | 377670  | 4908552  | 124.14                      | 31.7  | 2                      | 5 15                      | 124.14 123.22 92.44                                 | 3                   | 102.49 96.09 92.74               | 102.19          |
| 2204830 | 377000  | 4908432  | 125                         | 36.27 | 1                      | 15                        | 125.00 88.73                                        | 2                   | 112.81 91.47                     | 111.28          |
| 2204836 | 377030  | 4908422  | 125                         | 32.61 | 2                      | 5 15                      | 125.00 124.09 92.39                                 | 1                   | 93                               | 104.88          |
| 2204942 | 377760  | 4906372  | 130                         | 25.6  | 3                      | 2 15 15                   | 130.00 129.09 126.34 104.40                         | 1                   | 106.84                           | 119.03          |
| 2204945 | 376220  | 4906432  | 114.96                      | 29.87 | 2                      | 2 15                      | 114.96 114.05 85.09                                 | 1                   | 86.92                            | 99.42           |
| 2204963 | 373230  | 4906402  | 130.52                      | 14.94 | 2                      | 2 15                      | 130.52 130.22 115.59                                | 1                   | 128.69                           | 128.08          |
| 2205015 | 374370  | 4906262  | 121.95                      | 37.19 | 2                      | 5 15                      | 121.95 121.34 84.77                                 | 2                   | 108.24 85.38                     | 104.27          |
| 2205028 | 376500  | 4908402  | 132                         | 33.53 | 1                      | 15                        | 132.00 98.47                                        | 1                   | 104.57                           | 131.39          |
| 2205033 | 376510  | 4908182  | 130                         | 21.34 | 1                      | 15                        | 130.00 108.66                                       | 1                   | 127.87                           | 128.78          |
| 2205041 | 375590  | 4906282  | 92.29                       | 15.24 | 2                      | 5 15                      | 92.29 91.07 77.05                                   | 1                   | 77.96                            | 86.8            |
| 2205064 | 377340  | 4908442  | 121.7                       | 9.14  | 3                      | 5 11 15                   | 121.70 118.35 118.04 112.56                         | 1                   | 118.04                           | 119.26          |
| 2205071 | 374910  | 4909012  | 142                         | 26.82 | 2                      | 15 15                     | 142.00 137.43 115.18                                | 1                   | 116.09                           | 135.6           |
| 2205092 | 377290  | 4906332  | 132                         | 23.16 | 2                      | 2 15                      | 132.00 131.70 108.84                                | 2                   | 115.24 109.75                    | 129.56          |
| 2205139 | 373480  | 4906162  | 127                         | 19.2  | 2                      | 15 15                     | 127.00 125.78 107.80                                | 2                   | 117.86 108.71                    | 124.56          |
| 2205251 | 376780  | 4908422  | 130                         | 24.38 | 2                      | 2 15                      | 130.00 129.09 105.62                                | 2                   | 126.34 105.92                    | 123.9           |
| 2205265 | 373420  | 4906252  | 127.57                      | 21.34 | 3                      | 2 15 15                   | 127.57 127.27 125.44 106.24                         | 1                   | 114.77                           | 122.39          |
| 2205319 | 376850  | 4908482  | 128                         | 24.38 | 2                      | 15 15                     | 128.00 124.95 103.62                                | 2                   | 113.37 104.84                    | 119.47          |
| 2205331 | 377450  | 4906387  | 132                         | 28.35 | 2                      | 2 15                      | 132.00 131.09 103.65                                | 1                   | 115.85                           | 127.12          |



| BH ID   | Easting | Northing | Ground<br>Surface<br>(masl) |        | # of<br>Form-<br>ation | Form-ation<br>Mat1 Codes* | Formation Contact Elevations (masl)     | #<br>Water<br>Found | Water Found<br>Elevations (masl) | Heads<br>(masl) |
|---------|---------|----------|-----------------------------|--------|------------------------|---------------------------|-----------------------------------------|---------------------|----------------------------------|-----------------|
| 2205332 | 375290  | 4905617  | 90.21                       | 14.02  | 2                      | 5 15                      | 90.21 88.99 76.19                       | 1                   | 77.11                            | 80.77           |
| 2205387 | 374030  | 4908382  | 135                         | 22.25  | 2                      | 2 15                      | 135.00 134.70 112.75                    | 1                   | 113.66                           | 130.12          |
| 2205394 | 377680  | 4906332  | 130                         | 21.95  | 3                      | 2 15 15                   | 130.00 128.78 125.12 108.05             | 1                   | 109.27                           | 127.56          |
| 2205397 | 374390  | 4907122  | 136                         | 24.38  | 2                      | 5 15                      | 136.00 134.17 111.62                    | 1                   | 112.84                           | 130.82          |
| 2205435 | 377730  | 4908622  | 125.91                      | 28.35  | 3                      | 2 5 15                    | 125.91 125.60 124.69 97.56              | 1                   | 98.48                            | 106.71          |
| 2205568 | 375310  | 4905652  | 91.81                       | 21.64  | 2                      | 5 15                      | 91.81 90.89 70.17                       | 1                   | 71.08                            | 81.14           |
| 2205569 | 375324  | 4905680  | 92.46                       | 28.65  | 2                      | 5 15                      | 92.46 91.55 63.81                       | 1                   | 64.72                            | 81.79           |
| 2205570 | 375348  | 4905707  | 94.25                       | 27.13  | 2                      | 5 15                      | 94.25 93.33 67.12                       | 1                   | 67.73                            | 83.58           |
| 2205577 | 377610  | 4906332  | 130.67                      | 33.53  | 2                      | 2 15                      | 130.67 130.06 97.14                     | 1                   | 98.66                            | 122.44          |
| 2205740 | 375110  | 4908402  | 140                         | 43.59  | 2                      | 5 15                      | 140.00 139.39 96.41                     | 1                   | 117.14                           | 138.78          |
| 2205767 | 376970  | 4906392  | 128.85                      | 22.86  | 2                      | 2 15                      | 128.85 127.93 105.99                    | 1                   | 106.9                            | 117.26          |
| 2205769 | 375610  | 4906282  | 93.08                       | 17.68  | 2                      | 2 15                      | 93.08 91.56 75.40                       | 1                   | 76.32                            | 86.38           |
| 2205916 | 377110  | 4908862  | 129.89                      | 12.8   | 2                      | 5 15                      | 129.89 128.98 117.09                    | 1                   | 124.1                            | 128.67          |
| 2205989 | 374350  | 4906552  | 129.84                      | 123.44 | 5                      | 2 15 15 21 21             | 129.84 129.53 78.02 73.45 16.15<br>6.39 | 2                   | 73.45 16.45                      | 98.14           |
| 2205992 | 377690  | 4906322  | 130                         | 35.97  | 2                      | 2 15                      | 130.00 129.70 94.03                     | 2                   | 112.63 94.64                     | 125.73          |
| 2206019 | 377150  | 4905962  | 130                         | 13.11  | 1                      | 15                        | 130.00 116.89                           | 1                   | 122.08                           | 128.48          |
| 2206063 | 375210  | 4905442  | 91                          | 18.59  | 1                      | 15                        | 91.00 72.41                             | 1                   | 74.24                            | 81.86           |
| 2206105 | 373960  | 4906222  | 120.72                      | 16.15  | 1                      | 15                        | 120.72 104.57                           | 1                   | 109.45                           | 120.42          |
| 2206140 | 376254  | 4906391  | 111.3                       | 21.34  | 2                      | 5 15                      | 111.30 110.39 89.97                     | 2                   | 97.89 91.19                      | 101.85          |
| 2206141 | 375502  | 4906173  | 92.21                       | 19.81  | 3                      | 5 17 15                   | 92.21 91.30 87.95 72.40                 | 1                   | 76.06                            | 84.29           |
| 2206180 | 377360  | 4905422  | 130                         | 21.64  | 2                      | 17 15                     | 130.00 128.78 108.36                    | 1                   | 126.95                           | 126.95          |
| 2206195 | 376758  | 4908406  | 130                         | 67.06  | 4                      | 2 15 15 21                | 130.00 129.39 70.56 64.47 62.94         | 1                   | 64.47                            | 87.33           |
| 2206212 | 374356  | 4906338  | 124.98                      | 35.66  | 2                      | 2 15                      | 124.98 124.68 89.32                     | 1                   | 90.24                            | 106.7           |
| 2206462 | 374317  | 4906610  | 130                         | 32.92  | 2                      | 2 15                      | 130.00 129.70 97.08                     | 2                   | 105.62 98.00                     | 113.54          |
| 2206602 | 377517  | 4908447  | 125                         | 29.87  | 2                      | 1 15                      | 125.00 123.78 95.13                     | 1                   | 97.87                            | 112.81          |
| 2206609 | 374320  | 4907665  | 135.81                      | 20.73  | 2                      | 1 15                      | 135.81 134.59 115.09                    | 1                   | 116.31                           | 131.24          |
| 2206887 | 376810  | 4908475  | 128.54                      | 10.97  | 2                      | 1 15                      | 128.54 127.32 117.57                    | 2                   | 124.58 119.70                    | 124.88          |
| 2206908 | 377059  | 4907600  | 105.45                      | 15.24  | 2                      | 2 15                      | 105.45 103.31 90.21                     | 2                   | 96.61 93.86                      | 97.52           |
| 2206944 | 377116  | 4908688  | 128.76                      | 22.25  | 2                      | 2 15                      | 128.76 128.15 106.51                    | 1                   | 107.73                           | 119.92          |



| BH ID   | Easting | Northing | Ground<br>Surface<br>(masl) | Total<br>Depth<br>(m) | # of<br>Form-<br>ation | Form-ation<br>Mat1 Codes* | Formation Contact Elevations (masl)       | #<br>Water<br>Found | Water Found<br>Elevations (masl) | Heads<br>(masl) |
|---------|---------|----------|-----------------------------|-----------------------|------------------------|---------------------------|-------------------------------------------|---------------------|----------------------------------|-----------------|
| 2206977 | 377321  | 4908445  | 120.94                      | 32.31                 | 2                      | 2 15                      | 120.94 120.64 88.63                       | 1                   | 88.94                            | 104.48          |
| 2207178 | 374426  | 4906123  | 108.62                      | 19.81                 | 2                      | 5 15                      | 108.62 104.05 88.81                       | 1                   | 89.42                            | 105.88          |
| 2207195 | 375758  | 4906234  | 103.16                      | 22.25                 | 2                      | 2 15                      | 103.16 102.55 80.91                       | 1                   | 89.44                            | 90.05           |
| 2207400 | 377510  | 4908502  | 125                         | 37.49                 | 2                      | 2 15                      | 125.00 124.39 87.51                       | 1                   | 89.03                            | 106.71          |
| 2207529 | 377080  | 4907522  | 110.02                      | 31.7                  | 2                      | 5 15                      | 110.02 109.41 78.32                       | 2                   | 96.00 80.15                      | 103.62          |
| 2207545 | 374830  | 4905422  | 90.8                        | 35.66                 | 3                      | 2 15 21                   | 90.80 90.19 59.71 55.14                   | 1                   | 55.75                            | 74.03           |
| 2207687 | 377110  | 4908122  | 120.21                      | 21.95                 | 2                      | 2 15                      | 120.21 118.68 98.26                       | 1                   | 99.48                            | 111.67          |
| 2207721 | 377210  | 4909222  | 125                         | 27.13                 | 2                      | 5 15                      | 125.00 123.48 97.87                       | 2                   | 108.24 103.05                    | 118.6           |
| 2207756 | 377150  | 4906062  | 130                         | 13.41                 | 2                      | 12 15                     | 130.00 128.48 116.59                      | 1                   | 117.5                            | 128.78          |
| 2207767 | 377090  | 4906562  | 129.78                      | 68.28                 | 5                      | 2 15 15 15 21             | 129.78 129.48 126.12 80.40 77.66<br>61.51 | 1                   | 77.36                            | 120.03          |
| 2207804 | 375130  | 4905322  | 88.74                       | 44.2                  | 3                      | 5 15 15                   | 88.74 86.91 49.42 44.54                   | 1                   | 46.68                            | 79.59           |
| 2207850 | 376510  | 4906642  | 110.46                      | 59.13                 | 5                      | 1 28 15 18 21             | 110.46 108.94 107.11 65.35 59.56<br>51.33 | 1                   | 52.55                            | 96.75           |
| 2208206 | 374790  | 4905322  | 90                          | 32.31                 | 3                      | 2 15 18                   | 90.00 89.09 61.04 57.69                   | 1                   | 59.52                            | 79.33           |
| 2208298 | 373510  | 4906222  | 127.54                      | 77.72                 | 4                      | 15 15 21 21               | 127.54 75.73 72.37 60.49 49.82            | 1                   | 69.94                            | 113.52          |
| 2208513 | 374890  | 4905322  | 93.37                       | 46.33                 | 5                      | 2 15 15 15 21             | 93.37 93.07 92.15 62.28 58.02 47.04       | 1                   | 55.88                            | 77.83           |
| 2208635 | 374990  | 4905142  | 94.83                       | 37.8                  | 3                      | 5 15 15                   | 94.83 92.70 58.87 57.04                   | 1                   | 58.26                            | 87.52           |
| 2208636 | 374930  | 4905282  | 95                          | 60.05                 | 4                      | 5 15 15 21                | 95.00 92.56 56.90 55.38 34.95             | 1                   | 35.26                            | 86.47           |
| 2208728 | 376990  | 4906382  | 129.27                      | 34.75                 | 2                      | 23 15                     | 129.27 108.54 94.52                       | 1                   | 95.74                            | 111.59          |
| 2208832 | 375910  | 4906302  | 110.88                      | 33.22                 | 2                      | 1 15                      | 110.88 110.27 77.66                       | 1                   | 77.96                            | 94.73           |
| 2208858 | 374729  | 4906621  | 129.21                      | 28.04                 | 2                      | 2 15                      | 129.21 128.60 101.17                      | 1                   | 102.39                           | 117.02          |
| 2208865 | 374429  | 4906321  | 122.42                      | 15.85                 | 2                      | 5 15                      | 122.42 121.81 106.57                      | 1                   | 107.18                           | 119.98          |
| 2208895 | 377229  | 4905621  | 130                         | 29.57                 | 1                      | 15                        | 130.00 100.43                             | 1                   | 101.96                           | 120.86          |
| 2208956 | 375629  | 4906121  | 105                         | 21.95                 | 3                      | 2 15 21                   | 105.00 104.39 88.24 83.05                 | 1                   | 88.54                            | 88.54           |
| 2209099 | 377329  | 4905521  | 130                         | 27.43                 | 1                      | 23                        | 130.00 102.57                             | 1                   | 104.4                            | 120.25          |
| 2209116 | 374429  | 4906021  | 98.53                       | 37.19                 | 2                      | 2 15                      | 98.53 97.61 61.34                         | 1                   | 62.56                            | 81.46           |
| 2209240 | 377529  | 4908321  | 121.65                      | 32.31                 | 3                      | 2 26 15                   | 121.65 121.04 119.82 89.34                | 1                   | 95.74                            | 103.06          |
| 2209245 | 377129  | 4908321  | 123.7                       | 27.13                 | 2                      | 2 15                      | 123.70 123.39 96.57                       | 2                   | 108.46 97.49                     | 105.41          |



| BH ID   | Easting | Northing | Ground<br>Surface<br>(masl) |       | # of<br>Form-<br>ation | Form-ation<br>Mat1 Codes* | Formation Contact Elevations (masl)                          | #<br>Water<br>Found | Water Found<br>Elevations (masl) | Heads<br>(masl) |
|---------|---------|----------|-----------------------------|-------|------------------------|---------------------------|--------------------------------------------------------------|---------------------|----------------------------------|-----------------|
| 2209314 | 373255  | 4909472  | 135                         | 14.33 | 3                      | 5 15 15                   | 135.00 134.09 132.56 120.67                                  | 2                   | 124.33 121.59                    | 129.82          |
| 2209436 | 375729  | 4906021  | 109.75                      | 27.43 | 2                      | 17 15                     | 109.75 108.53 82.32                                          | 2                   | 88.11 83.54                      | 97.56           |
| 2209527 | 377229  | 4908521  | 121                         | 26.52 | 2                      | 2 15                      | 121.00 119.48 94.48                                          | 1                   | 95.09                            | 106.06          |
| 2209609 | 376829  | 4908621  | 127                         | 36.58 | 2                      | 2 15                      | 127.00 126.70 90.42                                          | 1                   | 109.63                           | 122.43          |
| 2209643 | 373829  | 4908221  | 128.39                      | 79.25 | 4                      | 2 15 18 21                | 128.39 127.48 56.76 53.71 49.14                              | 2                   | 64.38 50.67                      | 107.05          |
| 2209646 | 377229  | 4906221  | 131                         | 33.53 | 6                      | 5 15 15 15 46 15          | 131.00 130.39 110.27 109.05 99.00<br>98.69 97.47             | 2                   | 115.15 99.00                     | 119.42          |
| 2209880 | 377329  | 4909621  | 125                         | 18.59 | 3                      | 2 15 15                   | 125.00 124.09 121.34 106.41                                  | 1                   | 110.06                           | 117.68          |
| 2209885 | 374629  | 4907321  | 135                         | 41.45 | 5                      | 2 15 15 15 15             | 135.00 134.70 126.16 97.20 95.07<br>93.55                    | 1                   | 95.68                            | 119.15          |
| 2209886 | 374529  | 4906221  | 109.56                      | 37.19 | 5                      | 5 15 15 15 15             | 109.56 109.25 87.61 84.26 79.69<br>72.37                     | 2                   | 93.71 78.77                      | 101.63          |
| 2210059 | 375729  | 4905921  | 106.58                      | 20.42 | 2                      | 2 15                      | 106.58 105.67 86.16                                          | 1                   | 89.82                            | 89.82           |
| 2210264 | 374977  | 4905105  | 95.36                       | 20.12 | 2                      | 5 15                      | 95.36 89.88 75.25                                            | 1                   | 78.6                             | 89.27           |
| 2210265 | 373147  | 4906194  | 128.42                      | 29.26 | 2                      | 2 15                      | 128.42 128.11 99.16                                          | 1                   | 121.41                           | 122.32          |
| 2210326 | 377085  | 4906437  | 130.96                      | 62.18 | 8                      | 2 15 15 15 15 15<br>15 18 | 130.96 130.66 129.74 104.75 97.43<br>79.14 74.57 70.30 68.78 | 2                   | 111.15 73.96                     | 111.15          |
| 2210330 | 374300  | 4907812  | 136                         | 22.86 | 2                      | 5 15                      | 136.00 134.48 113.14                                         | 2                   | 118.02 115.27                    | 129.9           |
| 2210332 | 373007  | 4907272  | 138.97                      | 16.76 | 3                      | 2 15 15                   | 138.97 138.36 123.73 122.20                                  | 2                   | 128.30 123.12                    | 136.22          |
| 2210458 | 377030  | 4907892  | 114.87                      | 35.05 | 5                      | 5 15 15 15 15             | 114.87 114.56 111.21 93.53 91.09<br>79.81                    | 2                   | 93.23 81.64                      | 106.03          |
| 2210703 | 376992  | 4906331  | 130                         | 60.35 | 2                      | 2 15                      | 130.00 127.87 69.65                                          | 1                   | 70.56                            | 99.52           |
| 2210766 | 377219  | 4909420  | 125                         | 15.54 | 3                      | 2 15 15                   | 125.00 124.39 120.73 109.46                                  | 2                   | 115.25 110.98                    | 119.82          |
| 2210912 | 377098  | 4908551  | 124                         | 51.82 | 5                      | 15 15 15 15 15            | 124.00 82.55 81.94 75.54 74.01<br>72.18                      | 2                   | 82.24 72.79                      | 109.06          |
| 2210913 | 374428  | 4906481  | 128.39                      | 26.82 | 6                      | 2 15 15 15 15 15 15       | 128.39 127.47 116.19 114.37 108.57<br>106.44 101.56          | 1                   | 102.78                           | 110.4           |
| 2211269 | 377091  | 4908536  | 124.26                      | 28.35 | 5                      | 11 5 15 15 15             | 124.26 123.96 123.35 100.49 99.88<br>95.92                   | 1                   | 99.88                            | 116.95          |

| BH ID   | Easting | Northing | Ground<br>Surface<br>(masl) | Total<br>Depth<br>(m) | # of<br>Form-<br>ation | Form-ation<br>Mat1 Codes* | Energy Contact Elevations (mach)                                                                                                       |   | Water Found<br>Elevations (masl) | Heads<br>(masl) |
|---------|---------|----------|-----------------------------|-----------------------|------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------|-----------------|
| 2211278 | 377084  | 4906371  | 130                         | 47.85                 | 5                      | 5 15 15 15 15             | 130.00 129.09 105.62 103.48 85.50<br>82.15                                                                                             | 1 | 83.06                            | 104.09          |
| 2211279 | 373298  | 4906354  | 129.12                      | 26.21                 | 2                      | 2 15                      | 129.12 128.51 102.90                                                                                                                   | 1 | 121.8                            | 121.8           |
| 2211281 | 376837  | 4906286  | 128.69                      | 40.84                 | 5                      | 5 17 15 15 15             | 128.69 127.78 127.17 101.26 99.13<br>87.85                                                                                             | 1 | 92.73                            | 100.04          |
| 2211429 | 372867  | 4909452  | 136                         | 34.14                 | 1                      | 15                        | 136.00 101.86                                                                                                                          | 1 | 103.39                           | 115.27          |
| 2211432 | 377317  | 4905277  | 130                         | 54.86                 | 3                      | 23 15 21                  | 130.00 103.18 79.10 75.14                                                                                                              | 1 | 76.96                            | 105.62          |
| 2211696 | 377037  | 4908389  | 125                         | 28.65                 | 2                      | 11 15                     | 125.00 124.70 96.35                                                                                                                    | 1 | 97.57                            | 114.33          |
| 2211708 | 377056  | 4908530  | 125                         | 82.3                  | 7                      | 5 15 15 15 15 18<br>15    | 125.00 123.17 90.86 89.03 68.92<br>58.55 56.72 42.70                                                                                   | 1 | 58.55                            | 110.37          |
| 2211710 | 377331  | 4908494  | 121.33                      | 28.04                 | 5                      | 5 28 15 15 15             | 121.33         118.28         117.67         100.91         95.73         1           28         15         15         93.29         1 |   | 95.73                            | 99.38           |
| 2211932 | 377039  | 4908574  | 127.66                      | 35.66                 | 3                      | 2 17 15                   | 127.66 127.36 126.14 92.00                                                                                                             | 1 | 92.61                            | 105.72          |
| 2211935 | 375308  | 4907334  | 131.49                      | 14.94                 | 3                      | 2 15 15                   | 131.49 130.28 126.62 116.56                                                                                                            | 1 | 126.62                           | 128.45          |
| 2211938 | 377277  | 4908496  | 120.66                      | 27.43                 | 4                      | 5 15 15 15                | 120.66 117.01 104.20 102.38 93.23                                                                                                      | 2 | 110.00 94.15                     | 103.59          |
| 2212127 | 377235  | 4908462  | 121                         | 30.78                 | 3                      | 5 15 15                   | 121.00 120.70 93.87 90.22                                                                                                              | 1 | 91.74                            | 103.32          |
| 2212270 | 377186  | 4908530  | 122.44                      | 41.15                 | 2                      | 2 15                      | 122.44 121.22 81.29                                                                                                                    | 1 | 94.4                             | 118.79          |
| 2212271 | 377018  | 4908588  | 129.34                      | 52.43                 | 2                      | 24 15                     | 129.34 88.19 76.91                                                                                                                     | 1 | 78.44                            | 125.68          |
| 2212536 | 374957  | 4905903  | 95.84                       | 27.43                 | 6                      | 2 5 18 21 21 21           | 95.84 95.54 95.23 87.31 71.76 71.15<br>68.41                                                                                           | 2 | 71.76 70.85                      | 91.27           |
| 2212665 | 377145  | 4906364  | 130.93                      | 37.49                 | 6                      | 5 5 15 15 15 15           | 130.93 130.01 129.71 105.93 103.19<br>94.66 93.44                                                                                      | 2 | 111.42 94.66                     | 114.16          |
| 2212666 | 377052  | 4908648  | 129.69                      | 20.12                 | 4                      | 2 15 15 15                | 129.69 128.47 127.25 121.77 109.57                                                                                                     | 2 | 120.85 112.01                    | 124.81          |
| 2212793 | 377192  | 4906328  | 131                         | 37.49                 | 4                      | 5 15 15 15                |                                                                                                                                        |   | 96.86                            | 111.49          |
| 2212794 | 377302  | 4906322  | 132                         | 28.04                 | 1                      | 15                        | 132.00 103.96                                                                                                                          | 1 | 107.31                           | 118.59          |
| 2213048 | 376762  | 4908524  | 129.32                      | 26.82                 | 1                      | 15                        | 129.32 102.50                                                                                                                          | 1 | 106.46                           | 121.7           |
| 2213126 | 377704  | 4905266  | 130                         | 28.04                 | 1                      | 15                        | 130.00 101.96                                                                                                                          | 1 | 103.18                           | 114.76          |
| 2213250 | 377113  | 4906137  | 130                         | 33.83                 | 2                      | 23 15 130.00 101.65 96.17 |                                                                                                                                        | 1 | 98                               | 109.58          |
| 2213354 | 377110  | 4906629  | 126.48                      | 51.51                 | 4                      | 2 15 15 15                | 126.48 125.87 120.99 76.80 74.97                                                                                                       | 2 | 114.29 75.58                     | 116.11          |

| BH ID   | Easting | Northing | Ground<br>Surface<br>(masl) |        | # of<br>Form-<br>ation | Form-ation<br>Mat1 Codes*                | Earmation Contact Elevations (mael)                                      |   | Water Found<br>Elevations (masl) | Heads<br>(masl) |
|---------|---------|----------|-----------------------------|--------|------------------------|------------------------------------------|--------------------------------------------------------------------------|---|----------------------------------|-----------------|
| 2213530 | 374298  | 4908108  | 137                         | 46.94  | 7                      | 2 15 15 15 15 18<br>18                   | 137.00 136.39 134.56 98.90 94.33<br>92.80 90.06 90.06                    | 2 | 119.32 93.11                     | 120.24          |
| 2213531 | 374283  | 4908139  | 137                         | 32.92  | 3                      | 2 15 15                                  | 137.00 136.39 135.48 104.08                                              | 2 | 118.41 105.91                    | 123.28          |
| 2213578 | 377317  | 4905277  | 130                         | 67.06  | 3                      | 2 15 21                                  | 130.00 129.09 65.38 62.94                                                | 4 | 112.32 108.66 105.62<br>64.77    | 117.5           |
| 2213632 | 373189  | 4906505  | 135.14                      | 30.48  | 1                      | 15                                       | 135.14 104.66                                                            | 1 | 105.87                           | 130.56          |
| 2213674 | 373440  | 4906163  | 127                         | 22.56  | 5                      | 2 17 15 15 15                            | 127.00 126.39 125.78 114.81 113.89<br>104.44                             | 1 | 113.89                           | 113.59          |
| 2213760 | 374600  | 4909546  | 139.63                      | 31.39  | 2                      | 5 15                                     | 139.63 138.41 108.24                                                     | 1 | 109.15                           | 135.97          |
| 2213762 | 374080  | 4906365  | 125.94                      | 35.36  | 5                      | 2 15 15 15 15                            | 125.94 125.63 121.98 105.82 95.15<br>90.58                               | 2 | 94.24 91.80                      | 106.74          |
| 2213795 | 374283  | 4907217  | 132                         | 73.76  | 10                     | 2 15 15 15 15 15 15<br>15 21 21 21       | 132.00 131.09 130.17 121.94 87.20<br>85.98 81.10 76.22 63.73 60.07 58.24 | 1 | 1 60.37 10                       |                 |
| 2213833 | 377627  | 4908517  | 124.83                      | 39.93  | 1                      | 15                                       | 124.83 84.90                                                             | 2 | 94.96 85.20                      | 111.11          |
| 2213835 | 377748  | 4908641  | 126.34                      | 36.58  | 2                      | 15 15                                    | 126.34 92.51 89.77                                                       | 1 | 92.51                            | 106.23          |
| 2213837 | 377317  | 4905277  | 130                         | 19.51  | 2                      | 5 21                                     | 130.00 123.29 110.49                                                     | 2 | 121.16 113.54                    | 126.95          |
| 2213936 | 376275  | 4908364  | 132                         | 110.95 | 5                      | 5 15 15 18 21                            | 132.00 130.17 74.09 67.99 64.33<br>21.05                                 | 2 | 64.94 39.04                      | 106.09          |
| 2214187 | 377126  | 4906335  | 130.15                      | 21.34  | 2                      | 2 15                                     | 130.15 128.32 108.81                                                     | 3 | 112.77 110.94 109.72             | 117.95          |
| 2214332 | 375790  | 4905220  | 108.99                      | 49.38  | 3                      | 2 21 21                                  | 108.99 107.16 72.11 59.61                                                | 2 | 79.12 62.05                      | 94.97           |
| 2214366 | 374693  | 4908638  | 140                         | 5.49   | 2                      | 5 15                                     | 140.00 139.09 134.51                                                     | 1 | 136.34                           | 136.34          |
| 2214529 | 376989  | 4908488  | 125.56                      | 28.35  | 2                      | 2 15                                     | 125.56 123.73 97.21                                                      | 1 | 98.12                            | 106.35          |
| 2214651 | 373413  | 4908500  | 130                         | 24.38  | 5                      | 2 17 15 15 15                            | 130.00 129.70 129.09 112.93 111.10<br>105.62                             | 2 | 111.71 106.23                    | 119.94          |
| 2214745 | 377614  | 4908739  | 126                         | 35.36  | 6                      | 2 15 15 15 15 15 15 15 15 15 15 15 15 15 |                                                                          | 1 | 95.22                            | 105.58          |
| 2214825 | 377178  | 4908457  | 122.76                      | 29.26  | 3                      | 5 15 15                                  | 122.76 120.93 96.55 93.50                                                | 1 | 95.94                            | 105.69          |
| 2214826 | 375690  | 4907346  | 128.97                      | 38.1   | 4                      | 17 15 15 15                              | 128.97 128.36 116.78 116.17 90.87                                        | 1 | 116.78                           | 117.7           |



| BH ID   | Easting | Northing | Ground<br>Surface<br>(masl) | Total<br>Depth<br>(m) | # of<br>Form-<br>ation | Form-ation<br>Mat1 Codes*                | E Formation Contact Flovatione (mael)                                                   |   | Water Found<br>Elevations (masl) | Heads<br>(masl) |
|---------|---------|----------|-----------------------------|-----------------------|------------------------|------------------------------------------|-----------------------------------------------------------------------------------------|---|----------------------------------|-----------------|
| 2214828 | 375690  | 4907346  | 128.97                      | 38.1                  | 2                      | 17 15                                    | 128.97 128.36 90.87                                                                     | 1 | 110.99                           | 116.17          |
| 2215027 | 377503  | 4908467  | 125                         | 36.88                 | 1                      | 15                                       | 125.00 88.12                                                                            | 2 | 104.27 89.64                     | 104.27          |
| 2215326 | 376375  | 4908776  | 134.5                       | 6.1                   | 2                      | 2 15                                     | 134.50 134.20 128.41                                                                    | 1 | 129.02                           | 129.93          |
| 2215472 | 374384  | 4907235  | 135                         | 39.62                 | 7                      | 2 17 15 15 15 15<br>15                   | 135.00 134.70 134.09 123.11 122.20<br>107.26 106.96 95.38                               | 1 | 106.96                           | 129.51          |
| 2215473 | 374426  | 4907260  | 135                         | 40.23                 | 5                      | 5 17 15 15 15                            | 135.00 134.39 134.09 125.25 124.03<br>94.77                                             | 2 | 124.94 107.87                    | 126.16          |
| 2215723 | 374086  | 4908766  | 135                         | 27.43                 | 5                      | 5 15 15 15 15                            | 135.00 134.39 119.15 117.93 108.79<br>107.57                                            | 1 | 108.48                           | 131.65          |
| 2215868 | 376776  | 4909600  | 123.75                      | 42.67                 | 1                      | 15                                       | 123.75 81.08                                                                            | 3 | 115.52 107.29 99.97              | 122.83          |
| 2215895 | 373812  | 4908158  | 130                         | 15.85                 | 8                      | 5 17 15 15 15 15<br>15 15                | 130.00 129.70 128.78 125.12 124.82<br>118.42 118.11 114.76 114.15                       |   | 118.42 114.46                    | 129.39          |
| 2215898 | 377047  | 4906330  | 130                         | 51.82                 | 6                      | 5 15 15 15 15 15 15                      | 130.00 127.87 114.76 113.54 91.90<br>90.38 78.18 2                                      |   | 90.68 81.23                      | 102.57          |
| 2216020 | 376805  | 4906324  | 123.15                      | 39.93                 | 6                      | 5 17 15 15 15 15                         | 123.15 122.85 122.24 92.37 87.80<br>83.53 83.23                                         | 2 | 86.27 85.05                      | 97.25           |
| 2216169 | 377629  | 4908394  | 121.25                      | 22.56                 | 6                      | 2 15 15 15 15 15 15                      | 121.25 120.95 110.89 109.97 101.14<br>100.83 98.70                                      | 2 | 107.23 100.83                    | 107.84          |
| 2216300 | 377097  | 4907472  | 111                         | 23.16                 | 7                      | 5 17 15 15 15 15<br>15                   | 111.00 109.17 108.56 97.59 96.98<br>89.66 88.75 87.84                                   | 3 | 103.68 102.16 96.98              | 103.99          |
| 2216472 | 376858  | 4908499  | 128                         | 30.18                 | 6                      | 5 17 15 15 15 15                         | 128.00 127.09 126.78 114.28 101.18                                                      |   | 100.87                           | 103.01          |
| 2216478 | 377725  | 4908703  | 127                         | 35.36                 | 1                      | 15                                       | 127.00 91.64                                                                            | 2 | 94.69 92.25                      | 108.71          |
| 2216505 | 377657  | 4906527  | 131                         | 44.5                  | 6                      | 5 15 15 15 15 15 15 15 15 15 15 15 15 15 |                                                                                         | 2 | 124.60 112.71                    | 126.73          |
| 2216506 | 377650  | 4908548  | 124.64                      | 35.97                 | 3                      | 5 17 15                                  | 124.64 124.03 123.42 88.67                                                              | 2 | 97.81 90.50                      | 100.86          |
| 2216543 | 377108  | 4906413  | 130.98                      | 74.37                 | 11                     | 5 15 15 15 15 15 15<br>18 18 18 18 18 18 | 130.98 129.15 126.41 125.19 85.87<br>15 15 15 15<br>85 56 84 95 71 54 67 27 62 09 61 18 |   | 106.59 71.85                     | 108.42          |



| BH ID   | Easting | Northing | Ground<br>Surface<br>(masl) |       | # of<br>Form-<br>ation | Form-ation<br>Mat1 Codes*                                                                                                          | Eormation Contact Elevations (masl)                               |   | Water Found<br>Elevations (masl) | Heads<br>(masl) |
|---------|---------|----------|-----------------------------|-------|------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---|----------------------------------|-----------------|
| 2216560 | 375216  | 4909560  | 140                         | 6.1   | 3                      | 2 5 15                                                                                                                             | 140.00 139.70 138.17 133.90                                       | 2 | 138.17 134.82                    | 135.12          |
| 2216616 | 377507  | 4908651  | 125.33                      | 32.92 | 7                      | 5 17 15 15 15 15<br>15                                                                                                             | 125.33 122.29 121.98 117.10 112.84<br>106.44 99.12 92.41          | 1 | 96.68                            | 104             |
| 2216672 | 373536  | 4906172  | 127.11                      | 31.09 | 6                      | 5 15 15 15 15 15 15                                                                                                                | 127.11 126.20 115.23 114.92 114.01<br>113.40 96.02                | 1 | 105.78                           | 108.22          |
| 2216695 | 375623  | 4906113  | 105                         | 32.31 | 3                      | 2 17 15                                                                                                                            | 105.00 104.39 103.48 72.69                                        | 2 | 80.92 75.13                      | 88.24           |
| 2216719 | 374042  | 4905983  | 124.42                      | 28.04 | 6                      | 15 15 15 15 15<br>15                                                                                                               | 124.42 123.51 114.97 111.62 98.82<br>98.51 96.38                  | 1 | 98.51                            | 108.27          |
| 2216821 | 372843  | 4905108  | 88                          | 20.42 | 8                      | 5 15 15 15 15 15<br>15 15                                                                                                          | 88.00 86.17 85.87 77.94 77.03 71.54<br>69.71 69.10 67.58          | 2 | 77.33 69.71                      | 84.34           |
| 2216863 | 377561  | 4909621  | 125                         | 37.49 | 3                      | 2 17 15                                                                                                                            | 125.00 124.39 123.78 87.51                                        | 2 | 105.80 89.64                     | 110.98          |
| 2216930 | 373572  | 4905130  | 126                         | 24.69 | 1                      | 15                                                                                                                                 | 5 126.00 101.31                                                   |   | 104.05                           | 106.19          |
| 2216931 | 374321  | 4905160  | 109.37                      | 26.52 | 4                      | 5 17 15 15                                                                                                                         | 109.37 108.76 104.80 85.60 82.85                                  | 2 | 90.47 85.60                      | 90.47           |
| 2216961 | 374321  | 4905160  | 109.37                      | 18.59 | 7                      | 5 17 15 15 15 15<br>15                                                                                                             | 15 15<br>109.37 108.76 106.93 99.92 98.70<br>93.21 92.30 90.78    |   | 99.62 92.61                      | 101.75          |
| 2216994 | 374153  | 4907302  | 129.51                      | 42.06 | 1                      | 15                                                                                                                                 | 129.51 87.45                                                      | 1 | 99.03                            | 115.8           |
| 2217174 | 377001  | 4908567  | 128.62                      | 7.01  | 1                      | 15                                                                                                                                 | 128.62 121.61                                                     | 1 | 125.57                           | 125.57          |
| 2217187 | 372828  | 4906013  | 130                         | 35.05 | 2                      | 15 15                                                                                                                              | 130.00 127.56 94.95                                               | 2 | 119.33 109.27                    | 129.39          |
| 2217285 | 376694  | 4906323  | 113.15                      | 57.91 | 9                      | 5 17 15 15 15 15<br>15 15 21                                                                                                       | 113.15 112.54 110.10 99.43 94.56<br>84.50 79.62 60.72 56.15 55.24 | 1 | 56.15                            | 82.97           |
| 2217362 | 377563  | 4908430  | 124.98                      | 25.91 | 3                      | 28 17 15                                                                                                                           | 124.98 123.76 122.85 99.08                                        | 2 | 115.84 99.99                     | 117.06          |
| 2217381 | 373033  | 4906456  | 134                         | 6.71  | 2                      | 2 15                                                                                                                               | 134.00 133.70 127.29                                              | 1 | 130.34                           | 131.87          |
| 2217986 | 374930  | 4907322  | 135.22                      | 29.87 | 2                      | 17 15                                                                                                                              | 135.22 134.00 105.35                                              | 2 | 124.24 117.84                    | 125.46          |
| 2218258 | 377329  | 4909173  | 125                         | 22.4  | 6                      | 5 28 17 15 15 15                                                                                                                   | 125 00 124 10 122 90 122 30 107 10                                |   | 114.40 106.80                    | 121.35          |
| 2218313 | 375177  | 4905408  | 90.6                        | 29.1  | 6                      | 5 17 15 15 15 15<br>90.60 90.30 89.70 83.00 76.30 75.10<br>61.50                                                                   |                                                                   | 2 | 79.90 75.60                      | 85.4            |
| 2218314 | 377350  | 4908494  | 122.08                      | 27.1  | 7                      | 5 28 17 15 15 15       122.08       120.28       119.08       118.18       114.78         15       112.68       102.28       94.98 |                                                                   | 1 | 98.08                            | 104.18          |
| 2218317 | 376999  | 4905262  | 130.89                      | 20.1  | 2                      | 15 15                                                                                                                              | 130.89 113.49 110.79                                              | 1 | 113.49                           | 118.09          |



| BH ID   | Easting | Northing | Ground<br>Surface<br>(masl) |       | # of<br>Form-<br>ation | Form-ation<br>Mat1 Codes* | Formation Contact Elevations (masl)                        |       | Water Found<br>Elevations (masl) | Heads<br>(masl) |
|---------|---------|----------|-----------------------------|-------|------------------------|---------------------------|------------------------------------------------------------|-------|----------------------------------|-----------------|
| 2218402 | 377085  | 4906458  | 131                         | 36.6  | 3                      | 28 17 15                  | 131.00 130.40 129.20 94.40                                 | 1     | 100.2                            | 110.9           |
| 2218761 | 374486  | 4908854  | 137.09                      | 6.09  | 2                      | 5 15                      | 137.09 133.79 131.00                                       | 1     | 132.09                           | 132.65          |
| 2218798 | 377191  | 4906150  | 130                         | 74.4  | 8                      | 5 15 15 15 15 15<br>18 18 | 130.00 129.70 78.80 72.10 71.80<br>67.50 66.90 65.70 55.60 | 2     | 118.40 71.80                     | 123.9           |
| 2218808 | 377178  | 4906029  | 130                         | 74.4  | 5                      | 5 17 15 18 18             | 130.00 127.90 127.00 116.30 60.50<br>55.60                 | 2     | 122.40 58.00                     | 128.4           |
| 2218894 | 377130  | 4908304  | 123.65                      | 27.4  | 4                      | 5 17 15 15                | 123.65 123.05 122.45 96.85 96.25                           | 1     | 96.85                            | 105.05          |
| 2218933 | 374112  | 4907968  | 133.93                      | 18.3  | 3                      | 17 15 15                  | 133.93 132.73 119.33 115.63                                | 1     | 117.53                           | 131.13          |
| 2219208 | 372987  | 4908510  | 139.15                      | 23.2  | 4                      | 5 15 15 15                | 139.15 138.85 129.45 128.45 115.95                         | 1     | 129.15                           | 132.75          |
| 7040342 | 374310  | 4907523  | 135                         | 24.1  | 7                      | 5 17 15 15 15 15<br>15    | 135.00 134.50 132.00 124.30 122.80<br>119.80 116.70 110.90 | 1 113 |                                  | 128.2           |
| 7044780 | 377062  | 4908124  | 121                         | 24.7  | 3                      | 5 17 15                   | 121.00 120.00 118.90 96.30                                 | 1     | 98.6                             | 105.5           |
| 7105739 | 377339  | 4909136  | 125                         | 24.4  | 3                      | 5 17 15                   | 125.00 124.70 123.80 100.60                                | 2     | 108.60 103.10                    | 120.6           |
| 7105742 | 377320  | 4909174  | 125                         | 35.7  | 5                      | 5 17 15 15 15             | 125.00 124.70 122.00 117.40 112.20<br>89.30                | 1     | 101                              | 121.6           |
| 7108352 | 377295  | 4907527  | 110.02                      | 24.4  | 3                      | 5 17 15                   | 110.02 109.12 107.92 85.62                                 | 2     | 98.02 89.02                      | 102.22          |
| 7110985 | 377112  | 4906547  | 130                         | 87.17 | 5                      | 5 15 15 18 21             | 130 00 128 17 74 53 69 04 64 77                            |       | 99.82 64.77                      | 100.13          |
| 7113026 | 375839  | 4906244  | 108.58                      | 23.47 | 1                      | 15 108.58 85.11           |                                                            | 1     | 86.03                            | 94.8            |
| 7119554 | 375173  | 4905792  | 90.44                       | 28.65 | 3                      | 5 17 15                   | 90.44 90.13 89.52 61.79                                    | 2     | 72.15 63.01                      | 72.88           |
| 7119560 | 374382  | 4907625  | 135.96                      | 21.64 | 7                      | 15 15 15 15 15<br>15 15   | 135.96 133.82 124.37 123.76 119.80<br>119.19 117.67 114.32 | 1     | 117.67                           | 131.32          |
| 7119565 | 375049  | 4905691  | 92                          | 29.57 | 3                      | 5 17 15                   | 92.00 91.69 89.86 62.43                                    | 1     | 89.16                            | 77.15           |

Note:

\*Legend of Mat1 Codes can be seen in Table C2 in Appendix C

All data obtained from Ministry of Environment of Ontario Water Well Information System Database updated November 2012

## Table C2 - Legend of Mat1 Codes

| Code | Description        |   | Code | Description    |
|------|--------------------|---|------|----------------|
| 00   | Unknown Type       |   | 39   | Feldspar       |
| 01   | Fill               |   | 40   | Flint          |
| 02   | Topsoil            |   | 41   | Gneiss         |
| 03   | Muck               |   | 42   | Greywacke      |
| 04   | Peat               |   | 43   | Gypsum         |
| 05   | Clay               |   | 44   | Iron Formation |
| 06   | Silt               |   | 45   | Marble         |
| 07   | Quicksand          |   | 46   | Quartz         |
| 08   | Fine Sand          |   | 47   | Schist         |
| 09   | Medium Sand        |   | 48   | Soapstone      |
| 10   | Coarse Sand        |   | 60   | Cemented       |
| 11   | Gravel             |   | 61   | Clayey         |
| 12   | Stones             |   | 62   | Clean          |
| 13   | Boulders           |   | 63   | Coarse-Grained |
| 14   | Hardpan            |   | 64   | Crystalline    |
| 15   | Limestone          |   | 65   | Dark-Coulourd  |
| 16   | Dolomite           |   | 66   | Dense          |
| 17   | Shale              |   | 67   | Disrty         |
| 18   | Sandstone          |   | 68   | Dry            |
| 19   | Slate              |   | 69   | Fine-Grained   |
| 20   | Quartzite          |   | 70   | Fosiliferous   |
| 21   | Granite            |   | 71   | Fractured      |
| 22   | Greenstone         |   | 72   | Gravelly       |
| 23   | Previously Dug     |   | 73   | Hard           |
| 24   | Previously Drilled |   | 74   | Layered        |
| 25   | Overburden         |   | 75   | Light-Coloured |
| 26   | Rock               |   | 76   | Limy           |
| 27   | **                 |   | 77   | Loose          |
| 28   | Sand               |   | 78   | Medium-Grained |
| 29   | Fine Gravel        |   | 79   | Packed         |
| 30   | Medium Gravel      |   | 80   | Posour         |
| 31   | Coarse Gravel      |   | 81   | Sandy          |
| 32   | Pea Gravel         |   | 82   | Shaly          |
| 33   | Marl               |   | 83   | Sharp          |
| 34   | Till               |   | 84   | Silty          |
| 35   | Wood Fragments     |   | 85   | Soft           |
| 36   | Basalt             |   | 86   | Sticky         |
| 37   | Chert              |   | 87   | Stoney         |
| 38   | Conglomerate       |   | 88   | Thick          |
|      |                    | - | 89   | Thin           |
|      |                    | H | 90   | Very           |
|      |                    | H | 91   | Water-Bearing  |
|      |                    |   | 92   | Weathered      |
|      |                    |   |      |                |

APPENDIX D: Photographs from Site Inspection



Photo 1: Ice on west wall of south existing quarry, approx. elevation 128 masl, taken Nov. 25, 2013



Photo 2: Same location, on January 10, 2014





Photo 3: North quarry, looking north. Note the same ice production at approximately 128 masl.



Photo 4: South quarry, looking south. Note the ice at various locations, at approximately 120 masl.





Photo 5: South wall of south quarry. Note the ice at approximately 120 masl.



Photo 6: Close up of rust staining and ice at point groundwater discharge location.





Photo 7: Pumping from the sump of north excavation



Photo 8: North pump junction. Black pipe goes to culvert and to south quarry (SW1)





Photo 9: Wash plant sediment ponds in south quarry



Photo 10: Wash plant pond with pump for flood events





Photo 11: Overflow sediment pond (SW2)



Photo 12: Southwest corner of south quarry, with ponded water





Photo 13: Drainage ditch exiting quarry at the south end (SW3)



Photo 14: Rectangular culvert under K&P trail (taken from upstream end)



APPENDIX E: Downhole Geophysics Report



# SUMMARY OF THE PHYSICAL PROPERTY BOREHOLE GEOPHYSICAL SURVEYS CONDUCTED AT ELGINBURG, ONTARIO

## **Submitted To:**

### **Morrison Hershfield**

Date 29 January 2013

**Prepared By:** 

**NOTRA Inc.** Dennis Gamble, P.Geo.

#### DISCLOSURE RESTRICTIONS

This document contains information which has been developed by NOTRA at its expense, and is subject to Section 19, 20 and 21 of the Access to Information Act of the Government of Canada. Any use or disclosure of this information, other than the specific purpose for which it is intended, is expressly prohibited, except as NOTRA may otherwise agree in writing.



## EXECUTIVE SUMMARY

A potential quarry expansion has been identified along the west and south west side of the current operations near Elginburg, ON, north of Kingston, Ontario.

In order to determine if suitable rock materials are sufficient and shallow enough to make a quarry operation feasible, a series of three (3) additional bore holes were commissioned throughout the property (in addition to 3 previously drilled). One hole, DDH10-01 (2010) was cored using a diamond drill borehole rig, allowing for a core log to be determined as well as additional chemical analysis. The geologic sections determined from DDH10-01 served as a reference log of the local geology and other boreholes.

An additional three (3) holes were drilled using reverse circulation techniques in 2012, holes BH1201, BH1202 and BH1203, which result in only rock dust being retrieved from the holes. Three other holes drilled in 2011 were also surveyed (BH1102, BH1103 and BH1104). In order to determine the lithology in these holes, borehole physical property surveys were conducted and the results compared to the reference log of DDH10-01.

Morrison Hershfield contracted NOTRA Inc. to conduct the seven (7) borehole physical property surveys. The Instruments for Geophysics (IFG) BMP06 multi-parameter probe was used along with the IFG 100 meter winch with optical depth encoder. The BMP06 simultaneously measures six (6) parameters at a rate of two (2) readings per second. The site was large; with limited access to the holes that were distributed over an area of approximately 1.2 km x 500m. A Side by Side ATV was used to transport the equipment from hole to hole.

Following analysis of the data it was determined that the natural gamma displayed a very close resemblance between all seven (7) boreholes. Using the DDH10-01 results, marker locations for the other 6 holes were projected using the natural gamma and resistivity data.

At the time of this report the results of the core and chemical analysis were not provided, however, the geophysical markers can be used to interpolate the relative depths any zones of interest from DDH10-01 to the other holes.

The overall trend indicates that the sedimentary rock sequences dip linearly to the south relative to the ground surface (elevation data has not be collected or provided). Over approximately 1100 meters from north to south, the top of DDH10-01 is found to have an additional 13 meters of sedimentary rock above it, implying a dip of approximately 0.6 Degrees.



## TABLE OF CONTENTS

#### <u>PAGE</u>

| Title Pa | nge(                     | i) |
|----------|--------------------------|----|
| Execut   | ve Summary(i             | i) |
| Table o  | f Contents(ii            | i) |
| 1.0      | Introduction             | 1  |
| 2.0      | Methodology & Approach   | 1  |
| 3.0      | Results                  | 2  |
| 4.0      | Conclusions              | 6  |
| 5.0      | Statement of Limitations | 7  |

### Annex A Equipment Description

- BMP06 Multi Component Probe
- 100m Winch
- Annex B Completed Logs (DDH10-01, BH1102, BH1103, BH1104, BH1201, BH1202 and BH1203)
- Annex C Pictures



### 1.0 Introduction

On 18 December 2012, NOTRA conducted a physical property borehole survey of seven (7) Boreholes that were approximately 35m in depth. Borehole DDH10-01 was a cored hole from which geophysical markers were identified. The other six (6) holes were drilled using reverse circulation and no core logs were produced.

The purpose of the borehole survey was to provide a manner to compare the geology sequences and depths between the cored hole and the six non-cored holes. An IFG BMP06 multi-parameter borehole tool was used to log data at approximately 5 cm intervals in all seven (7) holes.

The water table was found to be relatively deep, between 8 to 20 meters for the five (5) holes. The Apparent Resistivity and Single Point Resistance can only work within the water column and were deleted in the dry section of each hole. The Magnetic Susceptibility and Apparent Conductivity reacted only to the casing and were not used otherwise. The temperature data is presented, but only provides information of possible porous fractures.

The natural gamma data works within casing, dry sections of holes and within the water column with no variation. It was this parameter that was reproducible from hole to hole and can be used to imply the depths of any sequence relative to the sequences present in DDH10-01.

#### 2.0 <u>Methodology and Approach</u>

#### <u>BMP06</u>

The BMP06 measures simultaneously the temperature (T), apparent conductivity (AC), apparent resistivity (AR), single point resistance (SPR), magnetic susceptibility (MS) and natural gamma (NG) at a rate of 2 reading per second. The depth is also measured using an optical depth encoder that is part of the pulley mechanism affixed to the casing.

During the survey a 5 mA current is transmitted into the electrode from the control unit (remotely placed 25 meters from the borehole). This is used for the apparent resistivity measurements.

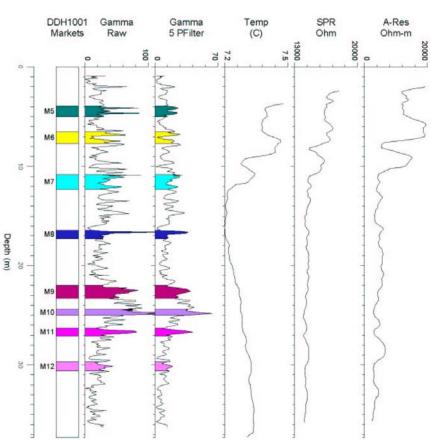
Upon placing the borehole probe in the hole, the depth of Zero is entered in the logging computer after the top of the probe has been lined up with the top of the casing. All depth references are to the top of the casing.

With the computer logging, the probe is lowered at approximately 5 meters per minute, resulting in one data point for all parameters being recorded every 4 cm. The probe is stopped briefly at 10 meter intervals (to confirm the accuracy of the optical depth encoder). Following completion of the hole, data is then collected while bringing the probe up, although at a faster rate. This up data is compared to the down run data to ensure proper operation of the unit. In the event there is a depth dispute when the probe reaches the top of the casing, the hole is resurveyed.

From each file the depth values are also confirmed (using the 10 m calibration points) and each parameter is extracted to an asc file. These files were then plotted in LogView from which analysis can be conducted.






Annex A has a complete description of the BMP06 probe and winch used during this survey.

Annex B has a description of the portable, manual 100m winch.

### 3.0 <u>Results</u>

DDH10-01 was surveyed and divided into the eight markers (8) units based on the natural gamma profiles starting at marker 5 (marker 1 to 4 to be attributed to markers higher in the sedimentary sequence than present at the ground level of DDH10-01).

#### Figure 1 – DDH10-01 with Markers



DDH10-01 Borehole Geophysical Results and Markers Elginburg, ON, December 18, 2012



After determining location of these markers depths for the remaining 6 holes, the relative depth was adjusted until they matched that of the natural gamma markers (M5 toM12), the Natural Gamma data was plotted for all the holes and adjusted to line up (on BH1102 – the highest). - The complete logs for BH1102-BH1104, to BH1201-BH1203 are contained in Annex B.

#### Figure 2 - Natural Gamma Data – Levelled to Markers



The natural gamma data maps profiles for each hole are very similar when adjusted by a vertical shift and aligned to specific features in the profiles.



The following table summarizes the depth of each hole surveyed, the water table depth and the relative shift to the natural gamma profiles to align the markers to BH1102.

#### Table 1 - Borehole Summary

|          |       | Depth in meters |                        |
|----------|-------|-----------------|------------------------|
| Borehole | Water | Hole Length     | Shift to Align Markers |
| DDH1001  | 3.7   | 37.2            | 4.4                    |
| BH1102   | 4.9   | 35.9            | 0.9                    |
| BH1103   | 8.8   | 36.0            | 1.6                    |
| BH1104   | 19.8  | 36.0            | 18.3                   |
| BH1201   | 11.4  | 34.7            | 5.0                    |
| BH1202   | 17.6  | 39.1            | 10.8                   |
| BH1203   | 2.0   | 36.1            | 14.0                   |

By plotting the location of each hole and the shift required to align the Natural Gamma data, the relative dip and strike of the sedimentary rocks can be plotted relative to the top of the borehole casing (the reference for each profile). Table 2 below has the locations (provided by Morrison Hershfield) and the shift.

Table 2 - Borehole Locations and Shift to Align Markers

| Name     | <u>X</u> | <u>Y</u>  | Shift to Align Gamma |
|----------|----------|-----------|----------------------|
| DDH10-01 | 375326.5 | 4907596.0 | 4.4                  |
| BH11-02  | 375161.1 | 4907940.2 | 0.9                  |
| BH11-03  | 374953.6 | 4907727.6 | 1.6                  |
| BH11-04  | 375301.2 | 4906803.1 | 18.3                 |
| BH12-01  | 375163.5 | 4907322.5 | 5.0                  |
| BH12-02  | 374990.9 | 4906968.5 | 10.8                 |
| BH12-03  | 374634.1 | 4906698.8 | 14.0                 |



Figure 3 is a contour map of the borehole locations and the shift applied to match the markers identified in the natural gamma data.

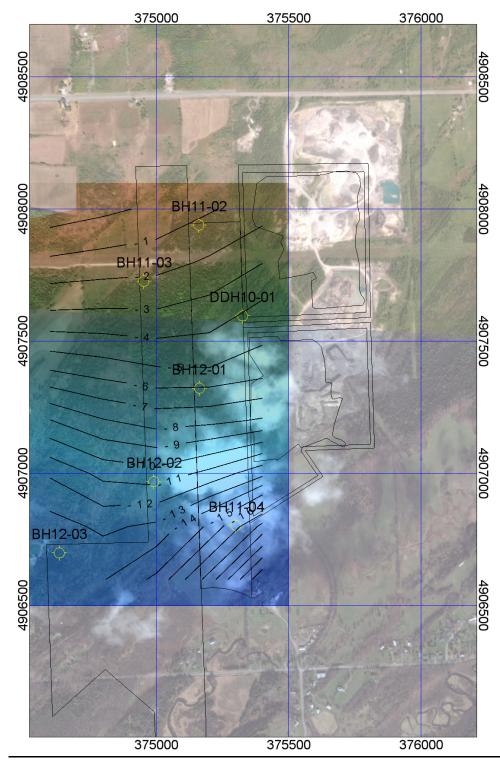



Figure 3 – Contour Map of Shift applied to Alien Natural Gamma Data



### 4.0 <u>Conclusions</u>

At the Elginburg Site, natural gamma (NG) data can be used to determine the locations of lithology between all seven (7) Boreholes.

Markers relating to Natural Gamma data can be identified and located on all of the holes surveyed. Markers M5 to M12 were located on the reference hole, DDH10-01 and located on the additional six (6) boreholes

By shifting the elevation of each hole, the Natural Gamma and markers were aligned. A plot of this shift value for each hole using the provided borehole location indicates a dip of less than 1 degree to the south relative to ground surface (top of casings for each hole).

This implies a significant additional amount of rock of over 10 meters is above the beginning sedimentary rock units present at the top of DDH10-01 at a distance of 1 km to the south, increasing to 18m at a distance of 1200m.

The locations of fractures can be obtained from the temperature and temperature gradient data; however, at this time this information is not required.



### 5.0 Statement of Limitations

This Geophysical Survey Report has been prepared exclusively for Morrison Hershfield. The purpose of this report is to provide them with an assessment of the lithology of six (6) Boreholes relative to one (1) Diamond Drill Hole. This report is neither an endorsement nor a condemnation of the subject property.

The borehole geophysical techniques employed typically produce methods to map and differentiate structure in bead rock. However, each technique has limitations, especially in areas in which there is little magnetic changes, conductivity changes or in dry portions of wells.

The results and conclusions documented in this report have been prepared for a specific application to this project and have been developed in a manner with that level of skill normally exercised by qualified professionals currently practicing in this area of geophysical surveying. No other warranty, expressed or implied, is made.

Reports or memoranda resulting from this assignment are not to be used in whole or in part outside Morrison Hershfield without prior written permission.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. NOTRA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this report.

If new information is developed in future work (which may include the survey in of borehole locations and elevations or changes to the diamond drill logs), NOTRA should be contacted to re-evaluate the conclusions of this report and to provide amendments as required.

### Dennis Gamble

Dennis Gamble, P.Geo, P.Geoph. Senior Geophysicist, NOTRA Inc. January 29, 2013



### ANNEX A EQUIPMENT DESCRIPTION

- BMP06 Multi-Component Probe
- 100m Winch





### Instruments for Geophysics (IFG) - BMP06 Multi-Component Probe

#### General Description

The BMP-06 is a multi-component probe designed by the IFG Corporation in Brampton, Ontario. It simultaneously measures temperature (T), Relative Conductivity (RC), Magnetic Susceptibility (MS), Natural Gamma (NG), Single Point Resistance (SPR) and Apparent Resistivity (AR).

The probe is a total length of 196 cm (from cable head to tip). The parameters measured are located along the full probe length.

#### Parameter Description

#### Temperature

A temperature sensor is located 182 cm below the cable head. The temperature sensor is resilient to drift and measurements are repeatable to within 0.01 of a degree Celsius. For additional calculations such as gradient or differential temperature, the temperature data is interpolated to a fixed depth interval.

As the probe goes down the hole it disturbs the static water column. For this reason the initial down run is used for presentation and interpretation. It is also preferable to conduct the survey when the water within the hole has been allowed to settle following drilling, purging or other actions.

Temperature is effective at detecting water-flowing fractures. When water from the surrounding rock enters of leaves the borehole, it may be evident as a rapid change in temperature that may be enhanced with temperature gradient calculations. To enhance water leaving the column, the borehole column can be heated and the temperature resurveyed.

#### Relative Conductivity

The RC sensor is located 120 cm below the cable head. The sensor, coincident loop coil, is tuned for relatively conductive environments (sulfide differentiation) and is susceptible to drift due to temperature changes, especially in low conductivity environments (0.1 to 20 mS/m).

The RC may be used to measure large conductivity contrasts in the borehole.

#### Magnetic Susceptibility

The MS sensor is located 150 cm below the cable head. The coincident loop coil is tuned to measure the in phase response that may be related to magnetic materials in the borehole. This relationship may breakdown in highly conductive environments (sulfides) and the MS response is susceptible to drift due to temperature changes.

Rock units that have contrasting iron content may be mapped with the MS.





### Natural Gamma

The natural gamma sensor is located 92 cm below the cable head. The natural gamma measures gamma rays in the spectrum between 0.1 and 3 MeV in counts per second.

In most rock units it is the variations in potassium content that results in variations in the gamma values (ranging from 30 to 500 cps). This technique is the most successful at differentiating changes in lithology, especially in a multi-hole project in which subtle variations may be related from hole to hole.

The introduction of concentrations of uranium (and to some degree thorium) may result in a significant increase in count rate of well over 1000 cps. As the energies of the gamma rays are not measured, it is not possible to attribute a high gamma count rate to a specific element.

The natural gamma sensor is not sensitive to temperature changes and can be used in the presence of borehole casing.

#### Single Point and Apparent Resistivity

The single point resistance (SPR) is the electrical resistance measured between the cable head and the casing or grounded electrode at surface. The SPR may be used to differentiate rock units that have large resistivity variations.

For the Ares, a constant 5 mA current is applied between the grounded electrode (or casing) and the cable head and the voltage measured between two additional electrodes below the cable head. The scale factor used to calculate the apparent resistivity (AR) is;

AR = pi (V/i) / 0.406 where V is the measured voltage and i is the constant current

Although the AR closely matches the SPR, it is a more precise measurement of the rock resistivity. For both AR and SPR, the probe must be submerged in water.



### Instruments for Geophysics (IFG) - 100 m Winch - General Description

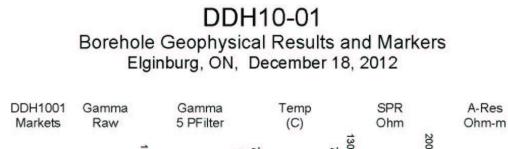
The borehole winch used is the IFG 100 meter manual winch with external controller. The system is ideal for shallow environmental surveys due to its relative portability.

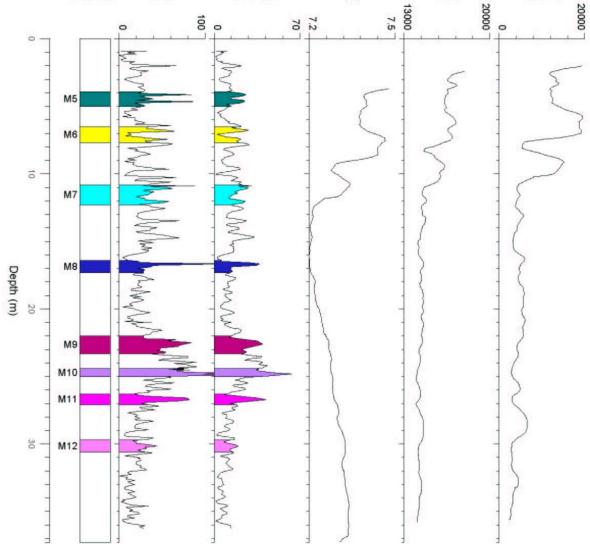
The basic system includes a winch with a geared hand crank and 100 m of 4-conductor cable. A pulley placed on the borehole casing or affixed to the winch has a laser counter built in to measure cable motion (depth).

A controller box is used to power the various probes that may be attached to the winch, to digitize the analog signal from the probes and to digitize the counter signal. A stream of digital data is transmitted from the controller to a laptop computer at a rate of 1 complete data set/second. The controller requires 200 Watts of power and can be powered by portable 12 volt battery with and a small inverter (12v DC to 110 v AC).

The IFG DAS software is used to control data acquisition and monitor data quality.

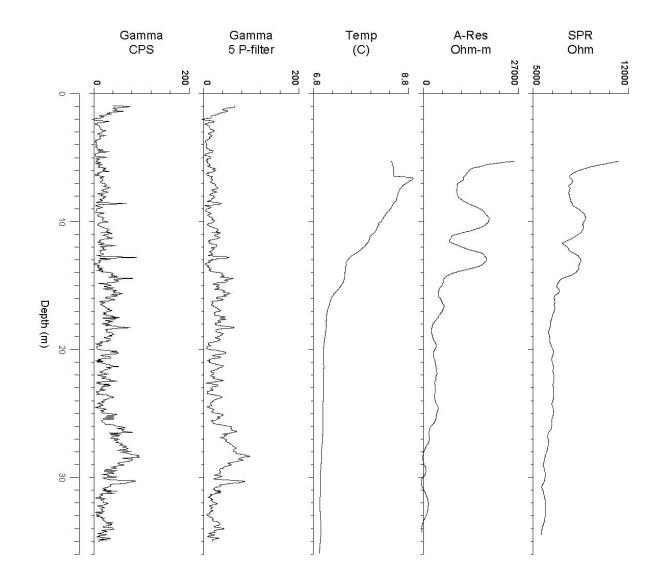
#### Field Procedures


During each survey the zero depth is established as the location of the cable head (to the probe) relative to the top of the casing. As the probe is lowered at a rate of 4cm/sec data is stored to a *down run file*. As there is the possibility of pulley slippage or dirt and ice interference, the borehole cable has markings at 10 meter intervals. At each 10 meter marking the digitized depth is noted. Any deviation between measured depth and actual depth is corrected during post processing.


When the end of hole is encountered the down run file is closed and an up run file is opened. The up run is collected as a check against probe operation. Provided there is no deviation between runs for a particular parameter, only one run is presented in profiles.

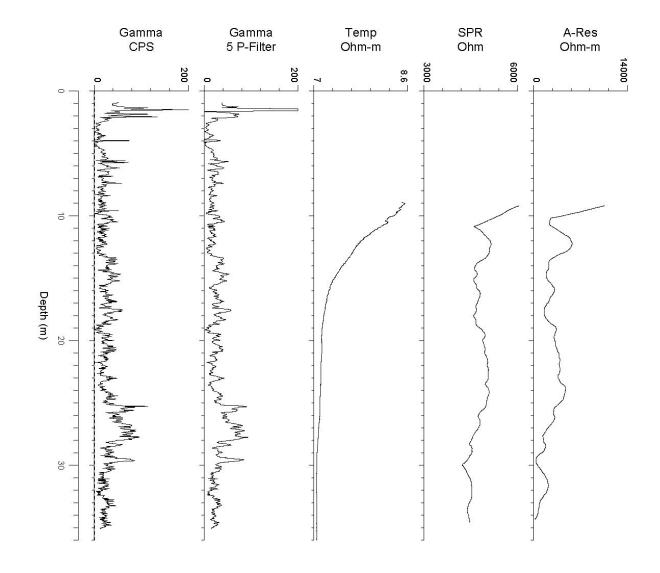


### ANNEX B COMPLETED LOGS

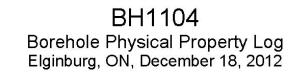


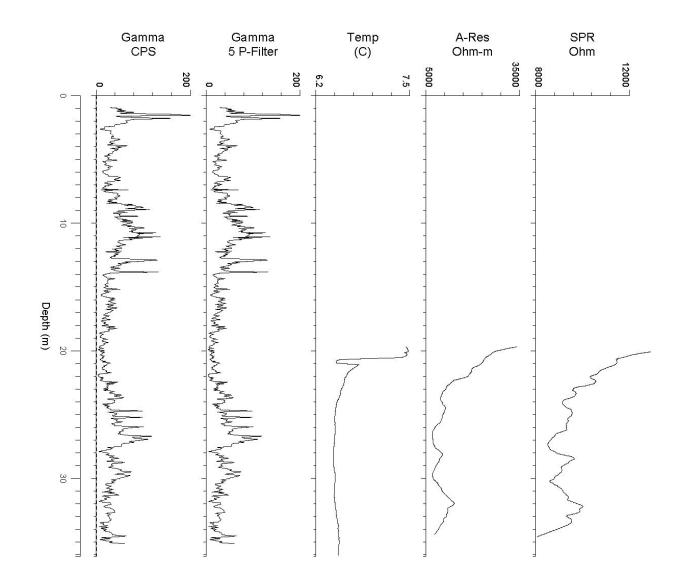





### BH1102 Borehole Geophysical Results Elginburg, ON, December 18, 2012

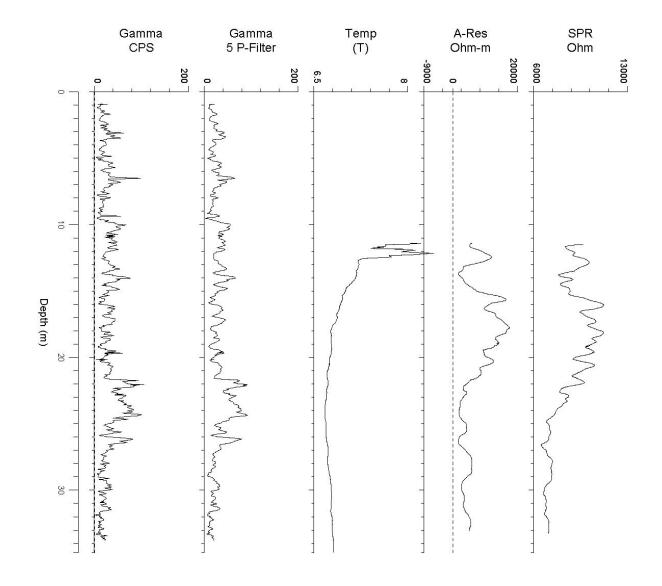



### BH1103 Borehole Geophysical Results Elginburg, ON, December 18, 2012

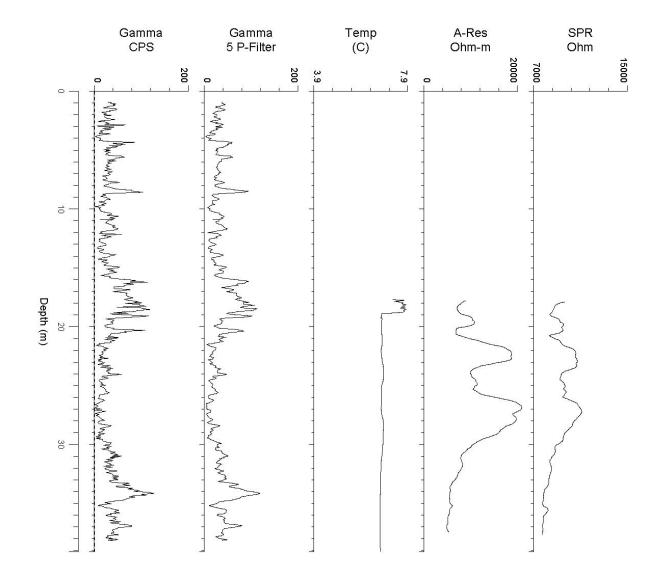




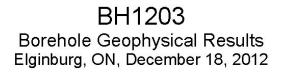


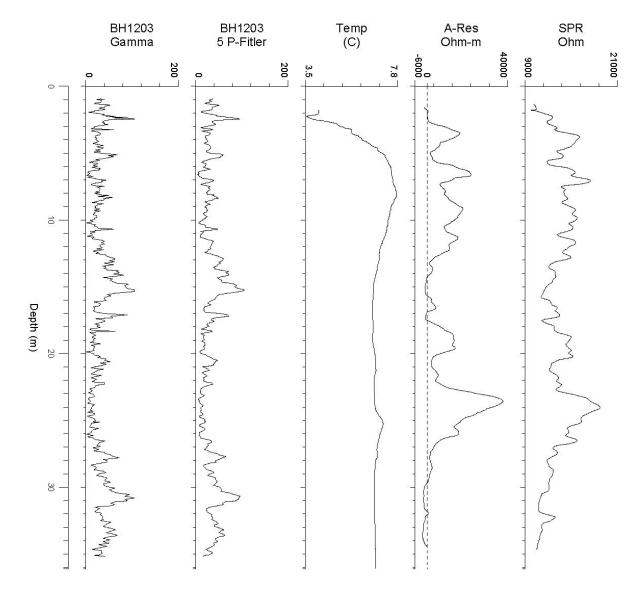





### BH1201 Borehole Geophysical Results Elginburg, ON, December 18, 2012




### BH1202 Borehole Geophysical Results Elginburg, ON, December 18, 2012











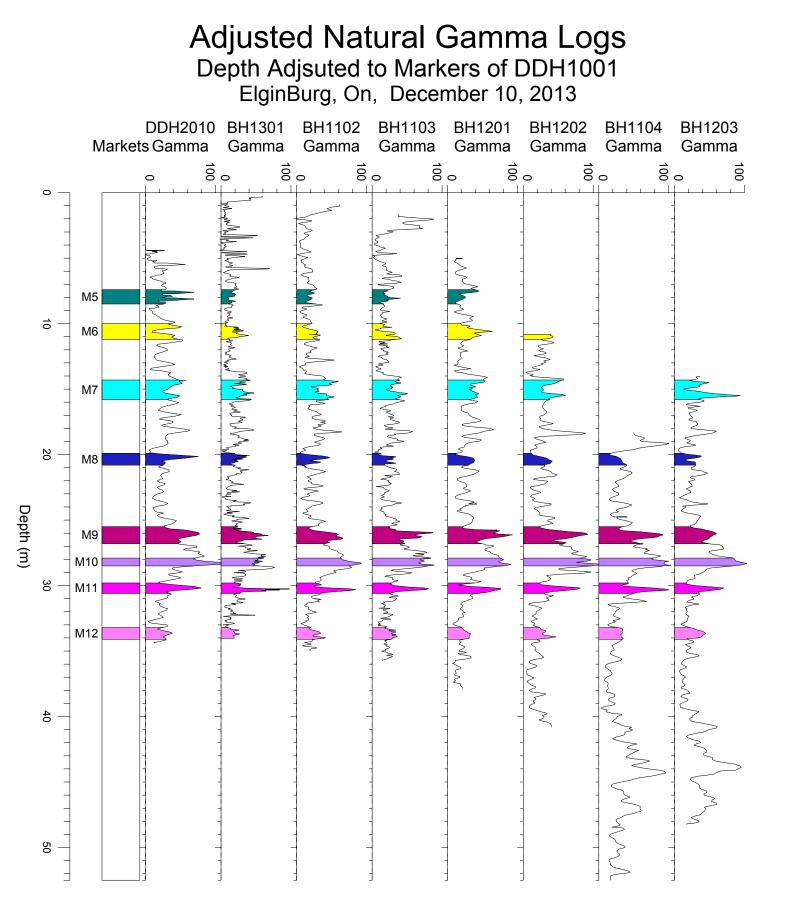
### ANNEX C PICTURES





System Logging –DDH10-01




Setting Up System – BH1203



The IFG BMP06 Probe - BH1102







APPENDIX F: Groundwater Level Monitoring Data

| вн       | Easting | Northing | Ground<br>Surface<br>(mASL) | Casing<br>Height<br>(m) | Casing<br>Top<br>Elev.<br>(mASL) | Hole<br>Depth<br>(mBGS) | Base of<br>Hole<br>Elev.<br>(mASL) | Top of<br>Screened<br>Interval<br>(mBGS) | Bottom of<br>Screened<br>Interval<br>(mBGS) | Top of<br>Screened<br>Interval Elev.<br>(mASL) | Bottom of<br>Screened<br>Interval Elev.<br>(mASL) |
|----------|---------|----------|-----------------------------|-------------------------|----------------------------------|-------------------------|------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------------|---------------------------------------------------|
| DDH10-01 | 375488  | 4907856  | 135.37                      | 0.84                    | 136.21                           | 37.20                   | 98.17                              | -                                        | -                                           | 135.37                                         | 98.17                                             |
| BH11-02  | 375321  | 4908199  | 138.14                      | 0.80                    | 138.94                           | 35.90                   | 102.24                             | -                                        | -                                           | 138.14                                         | 102.24                                            |
| BH11-03  | 375109  | 4907991  | 137.72                      | 0.80                    | 138.52                           | 36.00                   | 101.72                             | -                                        | -                                           | 137.72                                         | 101.72                                            |
| BH11-04  | 375437  | 4907054  | 125.69                      | 0.94                    | 126.63                           | 36.00                   | 89.69                              | -                                        | -                                           | 125.69                                         | 89.69                                             |
| BH12-01  | 375319  | 4907602  | 133.20                      | 0.64                    | 133.84                           | 34.70                   | 98.50                              | -                                        | -                                           | 133.20                                         | 98.50                                             |
| BH12-02  | 375148  | 4907222  | 128.90                      | 0.61                    | 129.51                           | 40.23                   | 88.67                              | -                                        | -                                           | 128.90                                         | 88.67                                             |
| BH12-03  | 374786  | 4906954  | 131.30                      | 0.50                    | 131.80                           | 36.10                   | 95.20                              | -                                        | -                                           | 131.30                                         | 95.20                                             |
| BH13-01  | 375115  | 4908411  | 138.15                      | 0.46                    | 138.61                           | 35.51                   | 102.64                             | -                                        | -                                           | 138.15                                         | 102.64                                            |
| BH11-02A | 375321  | 4908199  | 138.14                      | 0.80                    | 138.94                           | 35.96                   | 102.18                             | 24.38                                    | 35.96                                       | 113.76                                         | 102.18                                            |
| BH11-02B | 375321  | 4908199  | 138.14                      | 0.80                    | 138.94                           | 35.96                   | 102.18                             | 12.19                                    | 19.81                                       | 125.95                                         | 118.33                                            |
| BH11-02C | 375321  | 4908199  | 138.14                      | 0.80                    | 138.94                           | 35.96                   | 102.18                             | 4.57                                     | 9.14                                        | 133.57                                         | 129.00                                            |
| BH12-02A | 375148  | 4907222  | 128.90                      | 0.61                    | 129.51                           | 35.96                   | 92.94                              | 27.43                                    | 35.96                                       | 101.47                                         | 92.94                                             |
| BH12-02B | 375148  | 4907222  | 128.90                      | 0.61                    | 129.51                           | 35.96                   | 92.94                              | 16.76                                    | 24.38                                       | 112.14                                         | 104.52                                            |
| BH12-02C | 375148  | 4907222  | 128.90                      | 0.61                    | 129.51                           | 35.96                   | 92.94                              | 4.57                                     | 12.19                                       | 124.33                                         | 116.71                                            |
| BH12-03A | 374786  | 4906954  | 131.30                      | 0.50                    | 131.80                           | 35.96                   | 95.34                              | 24.38                                    | 35.96                                       | 106.92                                         | 95.34                                             |
| BH12-03B | 374786  | 4906954  | 131.30                      | 0.50                    | 131.80                           | 19.51                   | 111.79                             | 12.80                                    | 19.81                                       | 118.50                                         | 111.49                                            |
| BH13-01A | 375115  | 4908411  | 138.15                      | 0.46                    | 138.61                           | 35.05                   | 103.10                             | 27.43                                    | 35.05                                       | 110.72                                         | 103.10                                            |
| BH13-01B | 375115  | 4908411  | 138.15                      | 0.46                    | 138.61                           | 18.29                   | 119.86                             | 7.62                                     | 18.29                                       | 130.53                                         | 119.86                                            |
| MW-1-1   | 375926  | 4908412  | 131.20                      | 0.52                    | 131.72                           | 38.31                   | 92.89                              | -                                        | -                                           | -                                              | -                                                 |
| MW-2-1   | -       | -        | 136.80                      | 0.58                    | 137.38                           | 38.25                   | 98.55                              | 22.50                                    | 38.25                                       | 114.30                                         | 98.55                                             |
| MW-2-2   | -       | -        | 136.80                      | 0.58                    | 137.38                           | 19.56                   | 117.24                             | 9.40                                     | 20.30                                       | 127.40                                         | 116.50                                            |
| MW-2-3   | -       | -        | 136.80                      | 0.58                    | 137.38                           | 7.49                    | 129.31                             | 5.90                                     | 7.30                                        | 130.90                                         | 129.50                                            |
| MW-3-1   | -       | -        | 128.40                      | 0.69                    | 129.09                           | 38.23                   | 90.17                              | 22.10                                    | 38.23                                       | 106.30                                         | 90.17                                             |
| MW-3-2   | -       | -        | 128.40                      | 0.69                    | 129.09                           | 18.90                   | 109.50                             | 6.50                                     | 19.60                                       | 121.90                                         | 108.80                                            |
| MW-4-1   | -       | -        | 124.80                      | 0.54                    | 125.34                           | 38.35                   | 86.45                              | 23.20                                    | 38.35                                       | 101.60                                         | 86.45                                             |
| MW-4-2   | -       | -        | 124.80                      | 0.54                    | 125.34                           | 20.67                   | 104.13                             | 7.70                                     | 20.80                                       | 117.10                                         | 104.00                                            |

mASL - metres Above Sea Level

mBGS - metres Below Ground Surface

| вн       | CT Elev. | GWL*     | GWE    | GWL   | GWE    |
|----------|----------|----------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|
| БП       | (mASL)   | Prior to | Dec/13 | 11/12 | /2013  | 12/12 | /2013  | 13/12 | /2013  | 18/12 | /2013  | 10/1/ | /2014  | 15/01 | /2014  | 5/06/ | 2014   | 1/07/ | 2014   | 18/08 | /2014  | 12/09 | /2014  | 23/10 | )/2014 |
| DDH10-01 | 136.21   | -        | -      | -     | -      | 2.36  | 133.85 | -     | -      | -     | -      | 2.28  | 133.93 | 2.39  | 133.82 | -     | -      | 2.50  | 133.71 | 2.40  | 133.81 | 2.50  | 133.71 | 2.00  | 134.21 |
| BH11-02  | 138.94   | -        | -      | 4.42  | 134.52 | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      |
| BH11-03  | 138.52   | -        | -      | -     | -      | -     | -      | 7.29  | 131.23 | -     | -      | 14.54 | 123.98 | -     | -      | 10.71 | 127.81 | 10.90 | 127.62 | 11.00 | 127.52 | 11.00 | 127.52 | 9.10  | 129.42 |
| BH11-04  | 126.63   | -        | -      | -     | -      | -     | -      | 20.82 | 105.81 | -     | -      | 19.71 | 106.92 | -     | -      | 20.61 | 106.02 | 20.77 | 105.86 | 20.00 | 106.63 | 19.95 | 106.68 | 22.97 | 103.66 |
| BH11-05  | -        |          |        |       |        |       | -      |       |        |       |        |       |        | 1.90  | -      | 1.90  | -      | 2.00  | -      | 2.10  | -      | 2.10  | -      | 2.10  | -      |
| BH11-06  | -        |          |        |       |        |       | -      |       |        |       |        |       |        | 16.50 | -      | 9.00  | -      | 9.10  | -      | 9.00  | -      | 8.90  | -      | 7.00  | -      |
| BH12-01  | 133.84   | -        | -      | -     | -      | -     | -      | 11.87 | 121.97 | -     | -      | 11.80 | 122.04 | -     | -      | 12.25 | 121.59 | 12.50 | 121.34 | 13.00 | 120.84 | 12.90 | 120.94 | 7.10  | 126.74 |
| BH12-02  | 129.51   | -        | -      | -     | -      | 19.70 | 109.81 | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      |
| BH12-03  | 131.80   | -        | -      | -     | -      | 1.60  | 130.20 | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      |
| BH13-01  | 138.61   | -        | -      | 0.90  | 137.71 | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      |
| BH11-02A | 138.94   | -        | -      | -     | -      | -     | -      | -     | -      | 3.05  | 135.89 | 3.13  | 135.81 | 8.32  | 130.62 | 3.82  | 135.12 | 4.60  | 134.34 | 1.57  | 137.37 | 1.55  | 137.39 | 3.90  | 135.04 |
| BH11-02B | 138.94   | -        | -      | -     | -      | -     | -      | -     | -      | 4.91  | 134.03 | 4.14  | 134.80 |       | -      | 4.60  | 134.34 | 4.90  | 134.04 | 3.90  | 135.04 | 3.80  | 135.14 | 5.12  | 133.82 |
| BH11-02C | 138.94   | -        | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      |       | -      | 1.57  | 137.37 | 1.50  | 137.44 | 1.60  | 137.34 | 1.60  | 137.34 | 1.90  | 137.04 |
| BH12-02A | 129.51   | -        | -      | -     | -      | -     | -      | -     | -      | 20.41 | 109.10 | 18.81 | 110.70 | -     | -      | 20.85 | 108.66 | 20.90 | 108.61 | 20.98 | 108.53 | 20.80 | 108.71 | 20.95 | 108.56 |
| BH12-02B | 129.51   | -        | -      | -     | -      | -     | -      | -     | -      | 18.56 | 110.95 | 18.10 | 111.41 | -     | -      | 17.94 | 111.57 | 18.00 | 111.51 | 18.20 | 111.31 | 18.20 | 111.31 | 18.70 | 110.81 |
| BH12-02C | 129.51   | -        | -      | -     | -      | -     | -      | -     | -      | -     | -      | 11.45 | 118.06 | -     | -      | 7.20  | 122.31 | 7.50  | 122.01 | 7.50  | 122.01 | 7.45  | 122.06 | 9.30  | 120.21 |
| BH12-03A | 131.80   | -        | -      | -     | -      | -     | -      | -     | -      | 3.95  | 127.85 | 21.20 | 110.60 | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      |
| BH12-03B | 131.80   | -        | -      | -     | -      | -     | -      | -     | -      | 3.49  | 128.31 | 2.92  | 128.88 | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      |
| BH13-01A | 138.61   | -        | -      | -     | -      | -     | -      | -     | -      | 1.62  | 136.99 | 1.67  | 136.94 | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      |
| BH13-01B | 138.61   | -        | -      | -     | -      | -     | -      | -     | -      | 2.91  | 135.70 | 1.52  | 137.09 | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      |
| MW-1-1   | 131.72   | 7.93     | 123.27 | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | 1.60  | 130.12 | 7.55  | 124.17 | 7.50  | 124.22 | 7.80  | 123.92 | 7.70  | 124.02 | 7.45  | 124.27 |
| MW-2-1   | 137.38   | 9.47     | 127.33 | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | 8.20  | 129.18 | 9.30  | 128.08 | 9.10  | 128.28 | 9.20  | 128.18 | 9.10  | 128.28 | 9.60  | 127.78 |
| MW-2-2   | 137.38   | 9.43     | 127.37 | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | 8.00  | 129.38 | 9.20  | 128.18 | 9.22  | 128.16 | 9.60  | 127.78 | 9.60  | 127.78 | 9.65  | 127.73 |
| MW-2-3   | 137.38   | 4.82     | 131.98 | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | 4.20  | 133.18 | 5.00  | 132.38 | 4.95  | 132.43 | 5.00  | 132.38 | 4.95  | 132.43 | 5.00  | 132.38 |
| MW-3-1   | 129.09   | 19.75    | 108.65 | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | 17.80 | 111.29 | 17.60 | 111.49 | 17.65 | 111.44 | 17.80 | 111.29 | 17.75 | 111.34 | 18.38 | 110.71 |
| MW-3-2   | 129.09   | 17.82    | 110.58 | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | 22.10 | 106.99 | 17.41 | 111.68 | 17.32 | 111.77 | 18.00 | 111.09 | 17.80 | 111.29 | 17.60 | 111.49 |
| MW-4-1   | 125.34   | 25.30    | 99.50  | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | 9.00  | 116.34 | 21.70 | 103.64 | 21.80 | 103.54 | 21.90 | 103.44 | 21.70 | 103.64 | 20.70 | 104.64 |
| MW-4-2   | 125.34   | 9.49     | 115.31 | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | 4.62  | 120.72 | 8.80  | 116.54 | 8.50  | 116.84 | 8.70  | 116.64 | 8.60  | 116.74 | 7.80  | 117.54 |

CT Elev - Casing Top Elevation

GWL - Groundwater Level in metres Below Top of Casing

GWE - Groundwater Elevation in metres Above Sea Level

\* GWL in metres Below Ground Surface

NOTE - Data from 2015 provided by Cruickshank and reported by Morrison Hershfield

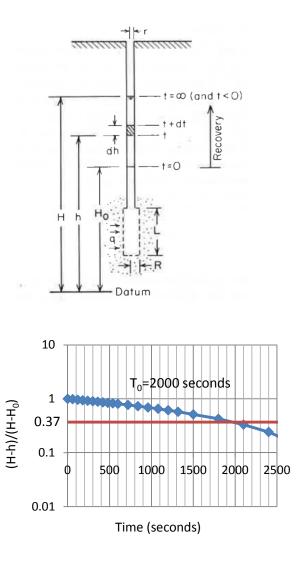


| вн       | GWL   | GWE    |
|----------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|
| БП       | 20/11 | /2014  | 29/12 | /2014  | 19/01 | /2015  | 28/02 | /2015  | 19/03 | /2015  | 16/04 | /2015  | 8/06/ | 2015   | 10/07 | //2015 | 7/08/ | 2015   | 2/09/ | 2015   | 6/10/ | 2015   | 6/11/ | 2015   | 4/12/ | /2015  |
| DDH10-01 | 2.00  | 134.21 | 8.00  | 128.21 | 2.90  | 133.31 | 2.96  | 133.25 | 3.20  | 133.01 | 3.00  | 133.21 | 2.87  | 133.34 | 2.26  | 133.95 | 2.69  | 133.52 | 2.64  | 133.57 | 2.50  | 133.71 | 2.40  | 133.81 | 2.30  | 133.91 |
| BH11-02  | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      |
| BH11-03  | 10.20 | 128.32 | 4.70  | 133.82 | 8.00  | 130.52 | 8.17  | 130.35 | 8.20  | 130.32 | 7.90  | 130.62 | 7.96  | 130.56 | 7.65  | 130.87 | 11.60 | 126.92 | 7.64  | 130.88 | 7.60  | 130.92 | 7.52  | 131.00 | 7.44  | 131.08 |
| BH11-04  | 22.00 | 104.63 | 1.70  | 124.93 | 18.00 | 108.63 | 18.70 | 107.93 | 18.80 | 107.83 | 18.20 | 108.43 | 18.90 | 107.73 | 20.85 | 105.78 | 26.60 | 100.03 | 26.02 | 100.61 | 25.20 | 101.43 | 23.85 | 102.78 | 21.84 | 104.79 |
| BH11-05  | 2.00  | -      | 2.00  | -      | 13.00 | -      | 12.75 | -      | 12.90 | -      | 12.25 | -      | 12.18 | -      | 11.85 | -      | 12.95 | -      | 9.20  | -      | 20.92 | -      | 15.80 | -      | 17.30 | -      |
| BH11-06  | 7.50  | -      | 7.60  | -      | 2.00  | -      | 1.91  | -      | 2.10  | -      | 1.80  | -      | 1.35  | -      | 1.64  | -      | 1.40  | -      | 1.04  | -      | 1.33  | -      | 1.19  | -      | 1.20  | -      |
| BH12-01  | 7.25  | 126.59 | 7.40  | 126.44 | 11.50 | 122.34 | 11.50 | 122.34 | 11.55 | 122.29 | 11.35 | 122.49 | 11.65 | 122.19 | 12.00 | 121.84 | 13.40 | 120.44 | 13.37 | 120.47 | 12.96 | 120.88 | 11.75 | 122.09 | 11.50 | 122.34 |
| BH12-02  | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      |
| BH12-03  | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      |
| BH13-01  | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      | -     | -      |
| BH11-02A | 3.60  | 135.34 | 3.50  | 135.44 | 4.80  | 134.14 | 4.90  | 134.04 | 5.00  | 133.94 | 3.60  | 135.34 | 3.83  | 135.11 | 1.40  | 137.54 | 3.44  | 135.50 | 3.77  | 135.17 | 3.55  | 135.39 | 3.40  | 135.54 | 3.46  | 135.48 |
| BH11-02B | 5.00  | 133.94 | 5.20  | 133.74 | 8.00  | 130.94 | 8.50  | 130.44 | 8.80  | 130.14 | 3.90  | 135.04 | 4.40  | 134.54 | 1.80  | 137.14 | 4.90  | 134.04 | 4.99  | 133.95 | 4.75  | 134.19 | 4.67  | 134.27 | 4.65  | 134.29 |
| BH11-02C | 1.80  | 137.14 | 2.00  | 136.94 | 4.50  | 134.44 | 4.86  | 134.08 | 4.90  | 134.04 | 1.90  | 137.04 | 1.98  | 136.96 | 4.50  | 134.44 | 1.80  | 137.14 | 1.97  | 136.97 | -     | -      | 1.83  | 137.11 | 1.90  | 137.04 |
| BH12-02A | 20.00 | 109.51 | 20.50 | 109.01 | 21.80 | 107.71 | 21.93 | 107.58 | 21.90 | 107.61 | 20.50 | 109.01 | 21.06 | 108.45 | 21.45 | 108.06 | -     | -      | 22.23 | 107.28 | 21.72 | 107.79 | 19.90 | 109.61 | 19.42 | 110.09 |
| BH12-02B | 18.50 | 111.01 | 18.00 | 111.51 | 18.20 | 111.31 | 18.30 | 111.21 | 18.20 | 111.31 | 18.00 | 111.51 | 19.19 | 110.32 | 19.55 | 109.96 | 16.20 | 113.31 | 14.93 | 114.58 | 18.84 | 110.67 | 11.22 | 118.29 | 11.70 | 117.81 |
| BH12-02C | 9.00  | 120.51 | 8.90  | 120.61 | 8.10  | 121.41 | 8.24  | 121.27 | 8.20  | 121.31 | 8.00  | 121.51 | 8.24  | 121.27 | 7.80  | 121.71 | 8.70  | 120.81 | 9.24  | 120.27 | 9.44  | 120.07 | 8.63  | 120.88 | 8.04  | 121.47 |
| BH12-03A | -     | -      | -     | -      | 24.25 | 107.55 | 24.37 | 107.43 | 24.40 | 107.40 | 24.65 | 107.15 | 22.15 | 109.65 | 22.60 | 109.20 | -     | -      | -     | -      | -     | -      | -     | -      | 22.78 | 109.02 |
| BH12-03B | -     | -      | -     | -      | 5.90  | 125.90 | 5.95  | 125.85 | 6.00  | 125.80 | 5.20  | 126.60 | 5.35  | 126.45 | 4.70  | 127.10 | 6.25  | 125.55 | 6.25  | 125.55 | 6.20  | 125.60 | 6.15  | 125.65 | 4.70  | 127.10 |
| BH13-01A | -     | -      | -     | -      | 1.50  | 137.11 | 1.60  | 137.01 | 1.90  | 136.71 | 1.00  | 137.61 | 1.46  | 137.15 | 1.65  | 136.96 | 1.95  | 136.66 | 1.97  | 136.64 | 1.98  | 136.63 | 1.97  | 136.64 | 1.72  | 136.89 |
| BH13-01B | -     | -      | -     | -      | 1.60  | 137.01 | 1.74  | 136.87 | 1.70  | 136.91 | 1.20  | 137.41 | 1.67  | 136.94 | 1.80  | 136.81 | 1.55  | 137.06 | 1.89  | 136.72 | 1.87  | 136.74 | 1.78  | 136.83 | 1.63  | 136.98 |
| MW-1-1   | 7.50  | 124.22 | 7.20  | 124.52 | 2.00  | 129.72 | 2.10  | 129.62 | 2.00  | 129.72 | 1.90  | 129.82 | 7.45  | 124.27 | 7.47  | 124.25 | 7.60  | 124.12 | 7.59  | 124.13 | 7.53  | 124.19 | 7.50  | 124.22 | 7.55  | 124.17 |
| MW-2-1   | 9.15  | 128.23 | 9.00  | 128.38 | 9.10  | 128.28 | 9.00  | 128.38 | 9.10  | 128.28 | 8.50  | 128.88 | 8.80  | 128.58 | 9.58  | 127.80 | 9.60  | 127.78 | 7.86  | 129.52 | 9.52  | 127.86 | 9.27  | 128.11 | 9.17  | 128.21 |
| MW-2-2   | 9.40  | 127.98 | 9.20  | 128.18 | 9.00  | 128.38 | 9.00  | 128.38 | 9.10  | 128.28 | 9.00  | 128.38 | 9.27  | 128.11 | 9.66  | 127.72 | 9.69  | 127.69 | 9.71  | 127.67 | 9.71  | 127.67 | 9.37  | 128.01 | 9.17  | 128.21 |
| MW-2-3   | 5.00  | 132.38 | 5.00  | 132.38 | 9.45  | 127.93 | 9.50  | 127.88 | 9.60  | 127.78 | 9.20  | 128.18 | 5.98  | 131.40 | 4.98  | 132.40 | 4.94  | 132.44 | 4.86  | 132.52 | 4.80  | 132.58 | 4.85  | 132.53 | 4.70  | 132.68 |
| MW-3-1   | 18.30 | 110.79 | 18.25 | 110.84 | 18.50 | 110.59 | 18.60 | 110.49 | 18.55 | 110.54 | 18.00 | 111.09 | 17.89 | 111.20 | 17.40 | 111.69 | 17.32 | 111.77 | 16.54 | 112.55 | 16.38 | 112.71 | 15.27 | 113.82 | 14.46 | 114.63 |
| MW-3-2   | 17.70 | 111.39 | 17.50 | 111.59 | 19.40 | 109.69 | 19.60 | 109.49 | 19.50 | 109.59 | 19.65 | 109.44 | 19.52 | 109.57 | 18.74 | 110.35 | 19.14 | 109.95 | 16.88 | 112.21 | 14.80 | 114.29 | 15.54 | 113.55 | 12.40 | 116.69 |
| MW-4-1   | 21.00 | 104.34 | 21.20 | 104.14 | 23.00 | 102.34 | 23.00 | 102.34 | 23.00 | 102.34 | 23.65 | 101.69 | 24.43 | 100.91 | 25.20 | 100.14 | 25.80 | 99.54  | 25.92 | 99.42  | 25.94 | 99.40  | 22.10 | 103.24 | 23.22 | 102.12 |
| MW-4-2   | 7.50  | 117.84 | 7.80  | 117.54 | 9.55  | 115.79 | 9.60  | 115.74 | 9.65  | 115.69 | 9.23  | 116.11 | 9.42  | 115.92 | 9.15  | 116.19 | 9.00  | 116.34 | 9.14  | 116.20 | 9.12  | 116.22 | 8.70  | 116.64 | 8.54  | 116.80 |

CT Elev - Casing Top Elevation

GWL - Groundwater Level in metres Below Top of Casing

GWE - Groundwater Elevation in metres Above Sea Level

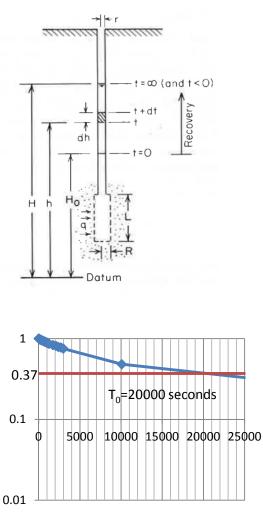

\* GWL in metres Below Ground Surface

NOTE - Data from 2015 provided by Cruickshank and reported by Morrison Hershfield



APPENDIX G: Hvorslev Analysis

| Elginburgh Quarry E<br>Top of Individual<br>Well Casing | DH10-01-01 |                           |
|---------------------------------------------------------|------------|---------------------------|
| Elevation                                               | 109.03     | masl                      |
| Н                                                       | 106.67     | masl                      |
| H <sub>o</sub>                                          | 101.38     | masl                      |
| R (screen radius)                                       | 0.05       | m                         |
| r (riser radius)                                        | 0.05       | m                         |
| L (screen length)                                       | 35.68      | m                         |
| T <sub>0</sub>                                          | 20000      | seconds                   |
| time (seconds)                                          | h(t)       | (H-h)/(H-H <sub>o</sub> ) |
| 0                                                       | 101.38     | 1                         |
| 60                                                      | 101.48     | 0.981096408               |
| 120                                                     | 101.59     | 0.960302457               |
| 120                                                     | 101.69     | 0.941398866               |
| 240                                                     | 101.05     | 0.920604915               |
| 300                                                     | 101.92     | 0.897920605               |
| 360                                                     | 101.92     | 0.880907372               |
| 420                                                     | 102.01     | 0.860113422               |
| 420                                                     | 102.12     | 0.84120983                |
| 540                                                     | 102.22     | 0.824196597               |
| 600                                                     | 102.31     | 0.807183365               |
| 720                                                     | 102.4      | 0.767485822               |
| 840                                                     | 102.81     | 0.729678639               |
| 960                                                     | 102.01     | 0.689981096               |
| 1080                                                    | 103.22     | 0.652173913               |
| 1200                                                    | 103.43     | 0.612476371               |
| 1320                                                    | 103.63     | 0.574669187               |
| 1500                                                    | 103.96     | 0.512287335               |
| 1800                                                    | 104.42     | 0.425330813               |
| 2100                                                    | 104.92     | 0.330812854               |
| 2400                                                    | 105.39     | 0.241965974               |
| 2700                                                    | 105.87     | 0.151228733               |
| 3000                                                    | 106.25     | 0.079395085               |
| 3300                                                    | 106.46     | 0.039697543               |
| 3600                                                    | 106.56     | 0.020793951               |

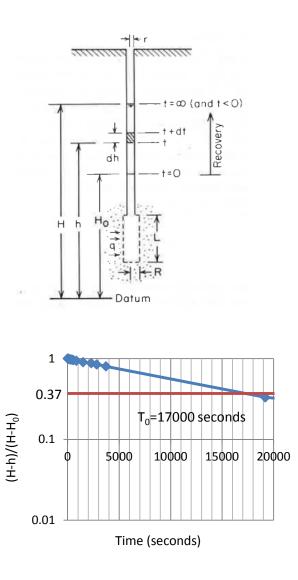



$$K = \frac{r^2 \ln L/R}{2LT_0}$$



(H-H)/(H-H<sup>0</sup>)

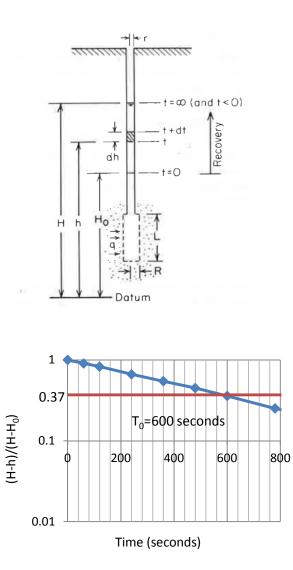
| Elginburgh Quarry E<br>Top of Individual<br>Well Casing | 3H11-02     |                           |  |  |  |  |  |  |
|---------------------------------------------------------|-------------|---------------------------|--|--|--|--|--|--|
| Elevation                                               | 109.03      | masl                      |  |  |  |  |  |  |
| Н                                                       | 104.61 masl |                           |  |  |  |  |  |  |
| H <sub>0</sub>                                          | 102.61 masl |                           |  |  |  |  |  |  |
| R (screen radius)                                       | 0.08        | m                         |  |  |  |  |  |  |
| r (riser radius)                                        | 0.08        | m                         |  |  |  |  |  |  |
| L (screen length)                                       | 32.28       | m                         |  |  |  |  |  |  |
| T <sub>0</sub>                                          | 20000       | seconds                   |  |  |  |  |  |  |
| time (seconds)                                          | h(t)        | (H-h)/(H-H <sub>0</sub> ) |  |  |  |  |  |  |
| 0                                                       | 102.61      | 1                         |  |  |  |  |  |  |
| 60                                                      | 102.64      | 0.985                     |  |  |  |  |  |  |
| 120                                                     | 102.65      | 0.98                      |  |  |  |  |  |  |
| 180                                                     | 102.67      | 0.97                      |  |  |  |  |  |  |
| 240                                                     | 102.68      | 0.965                     |  |  |  |  |  |  |
| 360                                                     | 102.7       | 0.955                     |  |  |  |  |  |  |
| 420                                                     | 102.72      | 0.945                     |  |  |  |  |  |  |
| 540                                                     | 102.74      | 0.935                     |  |  |  |  |  |  |
| 660                                                     | 102.77      | 0.92                      |  |  |  |  |  |  |
| 780                                                     | 102.79      | 0.91                      |  |  |  |  |  |  |
| 900                                                     | 102.81      | 0.9                       |  |  |  |  |  |  |
| 1020                                                    | 102.83      | 0.89                      |  |  |  |  |  |  |
| 1140                                                    | 102.86      | 0.875                     |  |  |  |  |  |  |
| 1260                                                    | 102.89      | 0.86                      |  |  |  |  |  |  |
| 1740                                                    | 102.95      | 0.83                      |  |  |  |  |  |  |
| 2100                                                    | 102.99      | 0.81                      |  |  |  |  |  |  |
| 2400                                                    | 103.04      | 0.785                     |  |  |  |  |  |  |
| 2700                                                    | 103.06      | 0.775                     |  |  |  |  |  |  |
| 3000                                                    | 103.11      | 0.75                      |  |  |  |  |  |  |
| 10080                                                   | 103.65      | 0.48                      |  |  |  |  |  |  |
| 64500                                                   | 104.37      | 0.12                      |  |  |  |  |  |  |
| 96480                                                   | 104.45      | 0.08                      |  |  |  |  |  |  |




Time (seconds)

$$K = \frac{r^2 \ln L/R}{2LT_0}$$

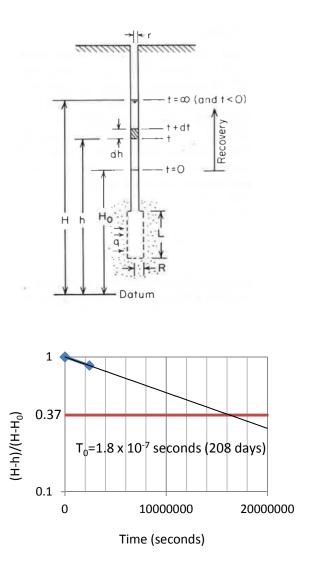



| Elginburgh Quarry E<br>Top of Individual<br>Well Casing | 3H11-02A |                           |
|---------------------------------------------------------|----------|---------------------------|
| Elevation                                               | 109.03   | masl                      |
| Н                                                       | 106.05   | masl                      |
| H <sub>0</sub>                                          | 87.23    | masl                      |
| R (screen radius)                                       | 0.08     | m                         |
| r (riser radius)                                        | 0.02     | m                         |
| L (screen length)                                       | 11.58    | m                         |
| T <sub>0</sub>                                          | 17000    | seconds                   |
| time (seconds)                                          | h(t)     | (H-h)/(H-H <sub>0</sub> ) |
| 0                                                       | 87.23    | 1                         |
| 60                                                      | 87.38    | 0.992029756               |
| 180                                                     | 87.55    | 0.982996812               |
| 300                                                     | 87.73    | 0.973432519               |
| 420                                                     | 87.86    | 0.966524973               |
| 540                                                     | 88.03    | 0.95749203                |
| 840                                                     | 88.39    | 0.938363443               |
| 1500                                                    | 89.14    | 0.898512221               |
| 2280                                                    | 89.53    | 0.877789586               |
| 2820                                                    | 90.12    | 0.846439957               |
| 3720                                                    | 91.01    | 0.799149841               |
| 19200                                                   | 99.83    | 0.330499469               |
| 81960                                                   | 104.97   | 0.05738576                |



$$K = \frac{r^2 \ln L/R}{2LT_0}$$

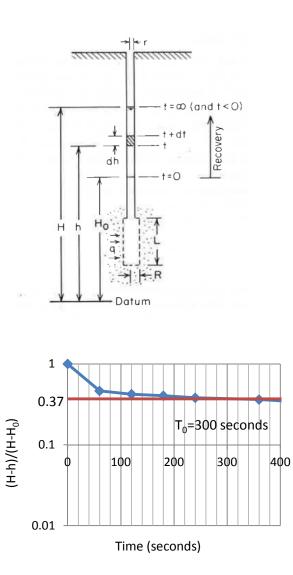



| Elginburgh Quarry E<br>Top of Individual<br>Well Casing | 3H11-02B |                           |
|---------------------------------------------------------|----------|---------------------------|
| Elevation                                               | 109.03   | masl                      |
| Н                                                       | 104.16   | masl                      |
| Ho                                                      | 95.39    | masl                      |
| R (screen radius)                                       | 0.08     | m                         |
| r (riser radius)                                        | 0.02     | m                         |
| L (screen length)                                       | 7.62     | m                         |
| T <sub>0</sub>                                          | 600      | seconds                   |
| time (seconds)                                          | h(t)     | (H-h)/(H-H <sub>0</sub> ) |
| 0                                                       | 95.39    | 1                         |
| 60                                                      | 96.21    | 0.90649943                |
| 120                                                     | 96.91    | 0.82668187                |
| 240                                                     | 98.33    | 0.664766249               |
| 360                                                     | 99.38    | 0.545039909               |
| 480                                                     | 100.22   | 0.449258837               |
| 600                                                     | 101.02   | 0.358038769               |
| 780                                                     | 101.96   | 0.250855188               |
| 1020                                                    | 102.59   | 0.179019384               |
| 1140                                                    | 102.98   | 0.134549601               |
| 1320                                                    | 103.21   | 0.108323831               |
| 1560                                                    | 103.44   | 0.082098062               |
| 2520                                                    | 103.85   | 0.035347777               |
| 18060                                                   | 104.37   | -0.023945268              |
| 80760                                                   | 104.39   | -0.02622577               |



$$K = \frac{r^2 \ln L/R}{2LT_0}$$

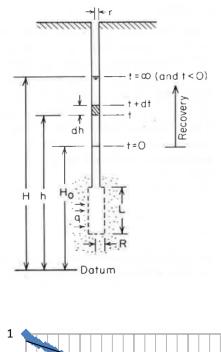


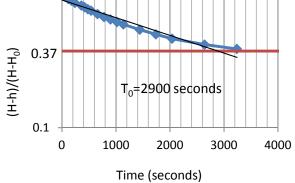

| Elginburgh Quarry E<br>Top of Individual | 3H11-03  |                           |
|------------------------------------------|----------|---------------------------|
| Well Casing                              |          |                           |
| Elevation                                | 109.03   | masl                      |
| Н                                        | 101.74   | masl                      |
| H <sub>o</sub>                           | 93.33    | masl                      |
| R (screen radius)                        | 0.08     | m                         |
| r (riser radius)                         | 0.08     | m                         |
| L (screen length)                        | 29.51    | m                         |
| T <sub>0</sub>                           | 16000000 | seconds                   |
| time (seconds)                           | h(t)     | (H-h)/(H-H <sub>o</sub> ) |
| 0                                        | 93.33    | 1                         |
| 60                                       | 93.34    | 0.998810939               |
| 120                                      | 93.34    | 0.998810939               |
| 180                                      | 93.34    | 0.998810939               |
| 240                                      | 93.34    | 0.998810939               |
| 540                                      | 93.34    | 0.998810939               |
| 840                                      | 93.34    | 0.998810939               |
| 1740                                     | 93.34    | 0.998810939               |
| 2940                                     | 93.34    | 0.998810939               |
| 7140                                     | 93.34    | 0.998810939               |
| 2419200                                  | 94.49    | 0.862068966               |



$$K = \frac{r^2 \ln L/R}{2LT_0}$$



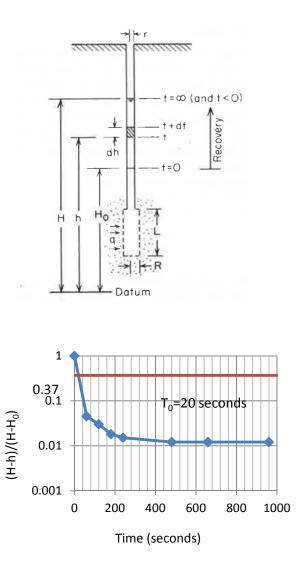

| Elginburgh Quarry E<br>Top of Individual<br>Well Casing | 3H11-04 |                           |
|---------------------------------------------------------|---------|---------------------------|
| Elevation                                               | 109.03  | masl                      |
| Н                                                       | 88.21   | masl                      |
| Ho                                                      | 86.03   | masl                      |
| R (screen radius)                                       | 0.08    | m                         |
| r (riser radius)                                        | 0.08    | m                         |
| L (screen length)                                       | 16.12   | m                         |
| T <sub>0</sub>                                          | 300     | seconds                   |
| time (seconds)                                          | h(t)    | (H-h)/(H-H <sub>0</sub> ) |
| 0                                                       | 86.03   | 1                         |
| 60                                                      | 87.2    | 0.463302752               |
| 120                                                     | 87.29   | 0.422018349               |
| 180                                                     | 87.33   | 0.403669725               |
| 240                                                     | 87.38   | 0.380733945               |
| 360                                                     | 87.42   | 0.362385321               |
| 420                                                     | 87.46   | 0.344036697               |
| 480                                                     | 87.49   | 0.330275229               |
| 540                                                     | 87.51   | 0.321100917               |
| 600                                                     | 87.54   | 0.30733945                |
| 660                                                     | 87.56   | 0.298165138               |
| 780                                                     | 87.61   | 0.275229358               |
| 960                                                     | 87.68   | 0.243119266               |
| 1140                                                    | 87.75   | 0.211009174               |
| 1560                                                    | 87.86   | 0.160550459               |
| 1860                                                    | 87.93   | 0.128440367               |
| 2160                                                    | 87.97   | 0.110091743               |
| 2760                                                    | 88.06   | 0.068807339               |
| 3840                                                    | 88.13   | 0.036697248               |




$$K = \frac{r^2 \ln L/R}{2LT_0}$$



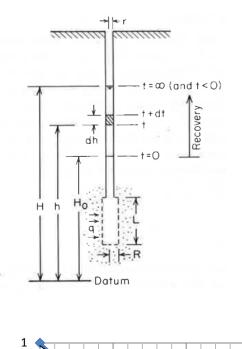
| Elginburgh Quarry E<br>Top of Individual<br>Well Casing | 3H12-01 |                           |
|---------------------------------------------------------|---------|---------------------------|
| Elevation                                               | 109.03  | masl                      |
| Н                                                       | 97.16   | masl                      |
| H <sub>o</sub>                                          | 93.49   | masl                      |
| R (screen radius)                                       | 0.05    | m                         |
| r (riser radius)                                        | 0.05    | m                         |
| L (screen length)                                       | 23.47   | m                         |
| T <sub>0</sub>                                          | 2900    | seconds                   |
| time (seconds)                                          | h(t)    | (H-h)/(H-H <sub>0</sub> ) |
| 0                                                       | 93.49   | 1                         |
| 60                                                      | 93.73   | 0.934604905               |
| 120                                                     | 93.86   | 0.899182561               |
| 180                                                     | 93.95   | 0.874659401               |
| 240                                                     | 94.06   | 0.844686649               |
| 360                                                     | 94.2    | 0.80653951                |
| 420                                                     | 94.28   | 0.784741144               |
| 480                                                     | 94.38   | 0.757493188               |
| 540                                                     | 94.45   | 0.738419619               |
| 660                                                     | 94.6    | 0.697547684               |
| 780                                                     | 94.73   | 0.662125341               |
| 900                                                     | 94.83   | 0.634877384               |
| 1020                                                    | 94.93   | 0.607629428               |
| 1140                                                    | 95.02   | 0.583106267               |
| 1440                                                    | 95.2    | 0.534059946               |
| 1740                                                    | 95.35   | 0.493188011               |
| 2040                                                    | 95.48   | 0.457765668               |
| 2640                                                    | 95.64   | 0.414168937               |
| 3240                                                    | 95.75   | 0.384196185               |
| 7800                                                    | 96.06   | 0.29972752                |
| 16140                                                   | 96.25   | 0.247956403               |
| 285840                                                  | 96.44   | 0.196185286               |
| 446160                                                  | 96.43   | 0.198910082               |

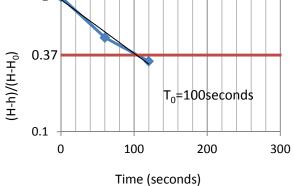





$$K = \frac{r^2 \ln L/R}{2LT_0}$$



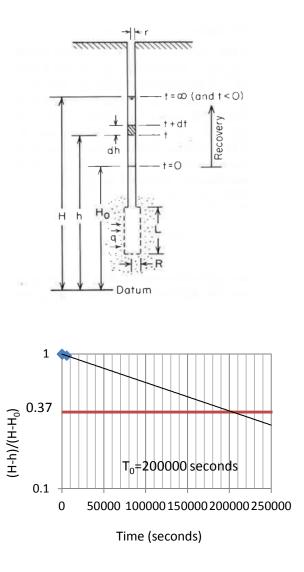

| Elginburgh Quarry E<br>Top of Individual<br>Well Casing | 3H12-02 |                           |  |  |  |  |
|---------------------------------------------------------|---------|---------------------------|--|--|--|--|
| Elevation                                               | 109.03  | masl                      |  |  |  |  |
| H 89.33 masl                                            |         |                           |  |  |  |  |
| H <sub>o</sub>                                          | 86.03   | masl                      |  |  |  |  |
| R (screen radius) 0.05 m                                |         |                           |  |  |  |  |
| r (riser radius) 0.05 m                                 |         |                           |  |  |  |  |
| L (screen length) 21.14 m                               |         |                           |  |  |  |  |
| T <sub>0</sub> 20 seconds                               |         |                           |  |  |  |  |
| time (seconds)                                          | h(t)    | (H-h)/(H-H <sub>o</sub> ) |  |  |  |  |
| 0                                                       | 86.03   | 1                         |  |  |  |  |
| 60                                                      | 89.18   | 0.045454545               |  |  |  |  |
| 120                                                     | 89.23   | 0.03030303                |  |  |  |  |
| 180                                                     | 89.27   | 0.018181818               |  |  |  |  |
| 240                                                     | 89.28   | 0.015151515               |  |  |  |  |
| 480                                                     | 89.29   | 0.012121212               |  |  |  |  |
| 660                                                     | 89.29   | 0.012121212               |  |  |  |  |
| 960                                                     | 89.29   | 0.012121212               |  |  |  |  |




$$K = \frac{r^2 \ln L/R}{2LT_0}$$



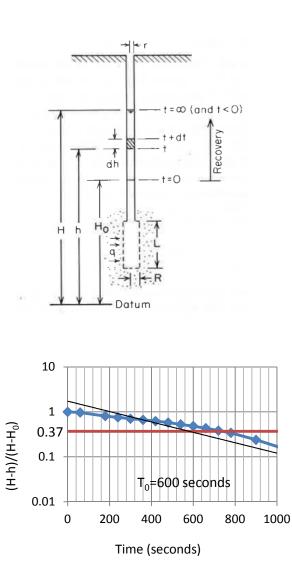
Elginburgh Quarry BH12-02A Top of Individual Well Casing Elevation 109.03 masl Н 88.73 masl 88.67 masl  $H_0$ R (screen radius) 0.05 m r (riser radius) 0.02 m L (screen length) 8.53 m  $T_0$ 100 seconds time (seconds)  $(H-h)/(H-H_0)$ h(t) 88.67 0 1 60 88.7 0.5 120 88.71 0.333333333 180 0.333333333 88.71 300 0.333333333 88.71






$$K = \frac{r^2 \ln L/R}{2LT_0}$$




| Elginburgh Quarry E<br>Top of Individual<br>Well Casing | 3H12-02B |                           |  |  |  |
|---------------------------------------------------------|----------|---------------------------|--|--|--|
| Elevation                                               | 109.03   | masl                      |  |  |  |
| н                                                       | 90.53    | masl                      |  |  |  |
| H <sub>o</sub>                                          | 88.26    | masl                      |  |  |  |
| R (screen radius)                                       | 0.05     | m                         |  |  |  |
| r (riser radius)                                        | 0.02     | m                         |  |  |  |
| L (screen length)                                       | 7.62 m   |                           |  |  |  |
| T <sub>0</sub>                                          | 200000   | seconds                   |  |  |  |
| time (seconds)                                          | h(t)     | (H-h)/(H-H <sub>o</sub> ) |  |  |  |
| 0                                                       | 88.26    | 1                         |  |  |  |
| 60                                                      | 88.27    | 0.995594714               |  |  |  |
| 120                                                     | 88.27    | 0.995594714               |  |  |  |
| 180                                                     | 88.27    | 0.995594714               |  |  |  |
| 240                                                     | 88.27    | 0.995594714               |  |  |  |
| 420                                                     | 88.28    | 0.991189427               |  |  |  |
| 720                                                     | 88.28    | 0.991189427               |  |  |  |
| 5760                                                    | 88.33    | 0.969162996               |  |  |  |



$$K = \frac{r^2 \ln L/R}{2LT_0}$$

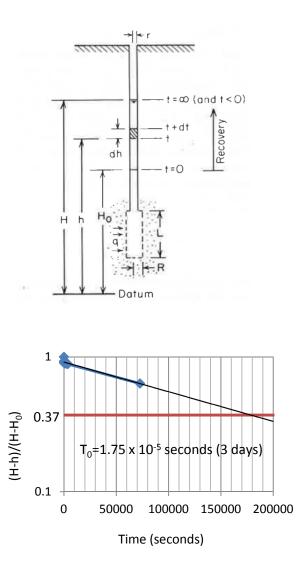


| Elginburgh Quarry E<br>Top of Individual<br>Well Casing | 3H12-03     |                           |  |
|---------------------------------------------------------|-------------|---------------------------|--|
| Elevation                                               | 109.03      | masl                      |  |
| Н                                                       | 107.43      | masl                      |  |
| H <sub>o</sub>                                          | 103.03      | masl                      |  |
| R (screen radius)                                       | 0.05 m      |                           |  |
| r (riser radius)                                        | 0.05        | m                         |  |
| L (screen length)                                       | 35.00 m     |                           |  |
| T <sub>0</sub>                                          | 600 seconds |                           |  |
| time (seconds)                                          | h(t)        | (H-h)/(H-H <sub>0</sub> ) |  |
| 0                                                       | 103.03      | 1                         |  |
| 60                                                      | 103.18      | 0.965909091               |  |
| 180                                                     | 103.88      | 0.806818182               |  |
| 240                                                     | 104.11      | 0.754545455               |  |
| 300                                                     | 104.33      | 0.704545455               |  |
| 360                                                     | 104.5       | 0.665909091               |  |
| 420                                                     | 104.69      | 0.622727273               |  |
| 480                                                     | 104.88      | 0.579545455               |  |
| 540                                                     | 105.11      | 0.527272727               |  |
| 600                                                     | 105.31      | 0.481818182               |  |
| 660                                                     | 105.53      | 0.431818182               |  |
| 720                                                     | 105.74      | 0.384090909               |  |
| 780                                                     | 105.93      | 0.340909091               |  |
| 900                                                     | 106.38      | 0.238636364               |  |
| 1020                                                    | 106.73      | 0.159090909               |  |
| 1140                                                    | 107.06      | 0.084090909               |  |
| 1260                                                    | 107.23      | 0.045454545               |  |
| 1380                                                    | 107.29      | 0.031818182               |  |
| 1500                                                    | 107.32      | 0.025                     |  |
| 1620                                                    | 107.35      | 0.018181818               |  |
| 1740                                                    | 107.37      | 0.013636364               |  |



$$K = \frac{r^2 \ln L/R}{2LT_0}$$



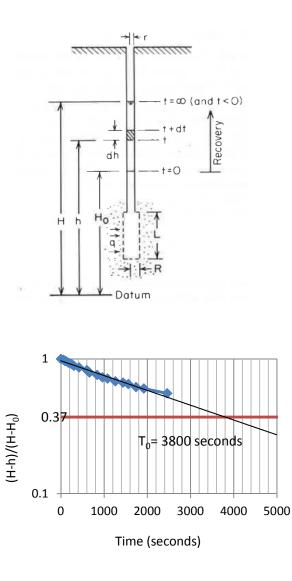

| Elginburgh Quarry BH12-03A<br>Top of Individual<br>Well Casing |                  |                           |  |  |
|----------------------------------------------------------------|------------------|---------------------------|--|--|
| Elevation                                                      | 109.03           | masl                      |  |  |
| Н                                                              | 105.11           | masl                      |  |  |
| H <sub>o</sub>                                                 | 83.8 masl        |                           |  |  |
| R (screen radius)                                              | 0.05 m           |                           |  |  |
| r (riser radius)                                               | 0.02 m           |                           |  |  |
| L (screen length)                                              | 11.58 m          |                           |  |  |
| T <sub>0</sub>                                                 | 16000000 seconds |                           |  |  |
| time (seconds)                                                 | h(t)             | (H-h)/(H-H <sub>0</sub> ) |  |  |
| 0                                                              | 83.8             | 1                         |  |  |
| 240                                                            | 84.18            | 0.982167996               |  |  |
| 300                                                            | 84.48            | 0.968090099               |  |  |
| 360                                                            | 84.58            | 0.963397466               |  |  |
| 420                                                            | 84.69            | 0.95823557                |  |  |
| 480                                                            | 84.79            | 0.953542938               |  |  |
| 600                                                            | 85               | 0.943688409               |  |  |
| 720                                                            | 85.23            | 0.932895354               |  |  |
| 840                                                            | 85.42            | 0.923979352               |  |  |
| 1020                                                           | 85.55            | 0.91787893                |  |  |
| 1620                                                           | 86.03            | 0.895354294               |  |  |
| 2280                                                           | 86.26            | 0.884561239               |  |  |
| 2820                                                           | 86.32            | 0.881745659               |  |  |
| 4080                                                           | 86.4             | 0.877991553               |  |  |
| 5040                                                           | 86.43            | 0.876583763               |  |  |
| 74040                                                          | 86.47            | 0.87470671                |  |  |
| 2419200                                                        | 87.83            | 0.810886908               |  |  |



$$K = \frac{r^2 \ln L/R}{2LT_0}$$



| Elginburgh Quarry BH12-03B<br>Top of Individual<br>Well Casing |        |                           |  |  |
|----------------------------------------------------------------|--------|---------------------------|--|--|
| Elevation                                                      | 109.03 | masl                      |  |  |
| н                                                              | 105.56 | masl                      |  |  |
| H <sub>o</sub>                                                 | 100.63 | masl                      |  |  |
| R (screen radius)                                              | 0.05   | m                         |  |  |
| r (riser radius)                                               | 0.02   | m                         |  |  |
| L (screen length)                                              | 7.01   | m                         |  |  |
| T <sub>0</sub>                                                 | 175000 | seconds                   |  |  |
| time (seconds)                                                 | h(t)   | (H-h)/(H-H <sub>o</sub> ) |  |  |
| 0                                                              | 100.63 | 1                         |  |  |
| 60                                                             | 100.98 | 0.929006085               |  |  |
| 240                                                            | 101.09 | 0.906693712               |  |  |
| 420                                                            | 101.11 | 0.902636917               |  |  |
| 540                                                            | 101.13 | 0.898580122               |  |  |
| 720                                                            | 101.13 | 0.898580122               |  |  |
| 900                                                            | 101.13 | 0.898580122               |  |  |
| 1320                                                           | 101.13 | 0.898580122               |  |  |
| 2520                                                           | 101.16 | 0.892494929               |  |  |
| 3660                                                           | 101.19 | 0.886409736               |  |  |
| 72660                                                          | 102.43 | 0.634888438               |  |  |



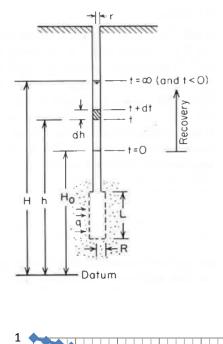

$$K = \frac{r^2 \ln L/R}{2LT_0}$$

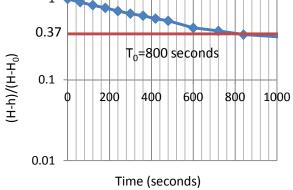


# Hvorslev Analysis of Slug or Bail Test

| Elginburgh Quarry E<br>Top of Individual<br>Well Casing | 3H13-01 |                           |
|---------------------------------------------------------|---------|---------------------------|
| Elevation                                               | 109.03  | masl                      |
| Н                                                       | 108.13  | masl                      |
| Ho                                                      | 107.5   | masl                      |
| R (screen radius)                                       | 0.05    | m                         |
| r (riser radius)                                        | 0.05    | m                         |
| L (screen length)                                       | 35.07   | m                         |
| T <sub>0</sub>                                          | 3800    | seconds                   |
| time (seconds)                                          | h(t)    | (H-h)/(H-H <sub>0</sub> ) |
| 0                                                       | 107.5   | 1                         |
| 60                                                      | 107.51  | 0.984126984               |
| 90                                                      | 107.52  | 0.968253968               |
| 120                                                     | 107.525 | 0.96031746                |
| 180                                                     | 107.54  | 0.936507937               |
| 240                                                     | 107.55  | 0.920634921               |
| 300                                                     | 107.57  | 0.888888889               |
| 420                                                     | 107.585 | 0.865079365               |
| 600                                                     | 107.61  | 0.825396825               |
| 660                                                     | 107.63  | 0.793650794               |
| 840                                                     | 107.65  | 0.761904762               |
| 960                                                     | 107.67  | 0.73015873                |
| 1080                                                    | 107.68  | 0.714285714               |
| 1260                                                    | 107.7   | 0.682539683               |
| 1440                                                    | 107.71  | 0.666666667               |
| 1560                                                    | 107.72  | 0.650793651               |
| 1740                                                    | 107.74  | 0.619047619               |
| 1920                                                    | 107.75  | 0.603174603               |
| 2460                                                    | 107.78  | 0.555555556               |




Hvorslev Formula (see Freeze and Cherry, 1979)


$$K = \frac{r^2 \ln L/R}{2LT_0}$$

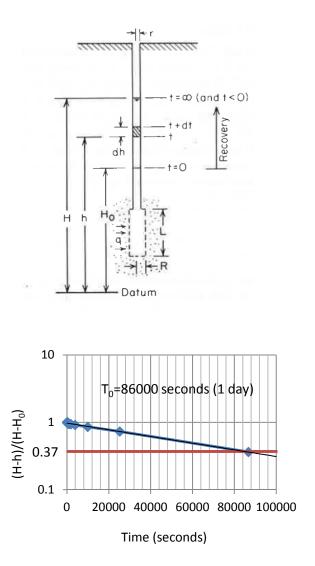


# Hvorslev Analysis of Slug or Bail Test

| Elginburgh Quarry E<br>Top of Individual<br>Well Casing | 3H13-01A |                           |  |  |
|---------------------------------------------------------|----------|---------------------------|--|--|
| Elevation                                               | 109.03   | masl                      |  |  |
| Н                                                       | 107.48   | masl                      |  |  |
| H <sub>o</sub>                                          | 99.25    | masl                      |  |  |
| R (screen radius)                                       | 0.05     | m                         |  |  |
| r (riser radius)                                        | 0.02     | m                         |  |  |
| L (screen length)                                       | 7.62     | m                         |  |  |
| T <sub>0</sub>                                          | 800      | seconds                   |  |  |
| time (seconds)                                          | h(t)     | (H-h)/(H-H <sub>0</sub> ) |  |  |
| 0                                                       | 99.25    | 1                         |  |  |
| 60                                                      | 99.98    | 0.911300122               |  |  |
| 120                                                     | 100.6    | 0.835965978               |  |  |
| 180                                                     | 101.11   | 0.77399757                |  |  |
| 240                                                     | 101.65   | 0.708383961               |  |  |
| 300                                                     | 102.07   | 0.657351154               |  |  |
| 360                                                     | 102.39   | 0.618469016               |  |  |
| 420                                                     | 102.79   | 0.569866343               |  |  |
| 480                                                     | 103.07   | 0.535844471               |  |  |
| 600                                                     | 103.87   | 0.438639125               |  |  |
| 720                                                     | 104.17   | 0.40218712                |  |  |
| 840                                                     | 104.5    | 0.362089915               |  |  |
| 1080                                                    | 104.77   | 0.329283111               |  |  |
| 1680                                                    | 105.24   | 0.27217497                |  |  |
| 2280                                                    | 105.72   | 0.213851762               |  |  |
| 2880                                                    | 105.95   | 0.185905225               |  |  |
| 3480                                                    | 106.16   | 0.160388821               |  |  |
| 5520                                                    | 106.38   | 0.133657351               |  |  |
| 11580                                                   | 106.54   | 0.114216282               |  |  |
| 27240                                                   | 106.83   | 0.078979344               |  |  |
| 88440                                                   | 106.92   | 0.068043742               |  |  |






Hvorslev Formula (see Freeze and Cherry, 1979)

$$K = \frac{r^2 \ln L/R}{2LT_0}$$



# Hvorslev Analysis of Slug or Bail Test

| Elginburgh Quarry E<br>Top of Individual<br>Well Casing | 3H13-01B |                           |
|---------------------------------------------------------|----------|---------------------------|
| Elevation                                               | 109.03   | masl                      |
| Н                                                       | 106.23   | masl                      |
| Ho                                                      | 96.53    | masl                      |
| R (screen radius)                                       | 0.05     | m                         |
| r (riser radius)                                        | 0.02     | m                         |
| L (screen length)                                       | 10.67    | m                         |
| T <sub>0</sub>                                          | 84000    | seconds                   |
| time (seconds)                                          | h(t)     | (H-h)/(H-H <sub>0</sub> ) |
| 0                                                       | 96.53    | 1                         |
| 120                                                     | 96.68    | 0.984536082               |
| 240                                                     | 96.45    | 1.008247423               |
| 360                                                     | 96.82    | 0.970103093               |
| 480                                                     | 96.88    | 0.963917526               |
| 720                                                     | 96.93    | 0.958762887               |
| 900                                                     | 96.97    | 0.954639175               |
| 1200                                                    | 97.02    | 0.949484536               |
| 1920                                                    | 97.12    | 0.939175258               |
| 3900                                                    | 97.37    | 0.913402062               |
| 9960                                                    | 97.92    | 0.856701031               |
| 25260                                                   | 99.13    | 0.731958763               |
| 86760                                                   | 102.71   | 0.362886598               |



Hvorslev Formula (see Freeze and Cherry, 1979)

$$K = \frac{r^2 \ln L/R}{2LT_0}$$



**APPENDIX H: Analytical Results** 

#### Table H1 - Monitoring Well Metals and General Chemistry

|                                  |       |         |                          |                           | BH11-    |         | BH12-    | BH12-   | BH13-   |
|----------------------------------|-------|---------|--------------------------|---------------------------|----------|---------|----------|---------|---------|
| Parameter                        | Units | M.D.L.  | <b>PWQO</b> <sup>2</sup> | <b>ODWQS</b> <sup>1</sup> |          | BH11-04 |          | 03A     | 01A     |
| Electrical Conductivity (EC) umh | io/cm | 1       | NV                       | NV                        | 2250     | 560     | 3570     | 804     | 22800   |
| pH*                              |       | NA      | 6.5-8.5                  | 6.5-8.5                   | 7.47     | 7.79    | 7.41     | 8.87    | 7.56    |
| Total Hardness (as CaCO3)*       | mg/L  | 1       | NV                       | 80-100                    | 272      | 378     | 2210     | 19      | 3200    |
| Total Suspended Solids           | mg/L  | 2       | NV                       | NV                        | 2500     | 198     | 330      | 13800   | 1370    |
| Alkalinity (as CaCO3)**          | mg/L  | 3       | NV                       | 30-500                    | 296      | 232     | 202      | 330     | 99      |
| Chloride**                       | mg/L  | 0.50    | NV                       | 250                       | 391      | 9.3     | 396      | 3.6     | 5030    |
| Nitrate as N                     | mg/L  | 0.1     | NV                       | 10                        | 0.1      | 0.2     | 0.2      | 0.4     | 0.3     |
| Nitrite as N                     | mg/L  | 0.1     | NV                       | 1                         | <0.1     | <0.1    | <0.1     | <0.1    | <0.1    |
| Sulphate                         | mg/L  | 1       | NV                       | 500                       | 269      | 49      | 1250     | 79      | 156     |
| Ammonia (N) - Total              | mg/L  | 0.005   | NV                       | NV                        | 1.01     | 0.033   | 0.598    | 0.789   | 5.31    |
| Ammonia (unionized)              | mg/L  | NA      | 0.02                     | NV                        | 0.0034   | 0.0002  | 0.0018   | 0.0620  | 0.0221  |
| Dissolved Organic Carbon**       | mg/L  | 0.2     | NV                       | 5                         | 8.9      | 4.5     | 3.1      | 228     | 92.9    |
| Dissolved Inorganic Carbon       | mg/L  | 0.2     | NV                       | NV                        | 56.3     | 43      | 34.3     | 91      | 13.3    |
| Phenolics                        | mg/L  | 0.001   | 0.001                    | NV                        | 0.003    | <0.001  | 0.002    | <0.001  | <0.001  |
| Carbonate (as CaCO3)             | mg/L  | 3       | NV                       | NV                        | <3       | <3      | <3       | 37      | <3      |
| Bicarbonate (as CaCO3)           | mg/L  | 3       | NV                       | NV                        | 296      | 232     | 202      | 294     | 99      |
| Turbidity**                      | NTU   | 0.2     | NV                       | 5                         | 970      | 127     | 438      | 7830    | 1270    |
| Calcium                          | mg/L  | 0.02    | NV                       | NV                        | 60       | 126     | 718      | 6.66    | 603     |
| Magnesium                        | mg/L  | 0.01    | NV                       | NV                        | 29.8     | 15.4    | 100      | 0.68    | 411     |
| Sodium**                         | mg/L  | 0.2     | NV                       | 200                       | 350      | 8.1     | 496      | 197     | 3450    |
| Potassium                        | mg/L  | 0.1     | NV                       | NV                        | 8        | 1.6     | 16.9     | 0.6     | 47.2    |
| Aluminum***                      | mg/L  | 0.01    | 0.075                    | 0.1/0.2                   | 0.13     | 0.28    | 0.19     | 0.54    | 0.16    |
| Boron                            | mg/L  | 0.005   | 0.2                      | 5                         | 1.87     | 0.082   | 0.602    | 0.096   | 1.26    |
| Cadmium                          | mg/L  | 0.00002 | 0.0002                   | 0.005                     | 5E-05    | 3E-05   | 0.0003   | 8E-05   | 0.0002  |
| Chromium                         | mg/L  | 0.002   | 0.0089                   | 0.05                      | <0.002   | 0.004   | <0.002   | <0.002  | < 0.002 |
| Cobalt                           | mg/L  | 0.0001  | 0.0009                   | NV                        | 0.0081   | 0.0274  | 0.0121   | 0.0157  | 0.0067  |
| Copper**                         | mg/L  | 0.0001  | 0.005                    | 1                         | 0.0022   | 0.0032  | 0.004    | 0.003   | 0.0264  |
| Iron**                           | mg/L  | 0.005   | 0.3                      | 0.3                       | 0.214    | 1.25    | 0.107    | 0.402   | 0.067   |
| Lead                             | mg/L  | 0.00002 | 0.025                    | 0.01                      | 9E-05    | 0.0039  | 3E-05    | 0.0025  | 0.0013  |
| Nickel                           | mg/L  | 0.01    | 0.025                    | NV                        | <0.01    | <0.01   | 0.02     | <0.01   | <0.01   |
| Silicon                          | mg/L  | 0.01    | NV                       | NV                        | 4.55     | 2.85    | 3.22     | 3.72    | 1.91    |
| Silver                           | mg/L  | 0.00002 | 0.0001                   | NV                        | < 0.0000 | <0.0000 | < 0.0000 | <0.0000 | 5E-05   |
| Zinc**                           | mg/L  | 0.005   | 0.03                     | 5                         | 0.006    | 0.023   | 0.009    | 0.008   | 0.088   |
| Temperature (field)              | Õ°    | NA      | NV                       | NV                        | 6        | 8.6     | 8.1      | 5.9     | 5.6     |
| pH (field)                       |       | NA      | NV                       | NV                        | 7.26     | 8       | 7.72     | 10.03   | 8.1     |
| EC (field) umho                  | o/cm  | 10      | 6.5-8.5                  | 6.5-8.5                   | 3095     | 672     | 3363     | 1046    | 3999    |

Notes:

(1) Ontario Drinking Water Quality Standards, O.Reg 169/03, Safe Drinking Water Act, 2002.

(2) Water Management Policies, Guidelines, Provincial Water Quality Objectives of the Ministry of the Environment and Energy, July 1994.

\* Standards based on ODWQS **Operational Guideline**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

\*\* Standards based on ODWQS **Aesthetic Objective**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

\*\*\* Standard based on Guidelines for Canadian Drinking Water Quality, March 2006. This is an **operational guidance** value, designed to apply only to drinking water treatment plants using aluminum-based coagulants. The value of 0.1 mg/L applies to conventional treatment plants, and 0.2 mg/L applies to other types of treatment systems

MDL - Method Detection Limit

Analyses completed by Caduceon Environmental Laboratories of Ottawa

Values shaded exceed PWQO Standards Values in bold exceed ODWQS Standards



|                           |       | Location:                   |       |           |           |           |           |          |
|---------------------------|-------|-----------------------------|-------|-----------|-----------|-----------|-----------|----------|
|                           |       | Sample ID                   | :     | NW2       | NW4       | NW4       | NW2       | NW1      |
|                           |       | Date Colle                  | cted: | 12-Feb-15 | 12-Feb-15 | 23-Mar-15 | 24-Mar-15 | 5-May-15 |
| Parameter                 | Units | M.D.L. ODWQS <sup>(1)</sup> |       |           |           |           |           |          |
| Aluminium<br>(dissolved)* | mg/L  | 0.01                        | 0.1   | 0.02      | 0.03      | 0.01      | 0.02      | 0.04     |
| Boron                     | mg/L  | 0.005                       | 5     | 0.296     | 0.247     | 0.554     | 0.462     | 2.01     |
| Cadmium                   | mg/L  | 0.00002                     | 0.005 | <0.00002  | <0.00002  | <0.00002  | <0.00002  | 0.00003  |
| Calcium                   | mg/L  | 0.02                        | -     | 61.2      | 82.3      | 55.9      | 75.2      | 132      |
| Chromium                  | mg/L  | 0.002                       | 0.05  | <0.002    | <0.002    | <0.002    | <0.002    | <0.002   |
| Cobalt                    | mg/L  | 0.005                       | -     | 0.007     | <0.005    | <0.005    | <0.005    | <0.005   |
| Copper**                  | mg/L  | 0.002                       | 1     | 0.047     | 0.005     | <0.002    | <0.002    | 0.022    |
| Iron**                    | mg/L  | 0.005                       | 0.3   | <0.005    | 0.016     | 0.078     | <0.005    | <0.005   |
| Lead                      | mg/L  | 0.00002                     | 0.01  | 0.00137   | 0.0005    | <0.00002  | 0.00107   | 0.00022  |
| Magnessium                | mg/L  | 0.01                        | -     | 18.7      | 27.7      | 31.2      | 22.2      | 56.5     |
| Nickel                    | mg/L  | 0.01                        | -     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01    |
| Potassium                 | mg/L  | 0.1                         | -     | 4.6       | 9.1       | 5.2       | 7.3       | 14.7     |
| Silicon                   | mg/L  | 0.01                        | -     | 2.62      | 3.47      | 5.7       | 3.22      | 4.24     |
| Silver                    | mg/L  | 0.00002                     | -     | <0.00002  | <0.00002  | <0.00002  | <0.00002  | <0.00002 |
| Sodium**                  | mg/L  | 0.2                         | 200   | 47.4      | 62.4      | 77.4      | 37.7      | 251      |
| Zinc**                    | mg/L  | 0.005                       | 5     | 0.05      | 0.006     | <0.005    | 0.0024    | 0.018    |

#### Notes:

(1) Ontario Drinking Water Quality Standards, O.Reg 169/03, Safe Drinking Water Act, 2002.

\* Standards based on ODWQS **Operational Guideline**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

\*\* Standards based on ODWQS **Aesthetic Objective**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

MDL - Method Detection Limit



|                           |       | Location:                   |       |          |          |          |          |          |
|---------------------------|-------|-----------------------------|-------|----------|----------|----------|----------|----------|
|                           |       | Sample ID                   | :     | NW2      | NW3      | NW4      | NW5      | NW6      |
|                           |       | Date Colle                  | cted: | 5-May-15 | 5-May-15 | 5-May-15 | 5-May-15 | 5-May-15 |
| Parameter                 | Units | M.D.L. ODWQS <sup>(1)</sup> |       |          |          |          |          |          |
| Aluminium<br>(dissolved)* | mg/L  | 0.01                        | 0.1   | <0.01    | 0.02     | 0.04     | 0.03     | 0.04     |
| Boron                     | mg/L  | 0.005                       | 5     | 0.399    | 0.485    | 0.144    | 0.535    | 1.36     |
| Cadmium                   | mg/L  | 0.00002                     | 0.005 | 0.00002  | <0.00002 | <0.00002 | <0.00002 | 0.00004  |
| Calcium                   | mg/L  | 0.02                        | -     | 0.8      | 66.1     | 103      | 110      | 158      |
| Chromium                  | mg/L  | 0.002                       | 0.05  | <0.002   | <0.002   | <0.002   | <0.002   | <0.002   |
| Cobalt                    | mg/L  | 0.005                       | -     | <0.005   | <0.005   | <0.005   | <0.005   | <0.005   |
| Copper**                  | mg/L  | 0.002                       | 1     | 0.011    | <0.002   | 0.011    | <0.002   | 0.011    |
| Iron**                    | mg/L  | 0.005                       | 0.3   | <0.005   | 0.028    | <0.005   | <0.005   | <0.005   |
| Lead                      | mg/L  | 0.00002                     | 0.01  | 0.00018  | 0.00005  | 0.00068  | 0.00017  | 0.00107  |
| Magnessium                | mg/L  | 0.01                        | -     | 0.25     | 22.1     | 18.5     | 29.7     | 65.4     |
| Nickel                    | mg/L  | 0.01                        | -     | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    |
| Potassium                 | mg/L  | 0.1                         | -     | 0.4      | 5        | 3.3      | 6.3      | 18.5     |
| Silicon                   | mg/L  | 0.01                        | -     | 3.07     | 5.32     | 2.56     | 3.23     | 3.17     |
| Silver                    | mg/L  | 0.00002                     | -     | <0.00002 | <0.00002 | <0.00002 | <0.00002 | <0.00002 |
| Sodium**                  | mg/L  | 0.2                         | 200   | 220      | 14.9     | 28.6     | 57.1     | 420      |
| Zinc**                    | mg/L  | 0.005                       | 5     | 0.007    | 0.012    | 0.029    | <0.005   | 0.044    |

#### Notes:

(1) Ontario Drinking Water Quality Standards, O.Reg 169/03, Safe Drinking Water Act, 2002.

\* Standards based on ODWQS **Operational Guideline**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

\*\* Standards based on ODWQS **Aesthetic Objective**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

MDL - Method Detection Limit



|                           |       | Location:                   |       |          |           |          |          |          |
|---------------------------|-------|-----------------------------|-------|----------|-----------|----------|----------|----------|
|                           |       | Sample ID:                  |       | NW7      | NW8       | NW9      | NW10     | NW11     |
|                           |       | Date Colle                  | cted: | 5-May-15 | 5-May-15  | 5-May-15 | 5-May-15 | 6-May-15 |
| Parameter                 | Units | M.D.L. ODWQS <sup>(1)</sup> |       |          |           |          |          |          |
| Aluminium<br>(dissolved)* | mg/L  | 0.01                        | 0.1   | 0.03     | 0.04      | 0.02     | 0.02     | 0.02     |
| Boron                     | mg/L  | 0.005                       | 5     | 0.14     | 0.018     | 0.661    | 0.079    | 0.011    |
| Cadmium                   | mg/L  | 0.00002                     | 0.005 | <0.00002 | <0.00002  | <0.00002 | <0.00002 | <0.00002 |
| Calcium                   | mg/L  | 0.02                        | -     | 122      | 68.2      | 77.7     | 103      | 77.8     |
| Chromium                  | mg/L  | 0.002                       | 0.05  | <0.002   | <0.002    | <0.002   | <0.002   | <0.002   |
| Cobalt                    | mg/L  | 0.005                       | -     | <0.005   | <0.005    | <0.005   | <0.005   | <0.005   |
| Copper**                  | mg/L  | 0.002                       | 1     | 0.006    | 0.097     | <0.002   | 0.013    | 0.287    |
| Iron**                    | mg/L  | 0.005                       | 0.3   | <0.005   | 0.014     | <0.005   | <0.005   | <0.005   |
| Lead                      | mg/L  | 0.00002                     | 0.01  | 0.00037  | 0.00068   | 0.00006  | 0.00015  | 0.00013  |
| Magnessium                | mg/L  | 0.01                        | -     | 19.9     | 13.9      | 37.9     | 12.2     | 5.35     |
| Nickel                    | mg/L  | 0.01                        | -     | <0.01    | <0.01     | <0.01    | <0.01    | <0.01    |
| Potassium                 | mg/L  | 0.1                         | -     | 3.2      | 1.3       | 5.9      | 1.3      | 0.6      |
| Silicon                   | mg/L  | 0.01                        | -     | 2.62     | 2.95      | 5.7      | 2.09     | 2.73     |
| Silver                    | mg/L  | 0.00002                     | -     | <0.00002 | < 0.00002 | <0.00002 | <0.00002 | <0.00002 |
| Sodium**                  | mg/L  | 0.2                         | 200   | 40.8     | 6.3       | 112      | 28       | 9.6      |
| Zinc**                    | mg/L  | 0.005                       | 5     | 0.008    | 0.009     | 0.01     | 0.008    | <0.005   |

#### Notes:

(1) Ontario Drinking Water Quality Standards, O.Reg 169/03, Safe Drinking Water Act, 2002.

\* Standards based on ODWQS **Operational Guideline**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

\*\* Standards based on ODWQS **Aesthetic Objective**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

MDL - Method Detection Limit



|                           |       | Location:                   |       |          |          |          |          |          |
|---------------------------|-------|-----------------------------|-------|----------|----------|----------|----------|----------|
|                           |       | Sample ID                   | :     | NW12     | NW13     | NW14     | NW15     | NW16     |
|                           |       | Date Colle                  | cted: | 6-May-15 | 6-May-15 | 6-May-15 | 6-May-15 | 6-May-15 |
| Parameter                 | Units | M.D.L. ODWQS <sup>(1)</sup> |       |          |          |          |          |          |
| Aluminium<br>(dissolved)* | mg/L  | 0.01                        | 0.1   | 0.03     | 0.06     | 0.02     | 0.03     | 0.03     |
| Boron                     | mg/L  | 0.005                       | 5     | 0.029    | 3.98     | 0.025    | 0.045    | 0.052    |
| Cadmium                   | mg/L  | 0.00002                     | 0.005 | <0.00002 | 0.00004  | 0.00002  | <0.00002 | <0.00002 |
| Calcium                   | mg/L  | 0.02                        | -     | 127      | 311      | 90.4     | 128      | 130      |
| Chromium                  | mg/L  | 0.002                       | 0.05  | <0.002   | <0.002   | <0.002   | <0.002   | <0.002   |
| Cobalt                    | mg/L  | 0.005                       | -     | <0.005   | <0.005   | <0.005   | <0.005   | <0.005   |
| Copper**                  | mg/L  | 0.002                       | 1     | <0.002   | 0.005    | 0.14     | 0.01     | 0.005    |
| Iron**                    | mg/L  | 0.005                       | 0.3   | 0.034    | <0.005   | <0.005   | <0.005   | <0.005   |
| Lead                      | mg/L  | 0.00002                     | 0.01  | 0.00006  | 0.00066  | 0.00039  | 0.00032  | 0.00021  |
| Magnessium                | mg/L  | 0.01                        | -     | 11       | 147      | 14.3     | 11.5     | 12.8     |
| Nickel                    | mg/L  | 0.01                        | -     | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    |
| Potassium                 | mg/L  | 0.1                         | -     | 9        | 35.5     | 3.4      | 20.6     | 30.8     |
| Silicon                   | mg/L  | 0.01                        | -     | 2.73     | 4.28     | 3.98     | 3.33     | 3.62     |
| Silver                    | mg/L  | 0.00002                     | -     | <0.00002 | <0.00002 | <0.00002 | <0.00002 | <0.00002 |
| Sodium**                  | mg/L  | 0.2                         | 200   | 52.6     | 953      | 20.8     | 29.8     | 27.8     |
| Zinc**                    | mg/L  | 0.005                       | 5     | 0.316    | 0.051    | 0.051    | 0.018    | <0.005   |

#### Notes:

(1) Ontario Drinking Water Quality Standards, O.Reg 169/03, Safe Drinking Water Act, 2002.

\* Standards based on ODWQS **Operational Guideline**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

\*\* Standards based on ODWQS **Aesthetic Objective**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

MDL - Method Detection Limit



|                           |       | Location:                   |       |          |          |          |          |          |
|---------------------------|-------|-----------------------------|-------|----------|----------|----------|----------|----------|
|                           |       | Sample ID                   | :     | NW17     | NW18     | NW19     | NW20     | NW21     |
|                           |       | Date Colle                  | cted: | 6-May-15 | 6-May-15 | 6-May-15 | 6-May-15 | 6-May-15 |
| Parameter                 | Units | M.D.L. ODWQS <sup>(1)</sup> |       |          |          |          |          |          |
| Aluminium<br>(dissolved)* | mg/L  | 0.01                        | 0.1   | 0.02     | 0.03     | 0.02     | <0.01    | 0.03     |
| Boron                     | mg/L  | 0.005                       | 5     | 0.261    | 0.193    | 0.016    | 0.227    | 0.047    |
| Cadmium                   | mg/L  | 0.00002                     | 0.005 | <0.00002 | <0.00002 | <0.00002 | <0.00002 | <0.00002 |
| Calcium                   | mg/L  | 0.02                        | -     | 91.7     | 114      | 0.08     | 0.04     | 152      |
| Chromium                  | mg/L  | 0.002                       | 0.05  | <0.002   | <0.002   | <0.002   | <0.002   | <0.002   |
| Cobalt                    | mg/L  | 0.005                       | -     | <0.005   | <0.005   | <0.005   | <0.005   | <0.005   |
| Copper**                  | mg/L  | 0.002                       | 1     | 0.039    | 0.033    | 0.02     | 0.012    | <0.002   |
| Iron**                    | mg/L  | 0.005                       | 0.3   | <0.005   | <0.005   | 0.018    | <0.005   | 0.044    |
| Lead                      | mg/L  | 0.00002                     | 0.01  | 0.00015  | 0.0004   | 0.00067  | 0.0001   | 0.00029  |
| Magnessium                | mg/L  | 0.01                        | -     | 16.4     | 19.3     | <0.01    | 0.02     | 15.1     |
| Nickel                    | mg/L  | 0.01                        | -     | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    |
| Potassium                 | mg/L  | 0.1                         | -     | 3.1      | 3.2      | 0.3      | 0.3      | 1.3      |
| Silicon                   | mg/L  | 0.01                        | -     | 4.41     | 2.87     | 3.32     | 6.03     | 3.4      |
| Silver                    | mg/L  | 0.00002                     | -     | <0.00002 | <0.00002 | <0.00002 | <0.00002 | <0.00002 |
| Sodium**                  | mg/L  | 0.2                         | 200   | 20.1     | 104      | 72.5     | 147      | 215      |
| Zinc**                    | mg/L  | 0.005                       | 5     | 0.006    | 0.025    | 0.005    | <0.005   | 0.005    |

#### Notes:

(1) Ontario Drinking Water Quality Standards, O.Reg 169/03, Safe Drinking Water Act, 2002.

\* Standards based on ODWQS **Operational Guideline**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

\*\* Standards based on ODWQS **Aesthetic Objective**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

MDL - Method Detection Limit



|                               |          | Locatio |                      |           |           |           |           |          |
|-------------------------------|----------|---------|----------------------|-----------|-----------|-----------|-----------|----------|
|                               |          | Sample  | D:                   | NW2       | NW4       | NW4       | NW2       | NW1      |
|                               |          | Sample  | Date:                | 12-Feb-15 | 12-Feb-15 | 23-Mar-15 | 24-Mar-15 | 5-May-15 |
| Parameter                     | Units    | M.D.L.  | ODWQS <sup>(1)</sup> |           |           |           |           |          |
| E. coli                       | ct/100mL | 1       | 0                    | 0         | 0         | 0         | 0         | 0        |
| Faecal Coliforms              | ct/100mL | 1       | -                    | 0         | 0         | 0         | 0         | 0        |
| Total Coliforms               | ct/100mL | 1       | 0                    | 2         | 0         | 1         | 13        | 0        |
| Alkalinity as<br>CaCO3*       | mg/L     | 3       | 30-500               | 218       | 307       | 204       | 258       | 270      |
| Chloride**                    | mg/L     | 1       | 250                  | 88.2      | 127       | 149       | 49.8      | 385      |
| CO3 as CaCO3                  | mg/L     | 3       | -                    | <3        | <3        | <3        | <3        | <3       |
| Conductivity                  | uS/cm    | -       | -                    | 734       | 994       | 966       | 722       | 2210     |
| Dissolved<br>Inorganic Carbon | mg/L     | 0.2     | -                    | 54.5      | 76.8      | 49        | 64.5      | 67.5     |
| Dissolved Organic<br>Carbon** | mg/L     | 0.2     | 5                    | 3.2       | 4         | 2         | 3.6       | 2.2      |
| Hardness as<br>CaCO3*         | mg/L     | 1       | 80-100               | 230       | 320       | 268       | 279       | 563      |
| HCO3 as CaCO3                 | mg/L     | 3       | -                    | 218       | 307       | 204       | 258       | 270      |
| Ammonia &<br>Ammonium as N    | mg/L     | 0.05    | -                    | <0.05     | 0.1       | 0.49      | <0.05     | <0.05    |
| Nitrite as N                  | mg/L     | 0.1     | 1                    | <0.10     | <0.10     | <0.10     | <0.1      | <0.1     |
| Nitrate as N                  | mg/L     | 0.1     | 10                   | 1         | <0.10     | <0.10     | 0.3       | 0.8      |
| pH*                           |          | -       | 6.5-8.5              | 7.73      | 7.75      | 7.97      | 7.79      | 7.76     |
| Phenols                       | mg/L     | 0.001   | -                    | <0.001    | <0.001    | <0.001    | <0.001    | <0.001   |
| Sulphate**                    | mg/L     | 1       | 500                  | 51        | 72        | 97        | 55        | 294      |
| Total P                       | mg/L     | 0.01    | -                    | 0.04      | 0.03      | <0.01     | 0.02      | <0.01    |
| Total Suspended<br>Solids     | mg/L     | 3       | -                    | <3        | <3        | <3        | <3        | <3       |
| Turbidity**                   | NTU      | 0.2     | 5                    | 0.3       | 0.5       | 0.7       | 0.4       | <0.2     |
| Field pH*                     |          |         | 6.5-8.5              | 7.84      | 7.86      | 7.88      | 8.15      | 7.16     |
| Field<br>Temperature**        | °C       |         | 15                   | 9.6       | 9.6       | 6.7       | 6.7       | 10.1     |
| Field Conductivity            | μs       |         | -                    | 805       | 1065      | 998       | 669       | 2260     |

#### Notes:

(1) Ontario Drinking Water Quality Standards, O.Reg 169/03, Safe Drinking Water Act, 2002.

\* Standards based on ODWQS **Operational** 

**Guideline**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

\*\* Standards based on ODWQS **Aesthetic Objective**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

MDL - Method Detection Limit

Analyses completed by Caduceon Environmental Laboratories of Kingston.



|                               |          | Locatio |                      |          |          |          |          |          |
|-------------------------------|----------|---------|----------------------|----------|----------|----------|----------|----------|
|                               |          | Sample  | D:                   | NW2      | NW3      | NW4      | NW5      | NW6      |
|                               |          | Sample  | Date:                | 5-May-15 | 5-May-15 | 5-May-15 | 5-May-15 | 5-May-15 |
| Parameter                     | Units    | M.D.L.  | ODWQS <sup>(1)</sup> |          |          |          |          |          |
| E. coli                       | ct/100mL | 1       | 0                    | 0        | 0        | 0        | 0        | 0        |
| Faecal Coliforms              | ct/100mL | 1       | -                    | 0        | 0        | 0        | 0        | 0        |
| Total Coliforms               | ct/100mL | 1       | 0                    | 3        | 0        | 0        | 3        | 0        |
| Alkalinity as<br>CaCO3*       | mg/L     | 3       | 30-500               | 299      | 225      | 264      | 278      | 315      |
| Chloride**                    | mg/L     | 1       | 250                  | 62.3     | 10.5     | 59.4     | 82.5     | 812      |
| CO3 as CaCO3                  | mg/L     | 3       | -                    | <3       | <3       | <3       | <3       | <3       |
| Conductivity                  | uS/cm    | -       | -                    | 911      | 551      | 812      | 1010     | 3220     |
| Dissolved<br>Inorganic Carbon | mg/L     | 0.2     | -                    | 71.8     | 56.3     | 66       | 69.5     | 78.8     |
| Dissolved Organic<br>Carbon** | mg/L     | 0.2     | 5                    | 3.4      | 3.6      | 3.3      | 2.8      | 2.6      |
| Hardness as<br>CaCO3*         | mg/L     | 1       | 80-100               | 3        | 256      | 333      | 398      | 663      |
| HCO3 as CaCO3                 | mg/L     | 3       | -                    | 299      | 225      | 264      | 278      | 315      |
| Ammonia &<br>Ammonium as N    | mg/L     | 0.05    | -                    | <0.05    | 0.19     | <0.05    | 0.1      | 0.66     |
| Nitrite as N                  | mg/L     | 0.1     | 1                    | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     |
| Nitrate as N                  | mg/L     | 0.1     | 10                   | 0.9      | <0.1     | <0.1     | 0.4      | 0.9      |
| pH*                           |          | -       | 6.5-8.5              | 8.14     | 7.94     | 7.78     | 7.79     | 7.71     |
| Phenols                       | mg/L     | 0.001   | -                    | <0.001   | <0.001   | <0.001   | <0.001   | <0.001   |
| Sulphate**                    | mg/L     | 1       | 500                  | 72       | 53       | 66       | 128      | 172      |
| Total P                       | mg/L     | 0.01    | -                    | <0.01    | 0.01     | 0.01     | <0.01    | 0.01     |
| Total Suspended<br>Solids     | mg/L     | 3       | -                    | <3       | <3       | 14       | <3       | <3       |
| Turbidity**                   | NTU      | 0.2     | 5                    | <0.2     | 0.3      | 10.7     | <0.2     | 0.3      |
| Field pH*                     |          |         | 6.5-8.5              | 7.79     | 7.57     | 7.24     | 7.37     | 7.05     |
| Field<br>Temperature**        | °C       |         | 15                   | 14.8     | 13.5     | 12.8     | 11.7     | 12       |
| Field Conductivity            | μs       |         |                      | 940      | 556      | 830      | 1538     | 3244     |

#### Notes:

(1) Ontario Drinking Water Quality Standards, O.Reg 169/03, Safe Drinking Water Act, 2002.

\* Standards based on ODWQS **Operational** 

**Guideline**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

\*\* Standards based on ODWQS **Aesthetic Objective**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

MDL - Method Detection Limit

Analyses completed by Caduceon Environmental Laboratories of Kingston.



|                               |          | Locatio | on:                  |          |          |          |          |          |
|-------------------------------|----------|---------|----------------------|----------|----------|----------|----------|----------|
|                               |          | Sample  | D:                   | NW7      | NW8      | NW9      | NW10     | NW11     |
|                               |          | Sample  | Date:                | 5-May-15 | 5-May-15 | 5-May-15 | 5-May-15 | 6-May-15 |
| Parameter                     | Units    | M.D.L.  | ODWQS <sup>(1)</sup> |          |          |          |          |          |
| E. coli                       | ct/100mL | 1       | 0                    | 0        | 1        | 0        | 0        | 0        |
| Faecal Coliforms              | ct/100mL | 1       | -                    | 0        | 0        | 0        | 0        | 0        |
| Total Coliforms               | ct/100mL | 1       | 0                    | 0        | 4        | 0        | 5        | 110      |
| Alkalinity as<br>CaCO3*       | mg/L     | 3       | 30-500               | 282      | 196      | 201      | 216      | 201      |
| Chloride**                    | mg/L     | 1       | 250                  | 73.7     | 6.9      | 196      | 63.3     | 6.8      |
| CO3 as CaCO3                  | mg/L     | 3       | -                    | <3       | <3       | <3       | <3       | <3       |
| Conductivity                  | uS/cm    | -       | -                    | 896      | 417      | 1200     | 695      | 421      |
| Dissolved<br>Inorganic Carbon | mg/L     | 0.2     | -                    | 70.5     | 51       | 48.2     | 54       | 50.3     |
| Dissolved Organic<br>Carbon** | mg/L     | 0.2     | 5                    | 2.7      | 16.3     | 1.1      | 2        | 4.5      |
| Hardness as<br>CaCO3*         | mg/L     | 1       | 80-100               | 387      | 228      | 350      | 308      | 216      |
| HCO3 as CaCO3                 | mg/L     | 3       | -                    | 282      | 196      | 201      | 216      | 201      |
| Ammonia &<br>Ammonium as N    | mg/L     | 0.05    | -                    | <0.05    | <0.05    | 0.46     | <0.05    | <0.05    |
| Nitrite as N                  | mg/L     | 0.1     | 1                    | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     |
| Nitrate as N                  | mg/L     | 0.1     | 10                   | 1.1      | 0.6      | 0.2      | 0.4      | 0.2      |
| pH*                           |          | -       | 6.5-8.5              | 7.8      | 7.42     | 7.97     | 7.88     | 7.77     |
| Phenols                       | mg/L     | 0.001   | -                    | <0.001   | <0.001   | <0.001   | <0.001   | <0.001   |
| Sulphate**                    | mg/L     | 1       | 500                  | 84       | 10       | 111      | 48       | 8        |
| Total P                       | mg/L     | 0.01    | -                    | 0.01     | 0.01     | <0.01    | <0.01    | 0.02     |
| Total Suspended<br>Solids     | mg/L     | 3       | -                    | <3       | <3       | <3       | <3       | <3       |
| Turbidity**                   | NTU      | 0.2     | 5                    | <0.2     | 0.5      | 0.3      | <0.2     | 0.4      |
| Field pH*                     |          |         | 6.5-8.5              | 7.15     | 6.52     | 7.26     | 7.18     | 7.29     |
| Field<br>Temperature**        | °C       |         | 15                   | 10.9     | 11.9     | 12.9     | 11.8     | 10.1     |
| Field Conductivity            | μs       |         | -                    | 919      | 430      | 1207     | 706      | 429      |

#### Notes:

(1) Ontario Drinking Water Quality Standards, O.Reg 169/03, Safe Drinking Water Act, 2002.

\* Standards based on ODWQS **Operational** 

**Guideline**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

\*\* Standards based on ODWQS **Aesthetic Objective**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

MDL - Method Detection Limit

Analyses completed by Caduceon Environmental Laboratories of Kingston.



|                               |          | Locatio | on:                  |          |          |          |          |          |
|-------------------------------|----------|---------|----------------------|----------|----------|----------|----------|----------|
|                               |          | Sample  | D:                   | NW12     | NW13     | NW14     | NW15     | NW16     |
|                               |          | Sample  | e Date:              | 6-May-15 | 6-May-15 | 6-May-15 | 6-May-15 | 6-May-15 |
| Parameter                     | Units    | M.D.L.  | ODWQS <sup>(1)</sup> |          |          |          |          |          |
| E. coli                       | ct/100mL | 1       | 0                    | 0        | 0        | 0        | 0        | 1        |
| Faecal Coliforms              | ct/100mL | 1       | -                    | 0        | 0        | 0        | 1        | 0        |
| Total Coliforms               | ct/100mL | 1       | 0                    | 25       | 0        | 0        | 3        | 3        |
| Alkalinity as<br>CaCO3*       | mg/L     | 3       | 30-500               | 335      | 210      | 218      | 289      | 320      |
| Chloride**                    | mg/L     | 1       | 250                  | 82.1     | 1970     | 44.8     | 58.9     | 48.6     |
| CO3 as CaCO3                  | mg/L     | 3       | -                    | <3       | <3       | <3       | <3       | <3       |
| Conductivity                  | uS/cm    | -       | -                    | 906      | 6680     | 604      | 826      | 849      |
| Dissolved<br>Inorganic Carbon | mg/L     | 0.2     | -                    | 83.8     | 52.5     | 56.7     | 72.3     | 80       |
| Dissolved Organic<br>Carbon** | mg/L     | 0.2     | 5                    | 4.4      | 1.1      | 2.3      | 4.7      | 5.6      |
| Hardness as<br>CaCO3*         | mg/L     | 1       | 80-100               | 363      | 1380     | 285      | 367      | 377      |
| HCO3 as CaCO3                 | mg/L     | 3       | -                    | 335      | 210      | 218      | 289      | 320      |
| Ammonia &<br>Ammonium as N    | mg/L     | 0.05    | -                    | <0.05    | 1.62     | <0.05    | <0.05    | <0.05    |
| Nitrite as N                  | mg/L     | 0.1     | 1                    | <0.1     | <0.1     | <0.1     | <0.1     | 0.3      |
| Nitrate as N                  | mg/L     | 0.1     | 10                   | 0.1      | 0.2      | 2        | 3.7      | 1.7      |
| pH*                           |          | -       | 6.5-8.5              | 7.61     | 7.74     | 7.48     | 7.58     | 7.61     |
| Phenols                       | mg/L     | 0.001   |                      | <0.001   | <0.001   | <0.001   | <0.001   | <0.001   |
| Sulphate**                    | mg/L     | 1       | 500                  | 14       | 507      | 13       | 34       | 39       |
| Total P                       | mg/L     | 0.01    | -                    | <0.01    | <0.01    | 0.02     | 0.1      | 0.03     |
| Total Suspended<br>Solids     | mg/L     | 3       | -                    | <3       | 3        | <3       | <3       | <3       |
| Turbidity**                   | NTU      | 0.2     | 5                    | 1.1      | <0.2     | 0.5      | <0.2     | <0.2     |
| Field pH*                     |          |         | 6.5-8.5              | 7        | 7.17     | 7.1      | 7        | 7.1      |
| Field<br>Temperature**        | °C       |         | 15                   | 8.3      | 10       | 11.3     | 12.9     | 13.6     |
| Field Conductivity            | μs       |         |                      | 915      | >3999    | 616      | 857      | 857      |

#### Notes:

(1) Ontario Drinking Water Quality Standards, O.Reg 169/03, Safe Drinking Water Act, 2002.

\* Standards based on ODWQS **Operational** 

**Guideline**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

\*\* Standards based on ODWQS **Aesthetic Objective**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

MDL - Method Detection Limit

Analyses completed by Caduceon Environmental Laboratories of Kingston.



|                               |          | Locatio | on:                  |          |          |          |          |          |
|-------------------------------|----------|---------|----------------------|----------|----------|----------|----------|----------|
|                               |          | Sample  | D:                   | NW17     | NW18     | NW19     | NW20     | NW21     |
|                               |          | Sample  | Date:                | 6-May-15 | 6-May-15 | 6-May-15 | 6-May-15 | 6-May-15 |
| Parameter                     | Units    | M.D.L.  | ODWQS <sup>(1)</sup> |          |          |          |          |          |
| E. coli                       | ct/100mL | 1       | 0                    | 0        | 0        | 0        | 0        | 0        |
| Faecal Coliforms              | ct/100mL | 1       | -                    | 0        | 0        | 1        | 0        | 1        |
| Total Coliforms               | ct/100mL | 1       | 0                    | 0        | 2        | 70       | 0        | >200     |
| Alkalinity as<br>CaCO3*       | mg/L     | 3       | 30-500               | 230      | 307      | 123      | 210      | 349      |
| Chloride**                    | mg/L     | 1       | 250                  | 25.5     | 140      | 2.4      | 30.7     | 338      |
| CO3 as CaCO3                  | mg/L     | 3       | -                    | <3       | <3       | <3       | <3       | <3       |
| Conductivity                  | uS/cm    | -       | -                    | 630      | 1130     | 287      | 599      | 1760     |
| Dissolved<br>Inorganic Carbon | mg/L     | 0.2     | -                    | 57.5     | 76.8     | 33.2     | 52.5     | 90.7     |
| Dissolved Organic<br>Carbon** | mg/L     | 0.2     | 5                    | 2.9      | 3        | 15.1     | 1.9      | 3.4      |
| Hardness as<br>CaCO3*         | mg/L     | 1       | 80-100               | 297      | 365      | <1       | <1       | 443      |
| HCO3 as CaCO3                 | mg/L     | 3       | -                    | 230      | 307      | 123      | 210      | 349      |
| Ammonia &<br>Ammonium as N    | mg/L     | 0.05    | -                    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    |
| Nitrite as N                  | mg/L     | 0.1     | 1                    | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     |
| Nitrate as N                  | mg/L     | 0.1     | 10                   | 3.3      | 3.4      | 0.2      | 0.4      | 0.1      |
| pH*                           |          | -       | 6.5-8.5              | 7.81     | 7.66     | 7.24     | 7.9      | 7.45     |
| Phenols                       | mg/L     | 0.001   | -                    | <0.001   | <0.001   | <0.001   | <0.001   | <0.001   |
| Sulphate**                    | mg/L     | 1       | 500                  | 44       | 46       | 16       | 41       | 32       |
| Total P                       | mg/L     | 0.01    | -                    | <0.01    | 0.01     | <0.01    | <0.01    | <0.01    |
| Total Suspended<br>Solids     | mg/L     | 3       | -                    | <3       | 3        | <3       | <3       | <3       |
| Turbidity**                   | NTU      | 0.2     | 5                    | 0.2      | 0.2      | 0.3      | <0.2     | 0.5      |
| Field pH*                     |          |         | 6.5-8.5              | 7.1      | 7.1      | 6.95     | 7.41     | 6.71     |
| Field<br>Temperature**        | °C       |         | 15                   | 19       | 10.5     | 11.1     | 12       | 7.69     |
| Field Conductivity            | μs       |         |                      | 641      | 1130     | 287      | 619      | 1789     |

#### Notes:

(1) Ontario Drinking Water Quality Standards, O.Reg 169/03, Safe Drinking Water Act, 2002.

\* Standards based on ODWQS **Operational** 

**Guideline**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

\*\* Standards based on ODWQS **Aesthetic Objective**, Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006.

MDL - Method Detection Limit

Analyses completed by Caduceon Environmental Laboratories of Kingston.



### Table H3a - Surface Water Metals

|                   |       |         | Sample ID:                   | E-SW1     | E-SW2     | E-SW3     |
|-------------------|-------|---------|------------------------------|-----------|-----------|-----------|
|                   |       |         | Date Collected:              | 29-May-14 | 29-May-14 | 29-May-14 |
| Parameter         | Units | M.D.L.  | PWQO Criteria <sup>(1)</sup> |           |           |           |
| Magnesium         | mg/L  | 0.01    | NV                           | 29.1      | 12.5      | 15.1      |
| Sodium            | mg/L  | 0.2     | NV                           | 41.3      | 21.6      | 25        |
| Potassium         | mg/L  | 0.1     | NV                           | 8.2       | 3.7       | 6.4       |
| Aluminum (total)  | mg/L  | 0.01    | 0.075                        | 0.08      | 0.06      | 0.09      |
| Arsenic           | mg/L  | 0.0001  | 0.1                          | 0.0004    | 0.0003    | 0.0003    |
| Barium            | mg/L  | 0.001   | NV                           | 0.042     | 0.038     | 0.04      |
| Beryllium         | mg/L  | 0.002   | 1.1                          | < 0.002   | < 0.002   | < 0.002   |
| Boron             | mg/L  | 0.005   | 0.2                          | 0.258     | 0.119     | 0.174     |
| Cadmium           | mg/L  | 0.00002 | 0.0002                       | < 0.00002 | < 0.00002 | < 0.00002 |
| Chromium          | mg/L  | 0.002   | 0.0089                       | < 0.002   | 0.003     | < 0.002   |
| Cobalt            | mg/L  | 0.0001  | 0.0009                       | 0.0008    | 0.0002    | 0.0003    |
| Copper            | mg/L  | 0.0001  | 0.005                        | 0.0014    | 0.0011    | 0.0009    |
| Iron (Total)      | mg/L  | 0.005   | 0.3                          | 0.136     | 0.106     | 0.131     |
| Lead              | mg/L  | 0.00002 | 0.025                        | 0.00005   | 0.00005   | 0.00016   |
| Manganese (Total) | mg/L  | 0.001   | NV                           | 0.051     | 0.051     | 0.024     |
| Mercury           | mg/L  | 0.00002 | 0.0002                       | < 0.00002 | < 0.00002 | < 0.00002 |
| Molybdenum        | mg/L  | 0.0001  | 0.04                         | 0.0072    | 0.0023    | 0.0035    |
| Nickel            | mg/L  | 0.0005  | 0.025                        | 0.0067    | 0.0043    | 0.0059    |
| Silicon           | mg/L  | 0.01    | NV                           | 1.53      | 1.67      | 0.55      |
| Silver            | mg/L  | 0.00002 | 0.0001                       | < 0.00002 | < 0.00002 | < 0.00002 |
| Strontium         | mg/L  | 0.001   | NV                           | 2.48      | 0.999     | 1.47      |
| Thallium          | mg/L  | 0.00005 | 0.0003                       | 0.00008   | < 0.00005 | < 0.00005 |
| Titanium          | mg/L  | 0.005   | NV                           | < 0.005   | 0.005     | 0.006     |
| Vanadium          | mg/L  | 0.005   | 0.006                        | < 0.005   | < 0.005   | < 0.005   |
| Zinc              | mg/L  | 0.005   | 0.03                         | 0.032     | 0.009     | 0.009     |

Notes:

(1) Water Management Policies, Guidelines, Provincial Water

Quality Objectives of the Ministry of the Environment and Energy July, 1994



## Table H3b - Surface Water PHC and General Chemistry

|                                    |          |        | Sample ID:                   | E-SW1     | E-SW2     | E-SW3     |
|------------------------------------|----------|--------|------------------------------|-----------|-----------|-----------|
|                                    |          |        | Date Collected:              | 29-May-14 | 29-May-14 | 29-May-14 |
| Parameter                          | Units    | M.D.L. | PWQO Criteria <sup>(1)</sup> |           |           |           |
| Hardness (as CaCO3)                | mg/L     | 1      | NV                           | 405       | 276       | 280       |
| Alkalinity(CaCO3) to pH4.5         | mg/L     | 5      | NV                           | 138       | 182       | 146       |
| Bicarbonate(as CaCO3)              | mg/L     | 5      | NV                           | 138       | 182       | 146       |
| Carbonate (as CaCO3)               | mg/L     | 5      | NV                           | < 5       | < 5       | < 5       |
| pH @25°C                           | pH Units |        | 6.5-8.5                      | 8.21      | 8.26      | 8.27      |
| Conductivity @25°C                 | µmho/cm  | 1      | NV                           | 886       | 577       | 627       |
| Field Dissolved Oxygen             |          |        | NV                           | 7.16      | 8.47      | 9.57      |
| Field Temperature                  | °C       |        | NV                           | 19.7      | 17.1      | 17.2      |
| Field pH                           | pH Units |        | NV                           | 7.01      | 7.02      | 7.42      |
| Field Conductivity                 | µmho/cm  |        | NV                           | 715       | 591       | 623       |
| Total Suspended Solids             | mg/L     | 3      |                              | < 3       | 7         | 12        |
| Chloride                           | mg/L     | 0.5    | NV                           | 52.1      | 23.5      | 25.9      |
| Nitrite (N)                        | mg/L     | 0.1    | 1                            | < 0.1     | < 0.1     | < 0.1     |
| Nitrate (N)                        | mg/L     | 0.1    | 10                           | 0.3       | 0.2       | 0.2       |
| Sulphate                           | mg/L     | 1      | NV                           | 254       | 90        | 148       |
| Calcium                            | mg/L     | 0.02   | NV                           | 114       | 89.9      | 87        |
| Ammonia (N)-Total                  | mg/L     | 0.01   | NV                           | < 0.01    | 0.03      | 0.01      |
| Ammonia (unionized) <sup>(2)</sup> | mg/L     |        | 0.02                         | < 0.00004 | 0.00010   | 0.00008   |
| Total Kjeldahl Nitrogen            | mg/L     | 0.05   | NV                           | 0.25      | 0.47      | 0.41      |
| Phosphorus-Total                   | mg/L     | 0.01   | 0.03                         | < 0.01    | < 0.01    | 0.02      |
| Phenolics                          | mg/L     | 0.001  | NV                           | < 0.001   | < 0.001   | < 0.001   |
| BOD                                | mg/L     | 3      | NV                           | < 3       | < 3       | < 3       |
| COD                                | mg/L     | 5      | NV                           | 35        | 38        | 36        |
| Dissolved Organic Carbon           | mg/L     | 0.2    | NV                           | 4.1       | 4.2       | 3.6       |
| Dissolved Inorganic Carbon         | mg/L     | 0.2    | NV                           | 33.1      | 43.7      | 35        |
| PHC F1 (C6-C10)                    | µg/L     | 20     | NV                           | < 20      | < 20      | < 20      |
| PHC F2 (>C10-C16)                  | µg/L     | 50     | NV                           | < 50      | < 50      | < 60      |
| PHC F3 (>C16-C34)                  | µg/L     | 400    | NV                           | < 400     | < 400     | < 500     |
| PHC F4 (>C34-C50)                  | µg/L     | 400    | NV                           | < 400     | < 400     | < 500     |
| Oil & Grease-Total                 | mg/L     | 1      | NV                           | < 1.0     | < 1.0     | < 1.0     |

Notes:

(1) Water Management Policies, Guidelines, Provincial Water Quality Objectives of

the Ministry of the Environment and Energy July, 1994

(2) Calculated based on field measurements of pH and temperature



APPENDIX I: Domestic Well Survey Summary

| Address                    | Well on<br>Property<br>(Yes/No) | Distance<br>from<br>Quarry (m) | Participation<br>in Survey<br>(Yes/No) | Well Depth                    | Well Type | Acquifer<br>Type | Well<br>Record<br>(Yes/No) | Comments/Issues Noted                                | Static WL (mbtoc)           |
|----------------------------|---------------------------------|--------------------------------|----------------------------------------|-------------------------------|-----------|------------------|----------------------------|------------------------------------------------------|-----------------------------|
| 2440 Burbrook Road         | Yes                             | 450                            | Yes                                    | Unkown                        | Drilled   | Bedrock          | No                         | Hard water, no quantity issue                        | Not Measured                |
| 2506 Burbrook Road         | Yes                             | 450                            | Yes                                    | ~21.3 m                       | Drilled   | Bedrock          | No                         | Sediment in water, buried well                       | Not Measured                |
| 2514 Burbrook Road         | Yes                             | 450                            | Yes                                    | ~12.2 m                       | Drilled   | Bedrock          | No                         | Hard water, no quantity issue                        | Not Measured                |
| 2630 Burbrook Road #1      | Yes                             | 325                            | Yes                                    | Unkown                        | Drilled   | Bedrock          | No                         | Spring fed well, no issues                           | Not Measured                |
| 2630 Burbrook Road #2      | Yes                             | 325                            | Yes                                    | Unkown                        | Drilled   | Bedrock          | No                         | Spring fed well, had bacteria<br>previously detected | Not Measured                |
| 2643 Burbrook Road         | Yes                             | 450                            | Yes                                    | ~30.5 m                       | Drilled   | Bedrock          | No                         | Slight sulfur smell recently                         | Not Measured                |
| 2659 Burbrook Road         | N/A                             | N/A                            | No                                     | N/A                           | N/A       | N/A              | N/A                        | Interested, unavailable at time<br>of survey         | N/A                         |
| 1985 Cordukes Road         | No                              | N/A                            | No                                     | N/A                           | N/A       | N/A              | N/A                        | Well dry, on a cistern                               | N/A                         |
| 1986 Cordukes Road         | Yes                             | 450                            | Yes                                    | 32.92 m (from<br>well record) | Drilled   | Bedrock          | Yes                        | Hard water, no quantity issue                        | 18.59 (from well<br>record) |
| 1989 Cordukes Road #1      | Yes                             | 500                            | Yes                                    | 73.8 m (from well record)     | Drilled   | Bedrock          | Yes                        | Hard water, no quantity issue                        | Not Measured                |
| 1989 Cordukes Road #2      | Yes                             | 500                            | Yes                                    | 26.5 mbtoc                    | Drilled   | Bedrock          | No                         | Not in use                                           | 19.29                       |
| 1995 Cordukes Road         | N/A                             | N/A                            | No                                     | N/A                           | N/A       | N/A              | N/A                        | Declined to participate                              | N/A                         |
| 1998 Cordukes Road #1      | Yes                             | 390                            | Yes                                    | 36.81 mbtoc                   | Drilled   | Bedrock          | Yes                        | Salty due to treatment, no<br>quantity issue         | 22.77                       |
| 1998 Cordukes Road #2      | Yes                             | 340                            | Yes                                    | 19.4 mbtoc                    | Drilled   | Bedrock          | Yes                        | None                                                 | 17.52                       |
| 2003-2005 Cordukes<br>Road | Yes                             | 480                            | Yes                                    | 46.5 mbtoc                    | Drilled   | Bedrock          | No                         | Salty, some odour after rain,<br>no quantity issue   | 24.67                       |
| 2034 Cordukes Road         | N/A                             | N/A                            | No                                     | N/A                           | N/A       | N/A              | N/A                        | Declined to participate                              | N/A                         |
| 2039 Cordukes Road         | No                              | N/A                            | No                                     | N/A                           | N/A       | N/A              | N/A                        | No wells                                             | N/A                         |
| 2075 Cordukes Road         | Yes                             | 460                            | Yes                                    | Unkown                        | Drilled   | Bedrock          | No                         | Had lower basement flooded 3<br>years ago            | Not Measured                |
| 2085 Cordukes Road         | Yes                             | 450                            | Yes                                    | 44 mbtoc                      | Drilled   | Bedrock          | No                         | None                                                 | 26.39                       |
| 2130 Cordukes Road         | Yes                             | 340                            | Yes                                    | ~25.9 m                       | Drilled   | Bedrock          | No                         | None                                                 | 14.45                       |
| 2147 Cordukes Road #1      | Yes                             | 475                            | Yes                                    | 13.24 mbtoc                   | Drilled   | Bedrock          | No                         | None                                                 | 8.39                        |
| 2147 Cordukes Road #2      | Yes                             | 475                            | Yes                                    | 14.49 mbtoc                   | Drilled   | Bedrock          | No                         | None                                                 | 9.62                        |
| 2150 Cordukes Road         | Yes                             | 300                            | Yes                                    | 27.4 m                        | Drilled   | Bedrock          | No                         | None                                                 | 11.62                       |
| 2166 Cordukes Road         | Yes                             | 300                            | Yes                                    | 26.8 m                        | Drilled   | Bedrock          | No                         | None                                                 | 8.38                        |
| 2217 Cordukes Road         | Yes                             | 450                            | Yes                                    | 24.3 mbtoc                    | Drilled   | Bedrock          | No                         | Hard water and sulfur odour,<br>no quantity issues   | 6.1                         |

Prepared by: AC Reviewed by: AW Date: 1/8/2016

| Address            | Well on<br>Property<br>(Yes/No) | Distance<br>from<br>Quarry (m) | Participation<br>in Survey<br>(Yes/No) | Well Depth                | Well Type | Acquifer<br>Type | Well<br>Record<br>(Yes/No) | Comments/Issues Noted                                | Static WL (mbtoc)       |
|--------------------|---------------------------------|--------------------------------|----------------------------------------|---------------------------|-----------|------------------|----------------------------|------------------------------------------------------|-------------------------|
| 2242 Cordukes Road | Yes                             | 450                            | Yes                                    | ~25.9 m                   | Drilled   | Bedrock          | No                         | Buried well, no issues                               | Not Measured            |
| 2243 Cordukes Road | Yes                             | 480                            | Yes                                    | 27.67 mbtoc               | Drilled   | Bedrock          | No                         | None                                                 | 9.37                    |
| 2250 Cordukes Road | Yes                             | 440                            | Yes                                    | 21.6 m (from well record) | Drilled   | Bedrock          | Yes                        | None                                                 | 4.63 (from well record) |
| 2196 Unity Road    | Yes                             | 880                            | Yes                                    | 3.4 mbtoc                 | Dug       | Bedrock          | No                         | Hard water and sulfur odour,<br>no quantity issues   | 0.81                    |
| 2257 Unity Road    | No                              | N/A                            | No                                     | N/A                       | N/A       | N/A              | N/A                        | Well dry, on a cistern                               | N/A                     |
| 2260 Unity Road    | No                              | N/A                            | Yes                                    | N/A                       | N/A       | N/A              | N/A                        | No well, on a cistern                                | N/A                     |
| 2265 Unity Road    | No                              | N/A                            | Yes                                    | N/A                       | N/A       | N/A              | N/A                        | No well, on a cistern                                | N/A                     |
| 2271 Unity Road    | No                              | N/A                            | Yes                                    | N/A                       | N/A       | N/A              | N/A                        | No well, on a cistern                                | N/A                     |
| 2295 Unity Road    | N/A                             | N/A                            | No                                     | N/A                       | N/A       | N/A              | N/A                        | Unavailable at time of survey                        | N/A                     |
| 2296 Unity Road    | Yes                             | 245                            | Yes                                    | ~6.1 m                    | Dug       | Bedrock          | No                         | Hard water, sulfur smell<br>sometimes, slow recharge | 1.55                    |
| 2309 Unity Road #1 | Yes                             | 200                            | Yes                                    | ~3.7 m                    | Dug       | Overburden       | No                         | None                                                 | 0.84                    |
| 2309 Unity Road #2 | Yes                             | 200                            | Yes                                    | ~18.3 m                   | Drilled   | Unknown          | No                         | Not in use, slow recharge                            | Not Measured            |
| 2350 Unity Road    | N/A                             | N/A                            | No                                     | N/A                       | N/A       | N/A              | N/A                        | No house/vacant                                      | N/A                     |
| 2467 Unity Road    | No                              | N/A                            | Yes                                    | N/A                       | N/A       | N/A              | N/A                        | No well, on a holding tank                           | N/A                     |
| 2528 Unity Road    | N/A                             | N/A                            | No                                     | N/A                       | N/A       | N/A              | N/A                        | Declined to participate                              | N/A                     |
| 2559 Unity Road    | No                              | N/A                            | No                                     | N/A                       | N/A       | N/A              | N/A                        | Vacant house, Cistern<br>observed on property        | N/A                     |
| 2604 Unity Road    | Yes                             | 400                            | Yes                                    | Unkown                    | Dug       | Bedrock          | No                         | Only outdoor use                                     | Not Measured            |
| 2610 Unity Road    | N/A                             | N/A                            | No                                     | N/A                       | N/A       | N/A              | N/A                        | Unavailable at time of survey                        | N/A                     |
| 2611 Unity Road    | No                              | N/A                            | Yes                                    | N/A                       | N/A       | N/A              | N/A                        | Well not in use, on a cistern                        | N/A                     |



APPENDIX J: Terms of Reference for Grouting Study

## **MEMORANDUM**



| TO:    | Ken Bangma                                                                | ACTION BY:   |                  |
|--------|---------------------------------------------------------------------------|--------------|------------------|
| FROM:  | Anthony West                                                              | FOR INFO OF: |                  |
| PLEASE | RESPOND BY:                                                               | PROJECT No.: | 2130039          |
| RE:    | Terms of Reference for a Grouting Study for<br>Elginburg Quarry Expansion | DATE:        | November 5, 2015 |

### Background

Cruickshank intends to expand their Elginburg Quarry westward, and a hydrogeological study was conducted to assess the potential impacts. The results of the study found that the Gull River Formation in the area of the expansion is of very low bulk permeability – producing very low yield monitoring wells on-site, and a higher than typical proportion of abandoned (for quality or quantity reasons) domestic wells in the area. The study found that one well was within a conservatively-estimated radius of influence of the fully extracted quarry expansion (250 m), and that four other wells were outside this area but warranted special consideration. All such wells were north and west of the existing quarry and situated such that the quarry would slowly (over decades) expand towards them.

To address residents' concerns relating to their wells, a robust monitoring program was proposed such that lowering of the water table can be observed within the intervening (buffer) lands between the quarry face and the closest residences. To address the unlikely event that a well is impacted, rock grouting is proposed as a contingency measure to reverse the effects of an inadvertent draining of a critical water bearing zone.

Groundwater in the Gull River Formation in the vicinity of the Elginburg Quarry is thought to flow in channels embedded within planar fracture features (Tsang, C. and Neretnieks, I., 1998). When intercepted by a quarry wall, such channels present themselves as point sources of water, distributed along the horizontal planar feature. An example of such channels is shown in Photo 1 taken at the Elginburg Quarry, which shows frozen inflowing groundwater (see Photo 1). Note that this photo shows rock which is in fact above the water table, and the inflowing groundwater represents recent precipitation which has found the "path of least resistance" to the quarry (flowing laterally to the quarry rather than downward to the water table). Channelized discharge can also be seen in Photo 2 showing a rock cut in the Gull River Formation along Highway 401 at Montreal Street, 7 km south west of the quarry. In this photo, the channels can be seen as the regular pattern of ice approximately 1-2 m above the road surface. It is noted that this rock cut is shallow compared to the quarry, and likely much more permeable. Little appreciable permeability has been found on the north and west side of the quarry expansion area, and the frequency of discharge points is expected to be lower than in the photo.

In this hydrogeological environment, wells in the area of the Elginburg Quarry take their water from discrete water bearing zones that are channels embedded within planar features. Given the otherwise very low permeability of the rock, the most likely scenario for a well impact is that such a channel is drained into the quarry when it is intercepted by the advancing rock face.



Photo 1: Existing Elginburg South Quarry

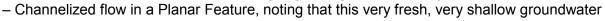





Photo 2: Highway 401 and Highway 11 Intersection – Channelized flow in a planar feature. Note the regularly-spaced ice mounds, about car height.

In this scenario, the impact to the well is considered reversible through grouting, or otherwise sealing up the affected channel. There are several key factors which support grouting or sealing up of water bearing channels as a contingency measure in the event of a well impact:

- 1. It is proposed within the context of what will be a robust water level and quarry seepage monitoring record;
- 2. The separation distances between the quarry and the nearest wells are substantial;
- 3. The quarry will advance slowly towards the wells, allowing trends in water level in the intervening rock (buffer zone) to be monitored;



- 4. Several lines of evidence support the conceptual model that the water flow is concentrated in discrete features in the rock;
- 5. A pilot study may be carried out before extraction of the rock that could result in well impacts.

#### **Timing of the Grouting Study**

The grouting study would be best completed during extraction of Lift 3 in Lot 13. The study would be triggered by positive identification of a discrete seepage zone on the western Lift 3 quarry wall thought to be associated with a downwards trend in groundwater level in one or more of the piezometers installed in BH12-01 or BH12-02 (see Figure 9).

The intent of conducting the study at this later stage is to ensure that the knowledge gained from the study is not lost in intervening years, to ensure that a critical seepage face is available for study, and to take advantage of the two multi-level monitoring wells in Lot 13 that are internal to the extraction area.

### Goal of the Grouting Study

To demonstrate that grouting can be used to halt inflow from a specific seepage location in the wall of the third lift, and that the cessation of inflow can be correlated to an associated increase in hydraulic head in the rock distal to the seepage face.

The following methodology assumes that a suitable seepage feature is encountered during excavation of the quarry.

#### **Study Methodology**

- 1. Review the monitoring information to understand how groundwater between the receptors and the quarry is being affected by the advancing rock face;
- 2. Review any applicable hydrogeology studies;
- 3. Review grouting methods used in existing quarries and underground mines;
- 4. Identify a seepage zone or zones in the critical seepage face, which is thought to be associated with a downward trend in groundwater elevation in a nearby monitoring well(s). According to the conceptual understanding of the hydrogeology of the area, this should be a discrete point or area in an otherwise fairly dry rock face;
- 5. Carry out any pre-grouting tests, such as injecting water with or without tracer into the nearby monitoring well(s) and observing its discharge at the seepage zone,
- 6. Undertake a grouting program, either from above or from within the quarry, with the goal of reducing or completely sealing off the target seepage zone or zones.
- 7. Monitor the seepage and water level in the monitoring well(s) over a 1 year period, to determine if the grouting program has eliminated the seepage and caused a reversal of any pre-existing downwards trend in groundwater level.
- 8. Undertake additional grouting and monitoring as necessary;



- 9. Carry out any post-grouting tests;
- 10. Write a report summarizing the background, methods, findings, and recommendations.

#### References

Tsang, C. and Neretnieks, I., 1998. Flow Channeling in Heterogeneous Fractured Rocks, Reviews of Geophysics, Volume 36, pp 275-298.

### Approximate Cost of the Grouting Study

The approximate cost of the grouting study is estimated at \$123,000, broken down in Table 1 as shown below. In developing this price, the following assumptions were made:

- 1. The target fracture zone is discrete an no more than 5 m wide and 2 m high;
- 2. Drilling of grout holes will be from the quarry floor above, through the 12 m thick third lift;
- 3. A line of 10 grout holes will be drilled on 3 m centres, and the volume of rock receiving grout will be approximately 30 m long by 6 m wide, by 2 m deep;
- 4. The porosity of the rock receiving grout is no more than 5% (likely a gross overestimation)
- 5. Each 50 lb bag of grout will yield approximately 13 L of grout at flowable consistency

| Item  | Descriptions                                                      | Unit of<br>Measure | Unit<br>Price | Estimated<br>Quantity | Estimated<br>Cost |
|-------|-------------------------------------------------------------------|--------------------|---------------|-----------------------|-------------------|
| 1     | Annual research stipend for a graduate student                    | yr                 | \$20,000      | 2                     | \$40,000          |
| 2     | Dye, equipment, misc expenses                                     | Lump<br>sum        | \$5,000       | 1                     | \$5,000           |
| 3     | 15 m deep, 6" diameter<br>borehole drilled with water well<br>rig | ea                 | \$1,500       | 10                    | \$15,000          |
| 4     | Grouting pump and personnel                                       | hr                 | \$300         | 70                    | \$21,000          |
| 5     | Cementious grout, including shipping                              | bag                | \$16          | 1000                  | \$16,000          |
| 6     | Mobilization (driller, grouter)                                   | Lump<br>sum        | \$1,000       | 4                     | \$4,000           |
| 7     | Consultant oversight                                              | hr                 | \$200         | 50                    | \$10,000          |
| 8     | Cruickshank Project Manager                                       | hr                 | \$120         | 100                   | \$12,000          |
| Total |                                                                   |                    |               |                       | \$123,000         |

#### Table 1 Break Down of Estimated Cost for Grouting Study

