

REPORT

Environmental Compliance Approval Quarterly Monitoring Report (August to October 2023)

McCarthy Quarry

Submitted to:

Chris Hyde

Ontario Ministry of Environment, Conservation and Parks Barrie District Office 1203 - 54 Cedar Pointe Drive Barrie, ON L4N 5R7

Submitted by:

WSP Canada Inc.

121 Commerce Park Drive, Unit L Barrie, Ontario L4N 8X1 Canada +1 705 722 4492

22579526

November 2023

Distribution List

- E-copy Ontario MECP Barrie District Office
- E-copy Green Infrastructure Partners Inc.
- E-copy WSP Canada Inc.

Table of Contents

1.0	INTRODUCTION	1
2.0	BACKGROUND	1
3.0	QUARRY DISCHARGE MONITORING PLAN	1
4.0	MONITORING RESULTS	2
5.0	CLOSURE	2

TABLES (APPENDED)

- Table 1 McCarthy Pond Weekly Water Quality Results
- Table 2 McCarthy Pond Monthly Water Quality Results
- Table 3 McCarthy Semi-Annual Water Quality Monitoring Results
- Table 4 Measured Volume and Rate of Discharge from Quarry Sump

FIGURES

Figure 1 – Site Map and Monitoring Locations

APPENDICES

APPENDIX A ECA No. 7737-BH6QEA

APPENDIX B Water Quality Data

1.0 INTRODUCTION

WSP Canada Inc. (WSP) was retained by QBJR Aggregates Inc./Green Infrastructure Partners Inc. (Green) to prepare a quarterly monitoring report for the McCarthy Quarry located in the Township of Ramara, County of Simcoe (Figure 1). The preparation of a quarterly monitoring report is a requirement of the Environmental Compliance Approval (ECA) No. 7737-BH6QEA (the 'ECA') issued on October 22, 2019. A copy of the ECA is provided in Appendix A. The following report is intended to fulfill the requirements of Section 8 (4) of the ECA and documents the results of the monitoring program activities described in Section 6 of the ECA for the period between August and October 2023.

2.0 BACKGROUND

The dewatering activities at the McCarthy Quarry in 2023 are regulated under Permit to Take Water (PTTW) No. 1603-BKTPQH, issued on January 31, 2020 and expiring on January 31, 2025. Under PTTW No. 1603-BKTPQH QBJR/Green. is permitted to pump water from the quarry sump at a maximum rate of 4,545 L/min (76 L/sec). The quarry discharge monitoring plan and effluent quality limits are established in the ECA.

The McCarthy Quarry dewatering system includes a sump originally located in the northwest corner of the quarry floor which collects groundwater and surface water (hereafter referred to as "guarry discharge") accumulating at the base of the quarry. The sump is equipped with a pump which is rated for a maximum discharge rate of up to 2,100 L/min (35 L/sec) and is attached to a discharge line. On April 11, 2023, McCarthy staff replaced the pump with a rental from Sunbelt following issues with the previous pump. This pump is rated for a maximum discharge rate of up to 1417 L/min (24 L/sec) and is attached to the discharge line. Water is pumped from the quarry floor up the quarry face via the discharge line to a pipeline that directs the water to a 14,000 m³ settling pond (Figure 1). QBJR/Green finalized set-up of a new sump location in the southeast corner of the guarry floor in March 2022 and started utilized this new sump location for pumping in April 2022. The initial sump location was creating operational issues as QBJR/Green was not able to properly dewater the southern portion of the quarry. In addition, the previous set up was very inefficient due to the length of piping required from the sump to the horseshoe shaped settling pond. The new sump location is shown on the attached Figure 1; QBJR/Green has also adjusted the discharge piping that runs from the pump to the horse-shoe shaped settling pond. No changes were made to the discharge pond. The settling pond is equipped with a Hickenbottom control structure via which the water discharges to the roadside ditch along Concession Road 1. The water flows eastward along the north side of Concession Road 1 to a municipal drain and eventually discharges to the Talbot River approximately 1.1 km downstream of the Quarry, which eventually discharges into Lake Simcoe.

3.0 QUARRY DISCHARGE MONITORING PLAN

The technical requirements of the quarry discharge monitoring plan are listed in Section 4 (Effluent [quality] Limits), Section 5 (Effluent – Visual Observations), and Section 6 (Monitoring and Recording) of the ECA. The monitoring requirements consist of:

- Weekly monitoring of the effluent quality (Total Suspended Solids [TSS], oil and grease, phenolics [4AAP] and pH) at the outfall of the settling pond (labelled as SWM POND on Figure 1); and
- Semi-annual monitoring of effluent quality at three locations: 1) the SWM Pond outfall; 2) the culvert along Concession Road 1 at the McCarthy property; and 3) 260 m north of the intersection of Concession Road 1 and the Mara Eldon Boundary Road. The parameters required for semi-annual water quality monitoring (as

listed in Table 3 of the ECA) include TSS, copper, lead, nickel, zinc, arsenic, oil and grease, phenolics (4AAP), hardness (as CaCO₃), alkalinity(as CaCO₃), conductivity, pH, fluoride, chloride, nitrate (as N), nitrite (as N), sulphate, calcium, magnesium, sodium, potassium, ammonia (as N), dissolved organic carbon, iron, total Kjeldahl nitrogen, phosphorus (total), cadmium, chromium, manganese, anions (sum), cations (sum) and total dissolved solids.

The weekly quarry discharge quality sampling was conducted by McCarthy staff directly from the discharge outfall. The weekly water quality samples were sent to Bureau Veritas Laboratories of Mississauga, Ontario for analysis. These weekly water quality results are compared to the daily concentration limits of the ECA (Table 1). A monthly average is calculated from the weekly water quality results and compared to the monthly concentration limits of the ECA (Table 2).

A weekly water quality sample was collected from the McCarthy Pond location during the week of October 30th, 2023. No other weekly samples were collected through the end of the monitoring period as there was limited or no discharge reported by McCarthy staff. No semi-annual surface water sample was collected at SW-2 in October as this location was dry at the time of sampling; an additional attempt will be made in November with the results included in the annual ECA report.

4.0 MONITORING RESULTS

All laboratory certificates of analysis for the August to October 2023 monitoring period for the weekly monitoring and semi-annual events are provided in Appendix B. Results of the quarry discharge sample analyses are summarized below:

- The TSS, pH, Oil and Grease and Phenol (4AAP) concentrations were all below the daily concertation limits of the ECA (Table 1);
- The TSS, Oil and Grease and Phenol (4AAP) concentrations were all below all below the monthly concentration limits of the ECA (Table 2); and
- The semi-annual surface water sampling results were below the PWQO (Table 3) with the exception of an exceedance of Total Iron, Total Phosphorous, and Phenols at SW1. There was limited pond discharge reported at the time of sampling as well as a limited flow of water occurring at SW1. The elevated iron is likely attributed to entrained sediment in the sample. It is to be noted that exceedances for Total Phosphorous and Phenols have occurred occasionally in previous year's sampling events; and,
- The daily discharge rate between August to October 2023 was below the permitted rate of 4,545 L/min (76 L/sec) (Table 4).

5.0 CLOSURE

We trust this report meets your current requirements. Should you have any questions please do not hesitate to contact the undersigned.

Signature Page

WSP Canada Inc.

)

Colin Imrie, G.I.T. *Geo-Environmental Consultant*

CSI/SM/lb

in m. Fall

Sean McFarland, Ph.D., P.Geo. Senior Hydrogeologist, Senior Principal/Fellow

Tables

	Unit	Reportable Detection Limit (RDL)	PWQ0 ¹	Daily Concentration Limit ²	McCarthy Quarry		irry
Sample ID						Pond	
Date					30-Oct-23	-	-
pН	pН	n/a		6.0-9.5	7.31	-	-
Total Suspended Solids	mg/L	1		30	3	-	-
Total Oil and Grease	mg/L	0.5	Note 3	30	0.8	-	-
Phenols (4AAP)	mg/L	<0.0010		0.04	<0.0010	-	-

Notes

Provincial Water Quality Objectives (PWQQ); shaded cells denote PWQQ exceedance; some PWQOs are dependent on other water quality parameters hence the range in guideline values, refer to PWQQ notes.
 Daily Concentration Limit; bolded values denote exceedances in the Environmental Compliance Approval (ECA) daily concentration limits.
 The PWQQ for Oil and Grease indicates that oil or petrochemicals should not be present in concentrations that: can be detected as a visible film, sheen or discolouration on the surface, can be detected by odour, can cause tainting of edible organisms, can form detectable deposits on shorelines and bottom sediments.

 Results that are preceeded by "<" denote concentrations that are below the laboratory Reportable Detection Limit (RDL).

Table 2: McCarthy Pond Monthly Water Quality Results (August to October 2023)

	Unit	Reportable Detection Limit (RDL)	PWQO ¹	Monthly Concentration Limit ²	McCarthy Quarry		
Sample ID						Pond	
Date					August	September	October
Total Suspended Solids	mg/L	1		15	-	-	3.0
Total Oil and Grease	mg/L	0.5	Note 3	15	-	-	0.8
Phenols (4AAP)	mg/L	<0.0010		0.02	-	-	<0.0010
Notos							

Notes

1. Provincial Water Quality Objectives (PWQO); shaded cells denote PWQO exceedance; some PWQOs are dependent on other water quality parameters hence the range in guideline values, refer to PWQO notes.

2. Monthly Concentration Limit; bolded values denote exceedances in the Environmental Compliance Approval (ECA) monthly concentration limits.

3. The PWQO for Oil and Grease indicates that oil or petrochemicals should not be present in concentrations that: can be detected as a visible film, sheen or discolouration on the surface, can be detected by odour, can cause tainting of edible organisms, can form detectable deposits on shorelines and bottom sediments.

 Results that are preceeded by "<" denote concentrations that are below the laboratory Reportable Detection Limit (RDL).

Table 3: McCarthy Semi-Annual Water Quality Monitoring Results

	Unit	Reportable Detection Limit (RDL)	PWQO ¹	Interim PWQO ²	ECA Effluent Limits	McCarthy Quarry		
Sample ID						Pond	SW1	SW2
Date						16-Oct-23	16-Oct-23	-
Field Measured Parameters								
Conductivity	μS/cm	n/n	6595		6005	1440	1717	-
Temperature	°C	n/a	0.5=0.5		0.0-9.5	9.9	9,9	-
Calculated Parameters								
Hardness (CaCO3)	mg/L	1.0				420	550	-
Total Ammonia-N	mg/l	0.050				0.3	0.38	-
Conductivity	ms/cm	0.001				1.70	1.90	-
Total Dissolved Solids	mg/L	10				940	1060	-
Fluoride (F-) Total Kieldahl Nitrogen (TKN)	mg/L mg/l	0.10				0.46	0.45	-
Dissolved Organic Carbon	mg/L	0.50				9.1	7.5	-
pH	pH	N/A	6.5-8.5		6.0-9.5	7.91	7.80	-
Phenols-4AAP	mg/L	0.0010	0.001	0.00 ^{5b}	0.04	<0.0010	0.0011	-
Total Suspended Solids	mg/L	10		0.03	30	<10	15	-
Dissolved Sulphate (SO4)	mg/L	1				280	290	-
Alkalinity (Total as CaCO3)	mg/L	1.0				110	180	-
Dissolved Chloride (CI) Nitrite (N)	mg/L mg/l	0.010			-	<0.010	310	-
Nitrate (N)	mg/L	0.10				<0.10	0.23	-
Petroleum Hydrocarbons								
Total Oil & Grease	mg/L	0.50	Note 3		30	.90	<0.50	-
Total Arsenic (As)	ug/L	1	100	5	1	<1.0	<1.0	-
Total Cadmium (Cd)	ug/L	0.09	0.2	0.1-0.5 ^{5d}		< 0.09	<0.09	-
Dissolved Calcium (Ca)	mg/L	0.05				91	140	-
Total Calcium (Ca)	ug/L	200	1 90 ^{5e}		-	100000	140000	-
Total Copper (Cu)	ug/L	0.9	5	1-5 ^{5t}		<0.9	0.97	-
Total Iron (Fe)	ug/L	100	300			250	620	-
Total Lead (Pb)	ug/L	0.5	5-25 ⁵⁹	1-5 ⁵ⁿ		<0.50	<0.50	-
Total Magnesium (Mg)	ug/L	50				51000	51000	-
Total Manganese (Mn)	ug/L	2				34	66	-
Total Nickel (Ni)	ug/L	1	25			2.0	2.2	-
Dissolved Potassium (K)	mg/L	1				17.0	16.0	-
Dissolved Sodium (Na)	mg/L	0.5			1	160	170	
Total Sodium (Na)	ug/L	100				180000	170000	-
 Provincial Water Quality Objectives (PWQO); shaded cells denote PWQO exceedance; some PWQOs are dependent on other water quality parameters hence the range in guideline values, refer to PWQO notes. Interim Provincial Water Quality Objectives (Interim PWQO); shaded cells and italics denote Interim PWQO exceedance; some PWQOs are dependent on other water quality parameters hence the range in guideline values, refer to PQWO notes. The PWQO for Oil and Grease indicates that oil or pertochemicals should not be present in concentrations that: can be detected as a visible film, sheen or discolouration on the surface, can be detected by odour, can cause tainting of edible organisms, can form detectable deposits on shorelines and bottom sediments. Results that are preceeded by '<' denote concentrations that are below the laboratory Reportable Detection Limit (RDL). 5a. Aluminum (Interim): At pH >6.5 to 5.5 the Interim PWQO is 15 ug/L based on inorganic monomeric aluminum measured in clay-free samples to more than 10% above natural background concentrations for waters representative of that geological area of the Province that are unaffected by man-made inputs. At pH >5.5 to 9.0, the Interim PWQO is 75 ug/L based on total aluminum measured in clay-free samples. If natural background aluminum concentrations in water bodies unaffected by manmade inputs. 					 5. Prospirod 5. Current scient this time. - Accordingly, th considered as c specific studies (a) To avoid nui phosphorus cor ug/L; (b) A high level provided by a tc ug/L or less. Th (c) Excessive p total phosphoru 5c. Beryllium: 5d. Cadmium: (Interim) 5g. Lead: 	If the evidence is insu the following phosph general guidelines w sance concentration iccentrations for the of protection agains tal phosphorus con is should apply to a lant growth in rivers s concentration bel If Hardness <75 m If Hardness <710 If Hardness <700 If Hardness >100 r 1 ug/L for thexavald &9. ug/L for trivalei If Hardness as Cad If Alkalinity as CaC If Alkalinity as CaC If Alkalinity as CaC	fficient to develop a orus concentrations thich should be supp ns of algae in lakes, ice-free period shou st aesthetic deterior; centration for the icc II lakes naturally bel and streams should w 30 ug/L. g/L (CaCO3), use 1 g/L (CaCO3), use 1 g/L (CaCO3), use 1 g/L (CaCO3), use 1 mg/L (CaCO3), use 1 mg/L (CaCO3), then mg/L (CaCO3), th	firm Objective at should be olemented by site- average total ld not exceed 20 ation will be e-free period of 10 ow this value; d be eliminated at a 1 ug/L 100 ug/L 1 ug/L 100 ug/L 0 use 0.1 ug/L use 0.5 ug/L 0, then use 1 ug/L then use 5 ug/L 10, use 10 ug/L 10, use 2 ug/L
					5h. Lead: (Interim)	If Alkalinity as CaC If Alkalinity as CaC If Hardness as CaC If Hardness as CaC If Hardness as CaC	CO3 (mg/L) is 40 to 8 CO3 (mg/L) is > 80, to CO3 (mg/L) is < 30, CO3 (mg/L) is 30 to CO3 (mg/L) is > 80,	then use 5 ug/L 80, then use 3 ug/L 80, then use 3 ug/L

						Rate of	Rate of
Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Taking	Taking
		-				(L/sec)	(L/min)
	ECA	Permitted F	Rate		6,550,000	76	4,545
1-Aug-23	NO P	UMP	0	0	-	-	-
2-Aug-23	NO P	UMP	0	0	-	-	-
3-Aug-23	NO P	UMP	0	0	-	-	-
4-Aug-23	7:00 AM	12:00 PM	18000	300	425,100	24	1,417
5-Aug-23	NO P	UMP	0	0	-	-	-
6-Aug-23	NO P	UMP	0	0	-	-	-
7-Aug-23	NO P	UMP	0	0	-	-	-
8-Aug-23	NO P	UMP	0	0	-	-	-
9-Aug-23	NO P	UMP	0	0	-	-	-
10-Aug-23	NO P	UMP	0	0	-	-	-
11-Aug-23	NO P	UMP	0	0	-	-	-
12-Aug-23	NO P	UMP	0	0	-	-	-
13-Aug-23	NO P	UMP	0	0	-	-	-
14-Aug-23	NO P	UMP	0	0	-	-	-
15-Aug-23	NO P	UMP	0	0	-	-	-
16-Aug-23	NO P	UMP	0	0	-	-	-
17-Aug-23	NO P	UMP	0	0	-	-	-
18-Aug-23	NO P	UMP	0	0	-	-	-
19-Aug-23	NO P	UMP	0	0	-	-	-
20-Aug-23	NO P	VMP	0	0	-	-	-
21-Aug-23	NO P	UMP	0	0	-	-	-
22-Aug-23	NO P	UMP	0	0	-	-	-
23-Aug-23	NO P	UMP	0	0	-	-	-
24-Aug-23	NO P	UMP	0	0	-	-	-
25-Aug-23	NO P	UMP	0	0	-	-	-
26-Aug-23	NO P	UMP	0	0	-	-	-
27-Aug-23	NO P	UMP	0	0	-	-	-
28-Aug-23	NO P	UMP	0	0	-	-	-
29-Aug-23	NO P	UMP	0	0	_	-	-
30-Aug-23	NO P	UMP	0	0	-	-	-
31-Aug-23	NO P	UMP	0	0	-	-	-
1-Sep-23	NO P	UMP	0	0	-	-	-
2-Sep-23	NO P	UMP	0	0	-	-	-
3-Sep-23	NO PUMP		0	0	_	-	-
4-Sep-23	NO PUMP		0	0	_	-	-
5-Sep-23	NO PUMP		0	0	_	-	-
6-Sep-23	NO PUMP		0	0	-	-	-
7-Sep-23	NO PUMP		0	0	-	-	-
8-Sep-23	NO PUMP		0	0	-	-	-
9-Sep-23	NO P	UMP	0	0	_	-	-
10-Sep-23	NO P	UMP	0	0	_	-	-
11-Sep-23	7:00 AM	11:00 AM	14440	240	340,080	24	1,417

						Rate of	Rate of
Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Taking	Taking
						(L/sec)	(L/min)
	ECA	Permitted F	Rate	1	6,550,000	76	4,545
12-Sep-23	NO P	UMP	0	0	-	-	-
13-Sep-23	NO P	UMP	0	0	-	-	-
14-Sep-23	NO P	UMP	0	0	-	-	-
15-Sep-23	NO P	UMP	0	0	-	-	-
16-Sep-23	NO P	UMP	0	0	-	-	-
17-Sep-23	NO P	UMP	0	0	-	-	-
18-Sep-23	NO P	UMP	0	0	-	-	-
19-Sep-23	NO P	UMP	0	0	-	-	-
20-Sep-23	NO P	UMP	0	0	-	-	-
21-Sep-23	NO P	UMP	0	0	-	-	-
22-Sep-23	NO P	UMP	0	0	-	-	-
23-Sep-23	NO P	UMP	0	0	-	-	-
24-Sep-23	NO P	UMP	0	0	-	-	-
25-Sep-23	7:00 AM	9:00 AM	7200	120	170,040	24	1,417
26-Sep-23	NO P	UMP	0	0	-	-	-
27-Sep-23	NO P	UMP	0	0	-	-	-
28-Sep-23	NO P	UMP	0	0	-	-	-
29-Sep-23	NO P	UMP	0	0	-	-	-
30-Sep-23	NO P	UMP	0	0	-	-	-
1-Oct-23	NO P	UMP	0	0	-	-	-
2-Oct-23	NO P	UMP	0	0	-	-	-
3-Oct-23	NO P	UMP	0	0	-	-	-
4-Oct-23	NO P	UMP	0	0	-	-	-
5-Oct-23	NO P	UMP	0	0	-	-	-
6-Oct-23	NO P	UMP	0	0	-	-	-
7-Oct-23	NO P	UMP	0	0	-	-	-
8-Oct-23	NO P	UMP	0	0	-	-	-
9-Oct-23	NO P	UMP	0	0	-	-	-
10-Oct-23	NO P	UMP	0	0	-	-	-
11-Oct-23	NO P	UMP	0	0	-	-	-
12-Oct-23	NO P	UMP	0	0	-	-	-
13-Oct-23	NO P	UMP	0	0	-	-	-
14-Oct-23	NO P	UMP	0	0	-	-	-
15-Oct-23	NO P	UMP	0	0	-	-	-
16-Oct-23	7:00 AM	11:00AM	14440	240	340,080	24	1,417
17-Oct-23	NO P	UMP	0	0	-	-	-
18-Oct-23	NO P	UMP	0	0	-	-	-
19-Oct-23	NO PUMP		0	0	-	-	-
20-Oct-23	NO PUMP		0	0	-	-	-
21-Oct-23	NO P	UMP	0	0	-	-	-
22-Oct-23	NO P	UMP	0	0	-	-	-
23-Oct-23	NO P	UMP	0	0	-	-	-

Date	Start	Stop	Total Sec.	Total Min.	Total Litres	Rate of Taking (L/sec)	Rate of Taking (L/min)
	ECA	Permitted I	6,550,000	76	4,545		
24-Oct-23	NO P	PUMP	0	0	-	-	-
25-Oct-23	NO P	PUMP	0	0	-	-	-
26-Oct-23	NO P	PUMP	0	0	-	-	-
27-Oct-23	NO P	PUMP	0	0	-	-	-
28-Oct-23	NO P	PUMP	0	0	-	-	-
29-Oct-23	NO P	PUMP	0	0	-	-	-
30-Oct-23	7:00 AM	2:00PM	25200	420	595,140	24	1,417
31-0ct-23	NO P	PUMP	0	0	-	-	-

Figures

APPENDIX A

ECA No. 7737-BH6QEA

Ministry of the Environment, Conservation and Parks Ministère de l'Environnement, de la Protection de la nature et des Parcs

AMENDED ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER 7737-BH6QEA Issue Date: October 22, 2019

QBJR Aggregates Inc. 949 Wilson Avenue Toronto, Ontario M3K 1G2

Site Location: McCarthy Quarry Lot 1, Concession 1, Original Township of Mara Township of Ramara County of Simcoe L0K 1B0

You have applied under section 20.2 of Part II.1 of the <u>Environmental Protection Act</u>, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

sewage works for the collection, transmission, treatment and disposal of stormwater and groundwater collecting within the confines of the Quarry, consisting of the following:

- one (1) sump, measuring 20 metres long, 10 metres wide and 3 metres deep, located at the base of the quarry floor, equipped with two (2) submersible pumps each rated at 38 litres per second with a suction intake approximately one (1) metre above the bottom of the sump, discharging to a settling pond via a 203 millimetre diameter pipeline; and
- one (1) horse-shoe shaped settling pond with an approximate volume of 14,000 cubic metres (at elevation 248.2 metres), with a Hickenbottom control structure equipped with a 150 millimetre diameter orifice plate, discharging to the roadside ditch along Concession Road 1 with ultimate discharge to the Talbot River via a private ditch.

all other controls, electrical equipment, instrumentation, piping, pumps, valves and appurtenances essential for the proper operation of the aforementioned sewage works.

all in accordance with supporting documents listed in Schedule A.

For the purpose of this environmental compliance approval, the following definitions apply:

"Application" means the application for an environmental compliance approval submitted to the Ministry for approval by or on behalf of the Owner and dated August 8, 2019.

"Approval" means this environmental compliance approval, any schedules attached to it, and the Application;

"Director" means a person appointed by the Minister pursuant to section 5 of the EPA for the purposes of Part II.1 of the EPA;

"District Manager" means the District Manager of the appropriate local District Office of the Ministry, where the Works are geographically located;

"EPA" means the Environmental Protection Act, R.S.O. 1990, c.E.19, as amended;

"Ministry" means the ministry of the government of Ontario responsible for the EPA and OWRA and includes all officials, employees or other persons acting on its behalf;

"Owner" means QBJR Aggregates Inc., and includes its successors and assignees;

"OWRA" means the Ontario Water Resources Act, R.S.O. 1990, c. O.40, as amended; and

"Works" means the sewage works described in the Approval.

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. **GENERAL CONDITION**

- (1) The Owner shall ensure that any person authorized to carry out work on or operate any aspect of the Works is notified of this Approval and the terms and conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- (2) Except as otherwise provided by these terms and conditions, the Owner shall design, build, install, operate and maintain the Works in accordance with this Approval.
- (3) Where there is a conflict between a provision of this environmental compliance approval and any document submitted by the Owner, the conditions in this environmental compliance approval shall take precedence. Where there is a conflict between one or more of the documents submitted by the Owner, the Application shall take precedence

unless it is clear that the purpose of the document was to amend the Application

- (4) Where there is a conflict between the documents listed in the Schedule A, and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application.
- (5) The terms and conditions of this Approval are severable. If any term and condition of this environmental compliance approval, or the application of any requirement of this environmental compliance approval to any circumstance, is held invalid or unenforceable, the application of such condition to other circumstances and the remainder of this Approval shall not be affected thereby.
- (6) The issuance of, and compliance with the conditions of, this Approval does not:
 - a) relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement, including, but not limited to, the obligation to obtain approval from the local conservation authority necessary to construct or operate the sewage Works; or
 - b) limit in any way the authority of the Ministry to require certain steps be taken to require the Owner to furnish any further information related to compliance with this Approval.

2. <u>CHANGE OF OWNER</u>

- (1) The Owner shall notify the District Manager and the Director, in writing, of any of the following changes within **thirty (30) days** of the change occurring:
 - (a) change of address of Owner or operating authority;
 - (b) change of Owner or operating authority or both, including address of new Owner or operating authority, or both;
 - (c) change of partners where the Owner or operating authority is or at any time becomes a partnership, and a copy of the most recent declaration filed under the *Business Names Act, R.S.O. 1990, c. B.17*; and
 - (d) change of name of the corporation where the Owner or operator is or at any time becomes a corporation, and a copy of the "Initial Return" or "Notice of Change" filed under the *Corporations Information Act, R.S.O. 1990, c. C.39*, shall be included in the notification to the District Manager.
- (2) In the event of any change in ownership of the Works, the Owner shall notify in writing the succeeding owner of the existence of this Approval, and a copy of such notice shall be

forwarded to the District Manager.

(3) The Owner shall ensure that all communications made pursuant to this condition refer to the number at the top of this environmental compliance approval.

3. **OPERATION AND MAINTENANCE**

- (1) The Owner shall prepare an operations manual of the Works that includes, but is not limited to, the following information:
 - (a) operating procedures for routine operation of the Works;
 - (b) inspection programs, including frequency of inspection, for the Works and the methods or tests to be employed to detect when maintenance is necessary;
 - (c) repair and maintenance programs, including the frequency of repair and maintenance for the Works;
 - (d) contingency plans and procedures for dealing with a potential spill, bypasses or any other abnormal situations, including notifying the District Manager of the situation; and
 - (e) procedures for receiving and responding to public complaints.
- (2) The Owner shall ensure that the Works and related equipment and appurtenances which are installed or used to achieve compliance with this Approval are properly operated and maintained.
- (3) The Owner shall inspect the sump, discharge pump and settling pond on a monthly basis and keep a log or record of the inspections at the Quarry.
- (4) The Owner shall carry out on an as-needed basis, specific maintenance requirements like removing build-up, associated with the sump, pump and settling pond.
- (5) The Owner shall, upon identification of a loss of oil and fuel, take immediate action to prevent the further occurrence of such loss and prevent the spill from entering into the sump and/or the settling pond.
- (6) In furtherance of, but without limiting the generality of, the obligation imposed by subsection (2), the Owner shall ensure that equipment and material for the containment, clean-up and disposal of oil and fuel and materials contaminated with oil or fuel are kept on hand and in good repair for immediate use in the event of:
 - (a) loss of oil or fuel during refuelling or equipment maintenance;

- (b) a spill within the meaning of Part X of the Environmental Protection Act; and/or
- (c) the identification of an abnormal amount of oil or fuel in the sump and/or settling pond.

4. <u>EFFLUENT LIMITS</u>

(1) The Owner shall construct, operate and maintain the Works such that the concentrations of the materials named below as effluent parameters are not exceeded in the effluent from the Works.

Table 1 - Effluent Limits						
Effluent Parameter	Daily Concentration (milligrams per litre unless otherwise indicated)	Monthly Average Concentration (milligrams per litre unless otherwise indicated)				
Column 1	Column 2	Column 3				
Oil and Grease	30	15				
Phenolics (4AAP)	0.04	0.02				
Total Suspended Solids	30	15				
pH of the effluent maintained between 6.0 to 9.5, inclusive, at all times						

- (2) For the purposes of determining compliance with and enforcing subsection (1):
 - (a) non-compliance with respect to a Daily Concentration is deemed to have occurred when any single grab sample analyzed for a parameter named in Column 1 of subsection (1) is greater than the corresponding daily concentration set out in Column 2 of subsection (1);
 - (b) non-compliance with respect to an Monthly Average Concentration is deemed to have occurred when the arithmetic mean concentration of all samples taken in a month, analyzed for a parameter named in Column 1 of subsection (1) is greater than the corresponding monthly average concentration set out in Column 3 of subsection (1); and
 - (c) non-compliance with respect to pH is deemed to have occurred when any single measurement is outside of the indicated range.

5. <u>EFFLUENT - VISUAL OBSERVATIONS</u>

- (1) Notwithstanding any other condition in this Approval, the Owner shall ensure that the effluent from the Works is essentially free of floating and settleable solids and does not contain oil or any other substance in amounts sufficient to create a visible film, sheen or foam on the receiving waters.
- (2) Notwithstanding any other condition in this Approval, the Owner shall ensure that the

effluent from the Works shall not cause flooding or erosion to the downstream receiver and in particular Road flooding.

6. MONITORING AND RECORDING

The Owner shall, upon the Issuance of this Approval, carry out the following monitoring program:

- (1) All samples and measurements taken for the purposes of this Approval are to be taken at a time and in a location characteristic of the quality and quantity of the effluent stream over the time period being monitored.
- (2) Samples shall be collected and analyzed at the following sampling point, at the sampling frequencies and using the sample type specified for each parameter listed:

Table 2 - Effluent Monitoring				
Sample Point	Outfall of settling pond approximately 150 metres north of Concession 1 (i.e. end of pipe discharge).			
Frequency	Weekly			
Sample Type	Grab			
Parameters	Oil and Grease, Phenolics (4AAP), and Total Suspended Solid (TSS).			

	Table 3 - Effluent and Surface Water Monitoring
Sample Point	1. Outfall of settling pond approximately 150 metres north of Concession 1 (i.e. end of pipe discharge).
	2. Box culvert on Eldon-Ramara Townline approximately 260 metres north of the intersection of Ramara Concession 1 and Eldon-Ramara Townline (i.e. upgradient of end of pipe discharge).
	 80 centimetre CSP located at Concession 1 Road on McCarthy property (i.e. downgradient of end of pipe discharge).
Frequency	Semi-Annually during discharge event.
Sample Type	Grab
Parameters	Total Suspended Solids, Copper, Lead, Nickel, Zinc, Arsenic, Oil and Grease, Phenolics (4AAP), Hardness (as CaCO ₃), Alkalinity(as CaCO ₃), Conductivity, pH, Fluoride, Chloride, Nitrate (N), Nitrite (N), Sulphate, Calcium, Magnesium, Sodium, Potassium, Ammonia (N), Dissolved Organic Carbon, Iron, Total Kjeldahl Nitrogen, Phosphorus (Total), Cadmium, Chromium, Manganese, Anion (Sum), Cation (Sum) and Total Dissolved Solids.

- (3) The methods and protocols for sampling, analysis and recording shall conform, in order of precedence, to the methods and protocols specified in the following:
 - (a) the Ministry's publication "Protocol for the Sampling and Analysis of Industrial/Municipal Wastewater" (August 1994), ISBN 0-7778-1880-9, as amended from time to time by more recently published editions; and
 - (b) the publication "Standard Methods for the Examination of Water and Wastewater" (21st edition), as amended from time to time by more recently published editions.
- (4) The Owner shall measure, record and calculate the discharge rate and volume from the Works on a daily basis during discharging period.
- (5) The Owner shall retain for a minimum of **five (5) years** from the date of their creation, all records and information related to or resulting from the monitoring activities required by this Approval.

7. <u>RECEIVER INSPECTION</u>

(1) The Owner shall, at least once per year, undertake a visual inspection of the downstream ditches for evidence of erosion and/or flooding and shall report the observations in the annual report.

8. <u>REPORTING</u>

- (1) The Owner shall report to the District Manager or designate, any exceedance of any parameter specified in condition 4 orally, forthwith, and in writing within seven (7) days of the exceedance.
- (2) In addition to the obligations under Part X of the EPA, the Owner shall, within ten (10) working days of the occurrence of any reportable spill as defined in Ontario Regulation 675/98, bypass or loss of any product, by-product, intermediate product, oil, solvent, waste material or any other polluting substance into the environment, submit a full written report of the occurrence to the District Manager describing the cause and discovery of the spill or loss, clean-up and recovery measures taken, preventative measures to be taken and schedule of implementation.
- (3) The Owner shall, upon request, make all manuals, plans, records, data, procedures and supporting documentation available to Ministry staff.
- (4) The Owner shall submit quarterly reports of the information obtained under condition 6 within **30 days** of the end of each quarter.
- (5) The Owner shall prepare, and submit to the District Manager, a **performance report**, on

an annual basis, on or before March 31st. The reports shall contain, but shall not be limited to, the following information:

- (a) a summary and interpretation of all monitoring data and a comparison to the effluent limits outlined in condition 4, including an overview of the success and adequacy of the sewage Works;
- (b) a description of any operating problems encountered and corrective actions taken;
- (c) a summary of all maintenance carried out on any major structure, equipment, apparatus, mechanism or thing forming part of the sewage works;
- (d) a summary of any effluent quality assurance or control measures undertaken in the reporting period;
- (e) any other information the District Manager requires from time to time.

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is imposed to ensure that the Works are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the Approval and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review. Condition 1.(6) is included to emphasize that the issuance of this Approval does not diminish any other statutory and regulatory obligations to which the Owner is subject in the construction, maintenance and operation of the Works. The Condition specifically highlights the need to obtain any necessary conservation authority approvals. The Condition also emphasizes the fact that this Approval doesn't limit the authority of the Ministry to require further information.
- 2. Condition 2 is included to ensure that the Ministry records are kept accurate and current with respect to approved Works and to ensure that subsequent owners of the Works are made aware of the Approval and continue to operate the works in compliance with it.
- 3. Condition 3 is included to ensure that a comprehensive operations manual governing all significant areas of operation, maintenance and repair is prepared, implemented and kept up-to-date by the Owner and made available to the Ministry. Such a manual is an integral part of the operation of the Works. Its compilation and use should assist the owner in staff training, in proper plant operation and in identifying and planning for contingencies during possible abnormal conditions. The manual will also act as a benchmark for Ministry staff when reviewing the Owner's operation of the Works. The condition is also included to ensure that the Works will be operated and maintained in a manner enabling compliance with the terms and conditions of this Approval, such that the environment is protected and deterioration, loss, injury or damage to

any person or property is minimised and/or prevented.

- 4. Conditions 4 and 5 are imposed to ensure that the effluent discharged from the Works to the environment meets the Ministry's effluent quality requirements thus minimizing environmental impact on the receiver.
- 5. Condition 6 is included to enable the Owner to evaluate and demonstrate the performance of the Works, on a continual basis, so that the Works are properly operated and maintained at a level which is consistent with the design objectives and effluent limits specified in the Approval and that the Works does not cause any impairment to the receiver.
- 6. Condition 7 is included in order to determine if the ongoing discharge of quarry water is having a negative impact on the downstream ditches so that abatement measures can be taken to prevent such occurrences.
- 7. Condition 8 is included to provide a performance record for future references, to ensure that the Ministry is made aware of problems as they arise, and to provide a compliance record for all the terms and conditions outlined in this Approval, so that the Ministry can work with the Owner in resolving any problems in a timely manner.

SCHEDULE 'A'

1. <u>Environmental Compliance Approval Application for Industrial Sewage Works</u> submitted by John Easton, P.Geo., Golder Associates Ltd., and signed by Mr. Anthony Rossi, Director Land Development & Government Relations, QBJR Aggregates Inc., dated August 8, 2019; and all supporting documentation and information.

Upon issuance of the environmental compliance approval, I hereby revoke Approval No(s). 4731-987KM8 issued on October 15, 2013.

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- a. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- b. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 1. The name of the appellant;
- 2. The address of the appellant;
- 3. The environmental compliance approval number;
- 4. The date of the environmental compliance approval;
- 5. The name of the Director, and;
- 6. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

		The Director appointed for the purposes of Part
The Secretary*		II.1 of the Environmental Protection Act
Environmental Review Tribunal		Ministry of the Environment, Conservation and
655 Bay Street, Suite 1500	AND	Parks
Toronto, Ontario		135 St. Clair Avenue West, 1st Floor
M5G 1E5		Toronto, Ontario
		M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act. DATED AT TORONTO this 22nd day of October, 2019

Fariha Pannu, P.Eng. Director appointed for the purposes of Part II.1 of the *Environmental Protection Act*

AA/

c: District Manager, MECP Barrie District Office John Easton, P.Geo., Golder Associates Ltd.

APPENDIX B

Water Quality Data

Your Project #: 22579526 Site Location: McCarthy Your C.O.C. #: 958199-01-01

Attention: Colin Imrie

WSP Canada Inc. 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2023/10/26 Report #: R7880284 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3W2968

Received: 2023/10/17, 13:00

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	3	N/A	2023/10/19	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	3	N/A	2023/10/19	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	3	N/A	2023/10/23	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	3	N/A	2023/10/19	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	3	N/A	2023/10/20	CAM SOP-00446	SM 23 5310 B m
Fluoride	3	2023/10/18	2023/10/19	CAM SOP-00449	SM 23 4500-F C m
Hardness (calculated as CaCO3)	3	N/A	2023/10/24	CAM SOP	SM 2340 B
				00102/00408/00447	
Lab Filtered Metals Analysis by ICP	3	2023/10/18	2023/10/24	CAM SOP-00408	EPA 6010D m
Total Metals Analysis by ICPMS	1	2023/10/20	2023/10/20	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS	2	2023/10/23	2023/10/23	CAM SOP-00447	EPA 6020B m
Anion and Cation Sum	3	N/A	2023/10/24		
Total Ammonia-N	3	N/A	2023/10/26	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	3	N/A	2023/10/22	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Animal and Vegetable Oil and Grease	3	N/A	2023/10/23	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	3	2023/10/23	2023/10/23	CAM SOP-00326	EPA1664B m,SM5520B m
рН	3	2023/10/18	2023/10/19	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	3	N/A	2023/10/18	CAM SOP-00444	OMOE E3179 m
Orthophosphate	3	N/A	2023/10/19	CAM SOP-00461	SM 23 4500-P E m
Sat. pH and Langelier Index (@ 20C)	3	N/A	2023/10/24		Auto Calc
Sat. pH and Langelier Index (@ 4C)	3	N/A	2023/10/24		Auto Calc
Sulphate by Automated Turbidimetry	3	N/A	2023/10/19	CAM SOP-00464	SM 23 4500-SO42- E m
Total Dissolved Solids	3	2023/10/21	2023/10/23	CAM SOP-00428	SM 23 2540C m
Total Kjeldahl Nitrogen in Water	3	2023/10/20	2023/10/23	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	3	2023/10/20	2023/10/23	CAM SOP-00407	SM 23 4500-P I
Total Phosphorus (Colourimetric)	3	2023/10/20	2023/10/23	CAM SOP-00407	SM 23 4500-P I
Mineral/Synthetic O & G (TPH Heavy Oil) (3)	3	2023/10/23	2023/10/23	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	3	2023/10/21	2023/10/22	CAM SOP-00428	SM 23 2540D m
Turbidity	3	N/A	2023/10/19	CAM SOP-00417	SM 23 2130 B m

Page 1 of 18

Your Project #: 22579526 Site Location: McCarthy Your C.O.C. #: 958199-01-01

Attention: Colin Imrie

WSP Canada Inc. 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2023/10/26 Report #: R7880284 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3W2968 Received: 2023/10/17, 13:00 Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(3) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Your Project #: 22579526 Site Location: McCarthy Your C.O.C. #: 958199-01-01

Attention: Colin Imrie

WSP Canada Inc. 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2023/10/26 Report #: R7880284 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3W2968 Received: 2023/10/17, 13:00

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 3 Page 3 of 18 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

OIL & GREASE - A/V/M/T (WATER)

Bureau Veritas ID				XHX488	XHX489	XHX490		
Sampling Date				2023/10/16 11:30	2023/10/16 11:30	2023/10/16		
COC Number				958199-01-01	958199-01-01	958199-01-01		
		UNITS	Criteria	POND	SW1	DUP3	RDL	QC Batch
Calculated Parame	ters							
Total Animal/Vegetable Oil and Grease mg/L - 0.90 <0.50 1.3 0.5				0.50	8987851			
Petroleum Hydroca	arbons							
Total Oil & Grease	se mg/L - 0.90 <0.50 1.3 0.50 899854					8998542		
Total Oil & Grease I	mg/L	0.5	<0.50	<0.50	<0.50	0.50	8998544	
No Fill	No Exceedance							
Grey	Exceeds 1 criteria	policy/le	evel					
Black	Black Exceeds both criteria/levels							
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
Criteria: Ontario Pro	ovincial Water Quality	/ Objecti	ives					
Ref. to MOEE Water	r Management docum	ient dat	ed Feb.19	999				

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID				XHX488		XHX489			XHX489		
Sampling Date				2023/10/16		2023/10/16			2023/10/16		
ounipining bacc			 	11:30		11:30			11:30		
COC Number		ļ	ļ	958199-01-01		958199-01-01			958199-01-01		
		UNITS	Criteria	POND	QC Batch	SW1	RDL	QC Batch	SW1 Lab-Dup	RDL	QC Batch
Calculated Parameters											
Anion Sum		me/L	-	16.1	8986223	18.3	N/A	8986223			
Bicarb. Alkalinity (calc. as C	CaCO3)	mg/L	-	110	8985804	170	1.0	8985804			
Carb. Alkalinity (calc. as Ca	CO3)	mg/L	<u> </u>	<1.0	8985804	1.0	1.0	8985804			
Cation Sum		me/L		15.8	8986223	18.9	N/A	8986223			
Hardness (CaCO3)		mg/L	-	420	8985805	550	1.0	8985805			
Langelier Index (@ 20C)		N/A	-	0.359	8986216	0.622		8986216			
Langelier Index (@ 4C)		N/A	-	0.113	8986217	0.376		8986217			
Saturation pH (@ 20C)		N/A	-	7.55	8986216	7.18		8986216			
Saturation pH (@ 4C)		N/A	-	7.80	8986217	7.42		8986217			
Inorganics			•	•	•	•			•		
Total Ammonia-N		mg/L	-	0.30	9004563	0.38	0.050	9004563			
Conductivity		umho/cm	-	1700	8990881	1900	1.0	8990881	1900	1.0	8990881
Total Dissolved Solids		mg/L	-	940	8996238	1060	10	8996238			
Fluoride (F-)		mg/L	-	0.46	8990882	0.45	0.10	8990882	0.44	0.10	8990882
Total Kjeldahl Nitrogen (TK	(N)	mg/L	-	1.1	8995677	1.1	0.10	8995677			
Dissolved Organic Carbon		mg/L	-	9.1	8987163	7.5	0.40	8987163			
Orthophosphate (P)		mg/L	-	<0.010	8990930	<0.010	0.010	8990930			
рН		рН	6.5:8.5	7.91	8990883	7.80		8990883	7.97		8990883
Phenols-4AAP		mg/L	0.001	<0.0010	8988664	0.0011	0.0010	8988855	0.0010	0.0010	8988855
Total Phosphorus		mg/L	0.01	0.022	8996644	0.042	0.004	8996644			
Total Suspended Solids		mg/L	-	<10	8997337	15	10	8997337			
Dissolved Sulphate (SO4)		mg/L	-	280	8990929	290	1.0	8990929			
Turbidity		NTU	-	3.5	8990916	5.5	0.1	8990916			
Alkalinity (Total as CaCO3)		mg/L	-	110	8990880	180	1.0	8990880	180	1.0	8990880
Dissolved Chloride (Cl-)		mg/L	-	290	8990923	310	5.0	8990923			
Nitrite (N)		mg/L	-	<0.010	8990230	0.018	0.010	8990230	1		
Nitrate (N)		mg/L	-	<0.10	8990230	0.23	0.10	8990230			
No Fill	No Exce	edance	L	I	.1	1		1	1		1
Grev	Exceeds	3 1 criteria r	olicy/lev	el							
Black	Exceeds	both criter	ria/levels								
RDI = Reportable Detectio	n Limit		, -								
OC Batch = Quality Control	Batch										
Lab-Dup = Laboratory Initia	ated Dur	olicate									
Criteria: Ontario Provincial	Water C	Quality Obje	ectives								
Ref. to MOEE Water Manag	gement o	document d	lated Feb	.1999							
N/A - Not Applicable											

Page 5 of 18

RESULTS OF ANALYSES OF WATER

				1	1		1	1	
Bureau Veritas ID			l	XHX490			XHX490		
Sampling Date				2023/10/16			2023/10/16		
COC Number				958199-01-01			958199-01-01		
		UNITS	Criteria	DUP3	RDL	QC Batch	DUP3 Lab-Dup	RDL	QC Batch
Calculated Parameters									
Anion Sum		me/L	-	18.3	N/A	8986223			
Bicarb. Alkalinity (calc.	as CaCO3)	mg/L	-	180	1.0	8985804			
Carb. Alkalinity (calc. as	s CaCO3)	mg/L	-	1.2	1.0	8985804			
Cation Sum		me/L	-	18.0	N/A	8986223			
Hardness (CaCO3)		mg/L	-	520	1.0	8985805			
Langelier Index (@ 20C)	N/A	_	0.663		8986216			
Langelier Index (@ 4C)		N/A		0.418		8986217			
Saturation pH (@ 20C)		N/A		7.20		8986216			
Saturation pH (@ 4C)		N/A	_	7.45		8986217			
Inorganics									
Total Ammonia-N		mg/L		0.38	0.050	9004563			
Conductivity		umho/cm	_	1900	1.0	8990881			
Total Dissolved Solids		mg/L	-	1080	10	8992857			
Fluoride (F-)		mg/L		0.44	0.10	8990882			
Total Kjeldahl Nitrogen	(TKN)	mg/L		0.99	0.10	8995677	1.1	0.10	8995677
Dissolved Organic Carb	on	mg/L	_	7.4	0.40	8987163			
Orthophosphate (P)		mg/L	-	<0.010	0.010	8990930	<0.010	0.010	8990930
рН		рН	6.5:8.5	7.86		8990883			
Phenols-4AAP		mg/L	0.001	0.0011	0.0010	8988855			
Total Phosphorus		mg/L	0.01	0.027	0.004	8996644			
Total Suspended Solids		mg/L	-	20	10	8995263			
Dissolved Sulphate (SO	4)	mg/L	-	290	1.0	8990929	290	1.0	8990929
Turbidity		NTU	-	5.7	0.1	8990916	5.5	0.1	8990916
Alkalinity (Total as CaC	O3)	mg/L	-	180	1.0	8990880			
Dissolved Chloride (Cl-)		mg/L	-	310	5.0	8990923	320	5.0	8990923
Nitrite (N)		mg/L		0.019	0.010	8990230			
Nitrate (N)		mg/L	-	0.24	0.10	8990230			
No Fill	No Exceedar	nce							
Grey	Exceeds 1 cr	iteria policy	/level						
Black	Exceeds bot	h criteria/le	vels						

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

N/A = Not Applicable

Page 6 of 18

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID				XHX488		XHX489	XHX490		
Sampling Date				2023/10/16 11:30		2023/10/16 11:30	2023/10/16		
COC Number				958199-01-01		958199-01-01	958199-01-01		
		UNITS	Criteria	POND	QC Batch	SW1	DUP3	RDL	QC Batch
Metals									
Dissolved Calcium (C	a)	mg/L	-	91	8990454	140	130	0.05	8990454
Dissolved Magnesiur	n (Mg)	mg/L	-	46	8990454	51	48	0.05	8990454
Dissolved Potassium	(K)	mg/L	-	17	8990454	16	16	1	8990454
Dissolved Sodium (N	a)	mg/L	-	160	8990454	170	160	0.5	8990454
Total Arsenic (As)		ug/L	100	<1.0	8994213	<1.0	<1.0	1.0	8998650
Total Cadmium (Cd)		ug/L	0.2	<0.090	8994213	<0.090	<0.090	0.090	8998650
Total Calcium (Ca)		ug/L	-	100000	8994213	140000	140000	200	8998650
Total Chromium (Cr)		ug/L	-	<5.0	8994213	<5.0	<5.0	5.0	8998650
Total Copper (Cu)		ug/L	5	<0.90	8994213	0.97	0.93	0.90	8998650
Total Iron (Fe)		ug/L	300	250	8994213	620	530	100	8998650
Total Lead (Pb)		ug/L	5	<0.50	8994213	<0.50	<0.50	0.50	8998650
Total Magnesium (M	g)	ug/L	-	51000	8994213	51000	50000	50	8998650
Total Manganese (M	n)	ug/L	-	34	8994213	66	63	2.0	8998650
Total Nickel (Ni)		ug/L	25	2.0	8994213	2.2	2.2	1.0	8998650
Total Potassium (K)		ug/L	-	19000	8994213	16000	16000	200	8998650
Total Sodium (Na)		ug/L	-	180000	8994213	170000	180000	100	8998650
Total Zinc (Zn)		ug/L	30	9.4	8994213	<5.0	<5.0	5.0	8998650
No Fill	No Exce	eedance	9						
Grey	Exceed	s 1 crite	ria policy	/level					
Black	Black Exceeds both criteria/levels								
RDL = Reportable De	RDL = Reportable Detection Limit								
QC Batch = Quality C	ontrol Ba	atch							
Criteria: Ontario Prov	vincial Wa	ater Qua	ality Obje	ctives					
Ref. to MOEE Water	Managen	nent do	cument d	ated Feb.1999					

TEST SUMMARY

Bureau Veritas ID:	XHX488
Sample ID:	POND
Matrix:	Water

Bureau Veritas ID: XHX488 Sample ID: POND Matrix: Water					Collected: 2023/10/16 Shipped: Received: 2023/10/17
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8990880	N/A	2023/10/19	Nachiketa Gohil
Carbonate, Bicarbonate and Hydroxide	CALC	8985804	N/A	2023/10/19	Automated Statchk
Chloride by Automated Colourimetry	KONE	8990923	N/A	2023/10/23	Massarat Jan
Conductivity	AT	8990881	N/A	2023/10/19	Nachiketa Gohil
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8987163	N/A	2023/10/20	Gyulshen Idriz
Fluoride	ISE	8990882	2023/10/18	2023/10/19	Nachiketa Gohil
Hardness (calculated as CaCO3)		8985805	N/A	2023/10/24	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	8990454	2023/10/18	2023/10/24	Suban Kanapathippllai
Total Metals Analysis by ICPMS	ICP/MS	8994213	2023/10/20	2023/10/20	Nan Raykha
Anion and Cation Sum	CALC	8986223	N/A	2023/10/24	Automated Statchk
Total Ammonia-N	LACH/NH4	9004563	N/A	2023/10/26	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8990230	N/A	2023/10/22	Chandra Nandlal
Animal and Vegetable Oil and Grease	BAL	8987851	N/A	2023/10/23	Automated Statchk
Total Oil and Grease	BAL	8998542	2023/10/23	2023/10/23	Nikhil Dhiman
рН	AT	8990883	2023/10/18	2023/10/19	Nachiketa Gohil
Phenols (4AAP)	TECH/PHEN	8988664	N/A	2023/10/18	Chloe Pollock
Orthophosphate	KONE	8990930	N/A	2023/10/19	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	8986216	N/A	2023/10/24	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	8986217	N/A	2023/10/24	Automated Statchk
Sulphate by Automated Turbidimetry	KONE	8990929	N/A	2023/10/19	Alina Dobreanu
Total Dissolved Solids	BAL	8996238	2023/10/21	2023/10/23	Shaneil Hall
Total Kjeldahl Nitrogen in Water	SKAL	8995677	2023/10/20	2023/10/23	Kruti Jitesh Patel
Total Phosphorus (Colourimetric)	SKAL/P	8996644	2023/10/20	2023/10/23	Sachi Patel
Total Phosphorus (Colourimetric)	SKAL/P	8995179	2023/10/20	2023/10/23	Sachi Patel
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8998544	2023/10/23	2023/10/23	Nikhil Dhiman
Total Suspended Solids	BAL	8997337	2023/10/21	2023/10/22	Darshan Patel
Turbidity	AT	8990916	N/A	2023/10/19	Leily Karimi

Bureau Veritas ID: XHX489 Sample ID: SW1 Matrix: Water

Collected: 2023/10/16 Shipped: Received: 2023/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8990880	N/A	2023/10/19	Nachiketa Gohil
Carbonate, Bicarbonate and Hydroxide	CALC	8985804	N/A	2023/10/19	Automated Statchk
Chloride by Automated Colourimetry	KONE	8990923	N/A	2023/10/23	Massarat Jan
Conductivity	AT	8990881	N/A	2023/10/19	Nachiketa Gohil
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8987163	N/A	2023/10/20	Gyulshen Idriz
Fluoride	ISE	8990882	2023/10/18	2023/10/19	Nachiketa Gohil
Hardness (calculated as CaCO3)		8985805	N/A	2023/10/24	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	8990454	2023/10/18	2023/10/24	Suban Kanapathippllai
Total Metals Analysis by ICPMS	ICP/MS	8998650	2023/10/23	2023/10/23	Indira HarryPaul
Anion and Cation Sum	CALC	8986223	N/A	2023/10/24	Automated Statchk
Total Ammonia-N	LACH/NH4	9004563	N/A	2023/10/26	Prabhjot Kaur

Page 8 of 18

TEST SUMMARY

Bureau Veritas ID:	XHX489
Sample ID:	SW1
Matrix:	Water

Collected:	2023/10/16
Shipped:	
Received:	2023/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrate & Nitrite as Nitrogen in Water	LACH	8990230	N/A	2023/10/22	Chandra Nandlal
Animal and Vegetable Oil and Grease	BAL	8987851	N/A	2023/10/23	Automated Statchk
Total Oil and Grease	BAL	8998542	2023/10/23	2023/10/23	Nikhil Dhiman
рН	AT	8990883	2023/10/18	2023/10/19	Nachiketa Gohil
Phenols (4AAP)	TECH/PHEN	8988855	N/A	2023/10/18	Chloe Pollock
Orthophosphate	KONE	8990930	N/A	2023/10/19	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	8986216	N/A	2023/10/24	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	8986217	N/A	2023/10/24	Automated Statchk
Sulphate by Automated Turbidimetry	KONE	8990929	N/A	2023/10/19	Alina Dobreanu
Total Dissolved Solids	BAL	8996238	2023/10/21	2023/10/23	Shaneil Hall
Total Kjeldahl Nitrogen in Water	SKAL	8995677	2023/10/20	2023/10/23	Kruti Jitesh Patel
Total Phosphorus (Colourimetric)	SKAL/P	8996644	2023/10/20	2023/10/23	Sachi Patel
Total Phosphorus (Colourimetric)	SKAL/P	8995179	2023/10/20	2023/10/23	Sachi Patel
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8998544	2023/10/23	2023/10/23	Nikhil Dhiman
Total Suspended Solids	BAL	8997337	2023/10/21	2023/10/22	Darshan Patel
Turbidity	AT	8990916	N/A	2023/10/19	Leily Karimi

Bureau Veritas ID: XHX489 Dup Sample ID: SW1 Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8990880	N/A	2023/10/19	Nachiketa Gohil
Conductivity	AT	8990881	N/A	2023/10/19	Nachiketa Gohil
Fluoride	ISE	8990882	2023/10/18	2023/10/19	Nachiketa Gohil
рН	AT	8990883	2023/10/18	2023/10/19	Nachiketa Gohil
Phenols (4AAP)	TECH/PHEN	8988855	N/A	2023/10/18	Chloe Pollock

Bureau Veritas ID:	XHX490
Sample ID:	DUP3
Matrix:	Water

Collected:	2023/10/16
Shipped:	
Received:	2023/10/17

Collected: 2023/10/16

Received: 2023/10/17

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8990880	N/A	2023/10/19	Nachiketa Gohil
Carbonate, Bicarbonate and Hydroxide	CALC	8985804	N/A	2023/10/19	Automated Statchk
Chloride by Automated Colourimetry	KONE	8990923	N/A	2023/10/23	Massarat Jan
Conductivity	AT	8990881	N/A	2023/10/19	Nachiketa Gohil
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8987163	N/A	2023/10/20	Gyulshen Idriz
Fluoride	ISE	8990882	2023/10/18	2023/10/19	Nachiketa Gohil
Hardness (calculated as CaCO3)		8985805	N/A	2023/10/24	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	8990454	2023/10/18	2023/10/24	Suban Kanapathippllai
Total Metals Analysis by ICPMS	ICP/MS	8998650	2023/10/23	2023/10/23	Indira HarryPaul
Anion and Cation Sum	CALC	8986223	N/A	2023/10/24	Automated Statchk
Total Ammonia-N	LACH/NH4	9004563	N/A	2023/10/26	Prabhjot Kaur

Page 9 of 18

TEST SUMMARY

Bureau Veritas ID:	XHX490
Sample ID:	DUP3
Matrix:	Water

Collected: Shinned:	2023/10/16
Received:	2023/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrate & Nitrite as Nitrogen in Water	LACH	8990230	N/A	2023/10/22	Chandra Nandlal
Animal and Vegetable Oil and Grease	BAL	8987851	N/A	2023/10/23	Automated Statchk
Total Oil and Grease	BAL	8998542	2023/10/23	2023/10/23	Nikhil Dhiman
рН	AT	8990883	2023/10/18	2023/10/19	Nachiketa Gohil
Phenols (4AAP)	TECH/PHEN	8988855	N/A	2023/10/18	Chloe Pollock
Orthophosphate	KONE	8990930	N/A	2023/10/19	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	8986216	N/A	2023/10/24	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	8986217	N/A	2023/10/24	Automated Statchk
Sulphate by Automated Turbidimetry	KONE	8990929	N/A	2023/10/19	Alina Dobreanu
Total Dissolved Solids	BAL	8992857	2023/10/21	2023/10/23	Shaneil Hall
Total Kjeldahl Nitrogen in Water	SKAL	8995677	2023/10/20	2023/10/23	Kruti Jitesh Patel
Total Phosphorus (Colourimetric)	SKAL/P	8996644	2023/10/20	2023/10/23	Sachi Patel
Total Phosphorus (Colourimetric)	SKAL/P	8995179	2023/10/20	2023/10/23	Sachi Patel
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8998544	2023/10/23	2023/10/23	Nikhil Dhiman
Total Suspended Solids	BAL	8995263	2023/10/21	2023/10/22	Darshan Patel
Turbidity	AT	8990916	N/A	2023/10/19	Leily Karimi

Bureau Veritas ID: XHX490 Dup Sample ID: DUP3 Matrix: Water

Collected: 2023/10/16 Shipped: Received: 2023/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride by Automated Colourimetry	KONE	8990923	N/A	2023/10/23	Massarat Jan
Orthophosphate	KONE	8990930	N/A	2023/10/19	Alina Dobreanu
Sulphate by Automated Turbidimetry	KONE	8990929	N/A	2023/10/19	Alina Dobreanu
Total Kjeldahl Nitrogen in Water	SKAL	8995677	2023/10/20	2023/10/23	Kruti Jitesh Patel
Turbidity	AT	8990916	N/A	2023/10/19	Leily Karimi

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 6.3°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Туре	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8987163	GID	Matrix Spike	Dissolved Organic Carbon	2023/10/20		92	%	80 - 120
8987163	GID	Spiked Blank	Dissolved Organic Carbon	2023/10/20		94	%	80 - 120
8987163	GID	Method Blank	Dissolved Organic Carbon	2023/10/20	<0.40		mg/L	
8987163	GID	RPD	Dissolved Organic Carbon	2023/10/20	3.0		%	20
8988664	CPO	Matrix Spike	Phenols-4AAP	2023/10/18		102	%	80 - 120
8988664	CPO	Spiked Blank	Phenols-4AAP	2023/10/18		101	%	80 - 120
8988664	CPO	Method Blank	Phenols-4AAP	2023/10/18	<0.0010		mg/L	
8988664	CPO	RPD	Phenols-4AAP	2023/10/18	NC		%	20
8988855	CPO	Matrix Spike [XHX489-04]	Phenols-4AAP	2023/10/18		102	%	80 - 120
8988855	CPO	Spiked Blank	Phenols-4AAP	2023/10/18		100	%	80 - 120
8988855	CPO	Method Blank	Phenols-4AAP	2023/10/18	<0.0010		mg/L	
8988855	CPO	RPD [XHX489-04]	Phenols-4AAP	2023/10/18	9.5		%	20
8990230	C_N	Matrix Spike	Nitrite (N)	2023/10/22		NC	%	80 - 120
			Nitrate (N)	2023/10/22		NC	%	80 - 120
8990230	C_N	Spiked Blank	Nitrite (N)	2023/10/22		105	%	80 - 120
			Nitrate (N)	2023/10/22		101	%	80 - 120
8990230	C_N	Method Blank	Nitrite (N)	2023/10/22	<0.010		mg/L	
			Nitrate (N)	2023/10/22	<0.10		mg/L	
8990230	C_N	RPD	Nitrite (N)	2023/10/22	4.0		%	20
			Nitrate (N)	2023/10/22	1.8		%	20
8990454	SUK	Matrix Spike	Dissolved Calcium (Ca)	2023/10/24		NC	%	80 - 120
			Dissolved Magnesium (Mg)	2023/10/24		NC	%	80 - 120
			Dissolved Potassium (K)	2023/10/24		101	%	80 - 120
			Dissolved Sodium (Na)	2023/10/24		NC	%	80 - 120
8990454	SUK	Spiked Blank	Dissolved Calcium (Ca)	2023/10/24		101	%	80 - 120
			Dissolved Magnesium (Mg)	2023/10/24		104	%	80 - 120
			Dissolved Potassium (K)	2023/10/24		103	%	80 - 120
			Dissolved Sodium (Na)	2023/10/24		102	%	80 - 120
8990454	SUK	Method Blank	Dissolved Calcium (Ca)	2023/10/24	<0.05		mg/L	
			Dissolved Magnesium (Mg)	2023/10/24	<0.05		mg/L	
			Dissolved Potassium (K)	2023/10/24	<1		mg/L	
			Dissolved Sodium (Na)	2023/10/24	<0.5		mg/L	
8990880	NGI	Spiked Blank	Alkalinity (Total as CaCO3)	2023/10/19		96	%	85 - 115
8990880	NGI	Method Blank	Alkalinity (Total as CaCO3)	2023/10/19	<1.0		mg/L	
8990880	NGI	RPD [XHX489-02]	Alkalinity (Total as CaCO3)	2023/10/19	1.3		%	20
8990881	NGI	Spiked Blank	Conductivity	2023/10/19		101	%	85 - 115
8990881	NGI	Method Blank	Conductivity	2023/10/19	<1.0		umho/cm	
8990881	NGI	RPD [XHX489-02]	Conductivity	2023/10/19	0.053		%	10
8990882	NGI	Matrix Spike [XHX489-02]	Fluoride (F-)	2023/10/19		92	%	80 - 120
8990882	NGI	Spiked Blank	Fluoride (F-)	2023/10/19		94	%	80 - 120
8990882	NGI	Method Blank	Fluoride (F-)	2023/10/19	<0.10		mg/L	
8990882	NGI	RPD [XHX489-02]	Fluoride (F-)	2023/10/19	0.96		%	20
8990883	NGI	Spiked Blank	рН	2023/10/19		102	%	98 - 103
8990883	NGI	RPD [XHX489-02]	рН	2023/10/19	2.2		%	N/A
8990916	[KI	Spiked Blank	Turbidity	2023/10/19		101	%	80 - 120
8990916	[KI	Method Blank	Turbidity	2023/10/19	<0.1	101	NTU	110
8990916	[KI	RPD [XHX490-02]	Turbidity	2023/10/19	3.7		%	20
8990973	MI1	Matrix Spike [XHX490-02]	Dissolved Chloride (Cl-)	2023, 10, 13	5.7	NC	%	20 80 - 120
8990923	M11	Sniked Blank	Dissolved Chloride (Cl-)	2023, 10, 23		97	%	80 - 120
8990923	MI1	Method Blank	Dissolved Chloride (CI-)	2023, 10, 23	<1 0	57	mg/I	00 120
8990923	MI1		Dissolved Chloride (CL)	2023, 10, 23	4 5		<u>6</u> /∟ %	20
0550525	1417 T	11 D [NIN-30-02]		2023/10/23	J		70	20

Page 12 of 18

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC			_			_		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8990929	ADB	Matrix Spike [XHX490-02]	Dissolved Sulphate (SO4)	2023/10/19		NC	%	/5 - 125
8990929	ADB	Spiked Blank	Dissolved Sulphate (SO4)	2023/10/19		97	%	80 - 120
8990929	ADB	Method Blank	Dissolved Sulphate (SO4)	2023/10/19	<1.0		mg/L	
8990929	ADB	RPD [XHX490-02]	Dissolved Sulphate (SO4)	2023/10/19	0.22		%	20
8990930	ADB	Matrix Spike [XHX490-02]	Orthophosphate (P)	2023/10/19		91	%	75 - 125
8990930	ADB	Spiked Blank	Orthophosphate (P)	2023/10/19		91	%	80 - 120
8990930	ADB	Method Blank	Orthophosphate (P)	2023/10/19	<0.010		mg/L	
8990930	ADB	RPD [XHX490-02]	Orthophosphate (P)	2023/10/19	NC		%	20
8992857	SHD	Spiked Blank	Total Dissolved Solids	2023/10/23		100	%	90 - 110
8992857	SHD	Method Blank	Total Dissolved Solids	2023/10/23	<10		mg/L	
8992857	SHD	RPD	Total Dissolved Solids	2023/10/23	4.3		%	20
8994213	N_R	Matrix Spike	Total Arsenic (As)	2023/10/20		97	%	80 - 120
			Total Cadmium (Cd)	2023/10/20		94	%	80 - 120
			Total Calcium (Ca)	2023/10/20		NC	%	80 - 120
			Total Chromium (Cr)	2023/10/20		93	%	80 - 120
			Total Copper (Cu)	2023/10/20		96	%	80 - 120
			Total Iron (Fe)	2023/10/20		95	%	80 - 120
			Total Lead (Pb)	2023/10/20		94	%	80 - 120
			Total Magnesium (Mg)	2023/10/20		94	%	80 - 120
			Total Manganese (Mn)	2023/10/20		92	%	80 - 120
			Total Nickel (Ni)	2023/10/20		90	%	80 - 120
			Total Potassium (K)	2023/10/20		100	%	80 - 120
			Total Sodium (Na)	2023/10/20		NC	%	80 - 120
			Total Zinc (Zn)	2023/10/20		93	%	80 - 120
8994213	N_R	Spiked Blank	Total Arsenic (As)	2023/10/20		95	%	80 - 120
			Total Cadmium (Cd)	2023/10/20		94	%	80 - 120
			Total Calcium (Ca)	2023/10/20		96	%	80 - 120
			Total Chromium (Cr)	2023/10/20		94	%	80 - 120
			Total Copper (Cu)	2023/10/20		96	%	80 - 120
			Total Iron (Fe)	2023/10/20		96	%	80 - 120
			Total Lead (Pb)	2023/10/20		94	%	80 - 120
			Total Magnesium (Mg)	2023/10/20		97	%	80 - 120
			Total Manganese (Mn)	2023/10/20		93	%	80 - 120
			Total Nickel (Ni)	2023/10/20		89	%	80 - 120
			Total Potassium (K)	2023/10/20		98	%	80 - 120
			Total Sodium (Na)	2023/10/20		98	%	80 - 120
			Total Zinc (Zn)	2023/10/20		95	%	80 - 120
8994213	N_R	Method Blank	Total Arsenic (As)	2023/10/20	<1.0		ug/L	
			Total Cadmium (Cd)	2023/10/20	<0.090		ug/L	
			Total Calcium (Ca)	2023/10/20	<200		ug/L	
			Total Chromium (Cr)	2023/10/20	<5.0		ug/L	
			Total Copper (Cu)	2023/10/20	<0.90		ug/L	
			Total Iron (Fe)	2023/10/20	<100		ug/L	
			Total Lead (Pb)	2023/10/20	<0.50		ug/L	
			Total Magnesium (Mg)	2023/10/20	<50		ug/L	
			Total Manganese (Mn)	2023/10/20	<2.0		ug/L	
			Total Nickel (Ni)	2023/10/20	<1.0		ug/L	
			Total Potassium (K)	2023/10/20	<200		ug/L	
			Total Sodium (Na)	2023/10/20	<100		ug/L	
			Total Zinc (Zn)	2023/10/20	<5.0		ug/L	
8994213	N_R	RPD	Total Arsenic (As)	2023/10/20	1.6		%	20

Page 13 of 18

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Cadmium (Cd)	2023/10/20	NC		%	20
			Total Chromium (Cr)	2023/10/20	NC		%	20
			Total Copper (Cu)	2023/10/20	2.9		%	20
			Total Iron (Fe)	2023/10/20	2.2		%	20
			Total Lead (Pb)	2023/10/20	7.4		%	20
			Total Magnesium (Mg)	2023/10/20	0.46		%	20
			Total Nickel (Ni)	2023/10/20	17		%	20
			Total Zinc (Zn)	2023/10/20	1.4		%	20
8995179	SPC	Matrix Spike	Total Phosphorus	2023/10/23		99	%	80 - 120
8995179	SPC	QC Standard	Total Phosphorus	2023/10/23		106	%	80 - 120
8995179	SPC	Spiked Blank	Total Phosphorus	2023/10/23		107	%	80 - 120
8995179	SPC	Method Blank	Total Phosphorus	2023/10/23	<0.020		mg/L	
8995179	SPC	RPD	Total Phosphorus	2023/10/23	NC		%	20
8995263	DPC	Spiked Blank	Total Suspended Solids	2023/10/22		98	%	85 - 115
8995263	DPC	Method Blank	Total Suspended Solids	2023/10/22	<10		mg/L	
8995263	DPC	RPD	Total Suspended Solids	2023/10/22	NC		%	20
8995677	KJP	Matrix Spike [XHX490-07]	Total Kjeldahl Nitrogen (TKN)	2023/10/23		110	%	80 - 120
8995677	KJP	QC Standard	Total Kjeldahl Nitrogen (TKN)	2023/10/23		96	%	80 - 120
8995677	KJP	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2023/10/23		99	%	80 - 120
8995677	KJP	Method Blank	Total Kjeldahl Nitrogen (TKN)	2023/10/23	<0.10		mg/L	
8995677	KJP	RPD [XHX490-07]	Total Kjeldahl Nitrogen (TKN)	2023/10/23	7.0		%	20
8996238	SHD	Spiked Blank	Total Dissolved Solids	2023/10/23		98	%	90 - 110
8996238	SHD	Method Blank	Total Dissolved Solids	2023/10/23	<10		mg/L	
8996238	SHD	RPD	Total Dissolved Solids	2023/10/23	0		%	20
8996644	SPC	Matrix Spike	Total Phosphorus	2023/10/23		101	%	80 - 120
8996644	SPC	QC Standard	Total Phosphorus	2023/10/23		104	%	80 - 120
8996644	SPC	Spiked Blank	Total Phosphorus	2023/10/23		99	%	80 - 120
8996644	SPC	Method Blank	Total Phosphorus	2023/10/23	<0.004		mg/L	
8996644	SPC	RPD	Total Phosphorus	2023/10/23	9.8		%	20
8997337	DPC	Spiked Blank	Total Suspended Solids	2023/10/22		96	%	85 - 115
8997337	DPC	Method Blank	Total Suspended Solids	2023/10/22	<10		mg/L	
8997337	DPC	RPD	Total Suspended Solids	2023/10/22	NC		%	20
8998542	NDM	Spiked Blank	Total Oil & Grease	2023/10/23		98	%	85 - 115
8998542	NDM	RPD	Total Oil & Grease	2023/10/23	0.25		%	25
8998542	NDM	Method Blank	Total Oil & Grease	2023/10/23	<0.50		mg/L	
8998544	NDM	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2023/10/23		96	%	85 - 115
8998544	NDM	RPD	Total Oil & Grease Mineral/Synthetic	2023/10/23	1.0		%	25
8998544	NDM	Method Blank	Total Oil & Grease Mineral/Synthetic	2023/10/23	<0.50		mg/L	
8998650	IHP	Matrix Spike	Total Arsenic (As)	2023/10/23		102	%	80 - 120
			Total Cadmium (Cd)	2023/10/23		97	%	80 - 120
			Total Calcium (Ca)	2023/10/23		NC	%	80 - 120
			Total Chromium (Cr)	2023/10/23		96	%	80 - 120
			Total Copper (Cu)	2023/10/23		101	%	80 - 120
			Total Iron (Fe)	2023/10/23		101	%	80 - 120
			Total Lead (Pb)	2023/10/23		99	%	80 - 120
			Total Magnesium (Mg)	2023/10/23		103	%	80 - 120
			Total Manganese (Mn)	2023/10/23		94	%	80 - 120
			Total Nickel (Ni)	2023/10/23		99	%	80 - 120
			Total Potassium (K)	2023/10/23		NC	%	80 - 120
			Total Sodium (Na)	2023/10/23		101	%	80 - 120
			Total Zinc (Zn)	2023/10/23		93	%	80 - 120

Page 14 of 18

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8998650	IHP	Spiked Blank	Total Arsenic (As)	2023/10/23		98	%	80 - 120
			Total Cadmium (Cd)	2023/10/23		94	%	80 - 120
			Total Calcium (Ca)	2023/10/23		95	%	80 - 120
			Total Chromium (Cr)	2023/10/23		92	%	80 - 120
			Total Copper (Cu)	2023/10/23		93	%	80 - 120
			Total Iron (Fe)	2023/10/23		99	%	80 - 120
			Total Lead (Pb)	2023/10/23		93	%	80 - 120
			Total Magnesium (Mg)	2023/10/23		102	%	80 - 120
			Total Manganese (Mn)	2023/10/23		95	%	80 - 120
			Total Nickel (Ni)	2023/10/23		97	%	80 - 120
			Total Potassium (K)	2023/10/23		99	%	80 - 120
			Total Sodium (Na)	2023/10/23		99	%	80 - 120
			Total Zinc (Zn)	2023/10/23		97	%	80 - 120
8998650	IHP	Method Blank	Total Arsenic (As)	2023/10/23	<1.0		ug/L	
			Total Cadmium (Cd)	2023/10/23	<0.090		ug/L	
			Total Calcium (Ca)	2023/10/23	<200		ug/L	
			Total Chromium (Cr)	2023/10/23	<5.0		ug/L	
			Total Copper (Cu)	2023/10/23	<0.90		ug/L	
			Total Iron (Fe)	2023/10/23	<100		ug/L	
			Total Lead (Pb)	2023/10/23	<0.50		ug/L	
			Total Magnesium (Mg)	2023/10/23	<50		ug/L	
			Total Manganese (Mn)	2023/10/23	<2.0		ug/L	
			Total Nickel (Ni)	2023/10/23	<1.0		ug/L	
			Total Potassium (K)	2023/10/23	<200		ug/L	
			Total Sodium (Na)	2023/10/23	<100		ug/L	
			Total Zinc (Zn)	2023/10/23	<5.0		ug/L	
8998650	IHP	RPD	Total Arsenic (As)	2023/10/23	2.0		%	20
			Total Cadmium (Cd)	2023/10/23	9.1		%	20
			Total Chromium (Cr)	2023/10/23	NC		%	20
			Total Copper (Cu)	2023/10/23	4.3		%	20
			Total Iron (Fe)	2023/10/23	9.7		%	20
			Total Lead (Pb)	2023/10/23	NC		%	20
			Total Magnesium (Mg)	2023/10/23	2.0		%	20
			Total Manganese (Mn)	2023/10/23	14		%	20
			Total Nickel (Ni)	2023/10/23	9.7		%	20
			Total Zinc (Zn)	2023/10/23	11		%	20
9004563	KPJ	Matrix Spike	Total Ammonia-N	2023/10/26		97	%	75 - 125
9004563	KPJ	Spiked Blank	Total Ammonia-N	2023/10/26		102	%	80 - 120
9004563	KPJ	Method Blank	Total Ammonia-N	2023/10/26	<0.050		mg/L	

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC									
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits	
9004563	KPJ	RPD	Total Ammonia-N	2023/10/26	6.0		%	20	
N/A = Not	: Applic	able							
Duplicate	: Paire	d analysis of a separa	ate portion of the same sample. Used to ev	valuate the variance in the measure	ment.				
Matrix Sp	ike: A s	sample to which a kr	own amount of the analyte of interest has	been added. Used to evaluate sam	ple matrix inte	rference.			
QC Standa	ard: A s	ample of known con	centration prepared by an external agency	under stringent conditions. Used a	s an independ	lent check of me	thod accur	асу.	
Spiked Bla	ank: A b	olank matrix sample	to which a known amount of the analyte, u	usually from a second source, has be	en added. Use	ed to evaluate me	ethod accu	racy.	
Method B	lank: A	A blank matrix contai	ning all reagents used in the analytical pro	cedure. Used to identify laboratory	contaminatior	1.			
NC (Matri was too s	NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)								
NC (Dunli	cate RP	D). The duplicate RP	D was not calculated. The concentration in	the sample and/or duplicate was to	o low to perm	it a reliable RPD	calculation	(absolute	

difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Exceedance Summary Table – Prov. Water Quality Obj. Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
POND	XHX488-07	Total Phosphorus	0.01	0.022	0.004	mg/L
POND	XHX488-07	Total Phosphorus	0.01	0.031	0.020	mg/L
SW1	XHX489-06	Total Iron (Fe)	300	620	100	ug/L
SW1	XHX489-04	Phenols-4AAP	0.001	0.0011	0.0010	mg/L
SW1	XHX489-07	Total Phosphorus	0.01	0.042	0.004	mg/L
SW1	XHX489-07	Total Phosphorus	0.01	0.049	0.020	mg/L
DUP3	XHX490-06	Total Iron (Fe)	300	530	100	ug/L
DUP3	XHX490-04	Phenols-4AAP	0.001	0.0011	0.0010	mg/L
DUP3	XHX490-07	Total Phosphorus	0.01	0.027	0.004	mg/L
DUP3	XHX490-07	Total Phosphorus	0.01	0.026	0.020	mg/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Your Project #: 22579526 Your C.O.C. #: 934508-03-01

Attention: Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2023/11/08 Report #: R7901213 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3Y0019 Received: 2023/10/31, 09:23

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Animal and Vegetable Oil and Grease	1	N/A	2023/11/08	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2023/11/07	2023/11/07	CAM SOP-00326	EPA1664B m,SM5520B m
рН	1	2023/11/02	2023/11/02	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2023/11/03	CAM SOP-00444	OMOE E3179 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2023/11/07	2023/11/07	CAM SOP-00326	EPA1664B m,SM5520F m
Low Level Total Suspended Solids	1	2023/11/02	2023/11/02	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Page 1 of 6

Your Project #: 22579526 Your C.O.C. #: 934508-03-01

Attention: Colin Imrie

Golder Associates Ltd 121 Commerce Park Drive Unit L Barrie, ON CANADA L4N 8X1

> Report Date: 2023/11/08 Report #: R7901213 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3Y0019 Received: 2023/10/31, 09:23

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		XLO779					
Sampling Date		2023/10/30					
		03:15					
COC Number		934508-03-01					
	UNITS	POND	RDL	QC Batch			
Calculated Parameters							
Total Animal/Vegetable Oil and Grease	mg/L	0.80	0.50	9020510			
Inorganics							
рН	рΗ	7.31	N/A	9023663			
Phenols-4AAP	mg/L	<0.0010	0.0010	9026493			
Total Suspended Solids	mg/L	3 1		9024380			
Petroleum Hydrocarbons							
Total Oil & Grease	mg/L	0.80 0.50		9034540			
Total Oil & Grease Mineral/Synthetic	mg/L	<0.50	0.50	9034550			
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							
N/A = Not Applicable							

GENERAL COMMENTS

Each te	mperature is the ave	erage of up to th	ree cooler temperatures taken at receipt
	Package 1	14.3°C	
-		-	
Results	relate only to the it	ems tested.	

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9023663	GTK	Spiked Blank	рН	2023/11/02		102	%	98 - 103
9023663	GTK	RPD	рН	2023/11/02	0.49		%	N/A
9024380	DPC	Spiked Blank	Total Suspended Solids	2023/11/02		99	%	85 - 115
9024380	DPC	Method Blank	Total Suspended Solids	2023/11/02	<1		mg/L	
9024380	DPC	RPD	Total Suspended Solids	2023/11/02	12		%	20
9026493	CPO	Matrix Spike	Phenols-4AAP	2023/11/03		102	%	80 - 120
9026493	CPO	Spiked Blank	Phenols-4AAP	2023/11/03		99	%	80 - 120
9026493	CPO	Method Blank	Phenols-4AAP	2023/11/03	<0.0010		mg/L	
9026493	CPO	RPD	Phenols-4AAP	2023/11/03	2.2		%	20
9034540	K1P	Spiked Blank	Total Oil & Grease	2023/11/07		98	%	85 - 115
9034540	K1P	RPD	Total Oil & Grease	2023/11/07	0.51		%	25
9034540	K1P	Method Blank	Total Oil & Grease	2023/11/07	<0.50		mg/L	
9034550	K1P	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2023/11/07		96	%	85 - 115
9034550	K1P	RPD	Total Oil & Grease Mineral/Synthetic	2023/11/07	0.52		%	25
9034550	K1P	Method Blank	Total Oil & Grease Mineral/Synthetic	2023/11/07	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

